
Scientific Matrix Factorizations in Spark at Scale
Cross-platform performance, scaling,

and comparisons with C+MPI

Alex Gittens, Aditya Devarakonda, Evan Racah, Michael Ringenburg,
Lisa Gerhardt, Jey Kottaalam, Jialin Liu, Kristyn Maschhoff, Shane

Canon, Jatin Chhugani, Pramod Sharma, Jiyan Yang, James Demmel,
Jim Harrell, Venkat Krishnamurthy, Michael W. Mahoney, Prabhat

Why do linear algebra in Spark?

Con: Classical MPI-based linear algebra
implementations will be faster and more efficient

Faster development, easier reuse
One abstract uniform interface
An entire ecosystem that can be used before and after the
NLA computations
Spark can take advantage of available local linear algebra
codes
Automatic fault-tolerance, out-of-core support

Pros:

Motivation

NERSC: Spark for data-centric workloads and scientific analytics
AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix)
Cray: customers demand for Spark; understand performance concerns

Our Goals

Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

Understand Spark performance on commodity clusters
vs HPC platforms

Quantify the gaps between C+MPI and Spark
implementations

Investigate the scalability of current Spark-based linear
algebra on HPC platforms

Three Science Drivers

Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:
learn useful patterns for
classification of subatomic particles
(NMF)

Mass Spectrometry:
location of chemically important ions
(CX)

Datasets

(a) Daya Bay Neutrino Experiment (b) CAM5 Simulation (c) Mass-Spec Imaging

Fig. 1: Sources of various datasets used in this study

TABLE I: Summary of the matrices used in our study

Science Area Format/Files Dimensions Size

MSI Parquet/2880 8, 258, 911⇥ 131, 048 1.1TB
Daya Bay HDF5/1 1, 099, 413, 914⇥ 192 1.6TB
Ocean HDF5/1 6, 349, 676⇥ 46, 715 2.2TB
Atmosphere HDF5/1 26, 542, 080⇥ 81, 600 16TB

A. The Daya Bay Neutrino Experiment
The Daya Bay Neutrino Experiment (Figure 1a) is situated

on the southern coast of China. It detects antineutrinos
produced by the Ling Ao and Daya Bay nuclear power plants
and uses them to measure theta-13, a fundamental constant
that helps describe the flavor oscillation of neutrinos. In 2012
the Daya Bay experiment measured this with unprecedented
precision. This result was named one of the Science maga-
zines top ten breakthroughs of 2012, and this measurement
has since been refined considerably [5].

The Daya Bay Experiment consists of eight smaller de-
tectors, each with 192 photomultiplier tubes that detect light
generated by interaction of anti-neutrinos from the nearby
nuclear reactors. Each detector records the total charge in
each of the 192 photomultiplier tubes, as well as the time the
charge was detected. For this analysis we used a data array
comprised of the sum of the charge for every photomultiplier
tube from each Daya Bay detector. This data is well suited to
NMF analysis since accumulated charge will always be pos-
itive (with the exception of a few mis-calibrated values). The
extracted data was stored as HDF5 files with 192 columns,
one for each photomultiplier tube, and a different row for
each discrete event in the detectors. The resulting dataset
is a sparse 1.6 TB matrix. The specific analytics problem
that we tackle in this paper is that of finding characteristic
patterns or signatures corresponding to various event types.
Successfully “segmenting” and classifying a multiyear long
timeseries into meaningful events can dramatically improve
the productivity of scientists and enable them to focus on
anomalies, which can in turn result in new physics results.

B. Climate Science
Climate change is one of the most pressing challenges fac-

ing human society in the 21st century. Climate scientists rely
on HPC simulations to understand past, present and future

climate regimes. Vast amounts of 3D data (corresponding
to atmospheric and ocean processes) are readily available in
the community. Traditionally, the lack of scalable analytics
methods and tools has prevented the community from ana-
lyzing full 3D fields; typical analysis is thus performed only
on 2D spatial averages or slices.

In this study, we consider the Climate Forecast System
Reanalysis Product [45]. Global Ocean temperature data,
spatially resolved at 360 x 720 x 41 (latitude x longitude
x depth) and 6-hour temporal resolution is analyzed. The
CFSR dataset yields a dense 2.2TB matrix. We also process
a CAM5 0.25-degree atmospheric humidity dataset [48]
(Figure 1b). The grid is 768 x 1158 x 30 (latitude x longitude
x height) and data is stored every 3 hours. The CAM5
dataset spans 28 years, and it yields a dense 16TB matrix.
The specific analytics problem that we tackle is finding the
principal causes of variability in large scale 3D fields. PCA
analysis is widely accepted in the community; however the
lack of scalable implementations has limited the applicability
of such methods to TB-sized datasets.

C. Mass-Spectrometry Imaging

Mass spectrometry measures ions derived from the
molecules present in a biological sample. Spectra of the ions
are acquired at each location (pixel) of a sample, allowing
for the collection of spatially resolved mass spectra. This
mode of analysis is known as mass spectrometry imaging
(MSI). The addition of ion-mobility separation (IMS) to MSI
adds another dimension, drift time. The combination of IMS
with MSI is finding increasing applications in the study of
disease diagnostics, plant engineering, and microbial interac-
tions. Unfortunately, the scale of MSI data and complexity
of analysis presents a significant challenge to scientists: a
single 2D-image may be many gigabytes and comparison
of multiple images is beyond the processing capabilities
available to many scientists. The addition of IMS exacerbates
these problems.

We analyze one of the largest (1TB sized) mass-spec imag-
ing datasets in the field, obtained from a sample of the plant
Lewis Dalisay Peltatum (Figure 1c). The MSI measurements
are formed into a sparse matrix whose rows and columns
correspond to pixel and (⌧ , m/z) values of ions, respectively.
Here ⌧ denotes drift time and m/z is the mass-to-charge

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF

Ocean and Atmosphere — climate variables (ocean temperature,
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

Experiments

1. Compare EC2 and two HPC platforms using CX
implementation

2. More detailed analysis of Spark vs C+MPI scaling
for PCA and NMF on the two HPC platforms

A

A1

Am

... Some details:
All datasets are tall and skinny
The algorithms work with row-partitioned
matrices
Use H5Spark to read dense matrices from
HDF5, so MPI and Spark reading from same
data source

Platform comparisons
Two Cray HPC machines and EC2, using CX

The Randomized CX Decomposition

Dimensionality reduction is a ubiquitous tool in science
(bio-imaging, neuro-imaging, genetics, chemistry,
climatology, …), typical approaches include PCA and NMF
which give approximations that rely on non-interpretable
combinations of the data points in A

PCA, NMF lack reifiability. Instead, CX matrix
decompositions identify exemplar data points (columns of
A) that capture the same information as the top singular
vectors, and give approximations of the form

A ⇡ CX

The Randomized CX Decomposition

 To get accuracy comparable to the truncated rank-k SVD,
the randomized CX algorithm randomly samples O(k)
columns with replacement from A according to the
leverage scores

pi =
kvik22
k

, where VT
k = [v1, . . . ,vn]

Uk⌃kA

VT
k

⇡

The Randomized CX Decomposition

 It is expensive to compute the right singular vectors
Since the algorithm is already randomized, we use a
randomized algorithm to quickly approximate them

RANDOMIZEDSVD Algorithm

Input: A 2 Rm⇥n, number of power iterations q � 1,
target rank r > 0, slack ` � 0, and let k = r + `.

Output: U⌃V T ⇡ THINSVD(A, r).
1: Initialize B 2 Rn⇥k by sampling Bij ⇠ N (0, 1).
2: for q times do
3: B MULTIPLYGRAMIAN(A,B)
4: (B,) THINQR(B)
5: end for
6: Let Q be the first r columns of B.
7: Let C = MULTIPLY(A,Q).
8: Compute (U,⌃, Ṽ T) = THINSVD(C).
9: Let V = QṼ .

MULTIPLYGRAMIAN Algorithm

Input: A 2 Rm⇥n, B 2 Rn⇥k.
Output: X = A

T
AB.

1: Initialize X = 0.
2: for each row a in A do
3: X X + aa

T
B.

4: end for

applications where coupling analytical techniques with do-
main knowledge is at a premium, including genetics [13],
astronomy [14], and mass spectrometry imaging [15].

In more detail, CX decomposition factorizes an m ⇥ n

matrix A into two matrices C and X , where C is an m⇥ c

matrix that consists of c actual columns of A, and X is a c⇥
n matrix such that A ⇡ CX . (CUR decompositions further
choose X = UR, where R is a small number of actual rows
of A [6], [12].) For CX, using the same optimality criterion
defined in (2), we seek matrices C and X such that the
residual error kA� CXkF is small.

The algorithm of [12] that computes a 1 ± ✏ relative-
error low-rank CX matrix approximation consists of three
basic steps: first, compute (exactly or approximately) the
statistical leverage scores of the columns of A; and second,
use those scores as a sampling distribution to select c

columns from A and form C; finally once the matrix C

is determined, the optimal matrix X with rank-k that mini-
mizes kA� CXkF can be computed accordingly; see [12]
for detailed construction.

The algorithm for approximating the leverage scores is
provided in Algorithm ??. Let A = U⌃V T be the SVD of
A. Given a target rank parameter k, for i = 1, . . . , n, the
i-th leverage score is defined as

`i =
kX

j=1

v2
ij . (3)

These scores quantify the amount of “leverage” each column
of A exerts on the best rank-k approximation to A. For each

CXDECOMPOSITION

Input: A 2 Rm⇥n, rank parameter k  rank(A), number
of power iterations q.

Output: C.
1: Compute an approximation of the top-k right singular

vectors of A denoted by Ṽk, using RANDOMIZEDSVD
with q power iterations.

2: Let `i =
Pk

j=1 ṽ
2
ij , where ṽ2

ij is the (i, j)-th element
of Ṽk, for i = 1, . . . , n.

3: Define pi = `i/
Pd

j=1 `j for i = 1, . . . , n.
4: Randomly sample c columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

column of A, we have

ai =
rX

j=1

(�juj)vij ⇡
kX

j=1

(�juj)vij .

That is, the i-th column of A can be expressed as a linear
combination of the basis of the dominant k-dimensional
left singular space with vij as the coefficients. If, for
i = 1, . . . , n, we define the normalized leverage scores as

pi =
`iPn
j=1 `j

, (4)

where `i is defined in (3), and choose columns from A

according to those normalized leverage scores, then (by [6],
[12]) the selected columns are able to reconstruct the matrix
A nearly as well as Ak does.

The running time for CXDECOMPOSITION is determined
by the computation of the importance sampling distribution.
To compute the leverage scores based on (3), one needs to
compute the top k right-singular vectors Vk. This can be
prohibitive on large matrices. However, we can once again
use RANDOMIZEDSVD to compute approximate leverage
scores. This approach, originally proposed by Drineas et
al. [16], runs in “random projection time,” so requires fewer
FLOPS and fewer passes over the data matrix than determin-
istic algorithms that compute the leverage scores exactly.

III. HIGH PERFORMANCE IMPLEMENTATION

We undertake two classes of high performance imple-
mentations for the CX method. We start with a highly
optimized, close-to-the-metal C implementation that focuses
on obtaining peak efficiency from conventional multi-core
CPU chipsets and extend it to multiple nodes. Secondly, we
implement the CX method in Spark, an emerging standard
for parallel data analytics frameworks.

A. Single Node Implementation/Optimizations
We now focus on optimizing the CX implementation on

a single compute-node. We began by profiling our initial
scalar serial CX code and optimizing the steps in the order of

The Randomized SVD algorithm

The matrix analog of the power method:

requires only matrix-matrix
multiplies against ATA

assumes B fits on one machine

Qt+1, = QR(ATAQt) ! Vk

xt+1 =
A

T
Axt

kAT
Axtk2

! v1

RANDOMIZEDSVD Algorithm

Input: A 2 Rm⇥n, number of power iterations q � 1,
target rank k > 0, slack p � 0, and let ` = k + p.

Output: U⌃V T ⇡ Ak.

1: Initialize B 2 Rn⇥` by sampling Bij ⇠ N (0, 1).
2: for q times do
3: B A

T
AB

4: (B,) THINQR(B)
5: end for
6: Let Q be the first k columns of B.
7: Let M = AQ.
8: Compute (U,⌃, Ṽ T) = THINSVD(M).
9: Let V = QṼ .

MULTIPLYGRAMIAN Algorithm

Input: A 2 Rm⇥n, B 2 Rn⇥k.
Output: X = A

T
AB.

1: Initialize X = 0.
2: for each row a in A do
3: X X + aa

T
B.

4: end for

applications where coupling analytical techniques with do-
main knowledge is at a premium, including genetics [13],
astronomy [14], and mass spectrometry imaging [15].

In more detail, CX decomposition factorizes an m ⇥ n

matrix A into two matrices C and X , where C is an m⇥ c

matrix that consists of c actual columns of A, and X is a c⇥
n matrix such that A ⇡ CX . (CUR decompositions further
choose X = UR, where R is a small number of actual rows
of A [6], [12].) For CX, using the same optimality criterion
defined in (2), we seek matrices C and X such that the
residual error kA� CXkF is small.

The algorithm of [12] that computes a 1 ± ✏ relative-
error low-rank CX matrix approximation consists of three
basic steps: first, compute (exactly or approximately) the
statistical leverage scores of the columns of A; and second,
use those scores as a sampling distribution to select c

columns from A and form C; finally once the matrix C

is determined, the optimal matrix X with rank-k that mini-
mizes kA� CXkF can be computed accordingly; see [12]
for detailed construction.

The algorithm for approximating the leverage scores is
provided in Algorithm ??. Let A = U⌃V T be the SVD of
A. Given a target rank parameter k, for i = 1, . . . , n, the
i-th leverage score is defined as

`i =
kX

j=1

v2
ij . (3)

These scores quantify the amount of “leverage” each column
of A exerts on the best rank-k approximation to A. For each

CXDECOMPOSITION

Input: A 2 Rm⇥n, rank parameter k  rank(A), number
of power iterations q.

Output: C.
1: Compute an approximation of the top-k right singular

vectors of A denoted by Ṽk, using RANDOMIZEDSVD
with q power iterations.

2: Let `i =
Pk

j=1 ṽ
2
ij , where ṽ2

ij is the (i, j)-th element
of Ṽk, for i = 1, . . . , n.

3: Define pi = `i/
Pd

j=1 `j for i = 1, . . . , n.
4: Randomly sample c columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

column of A, we have

ai =
rX

j=1

(�juj)vij ⇡
kX

j=1

(�juj)vij .

That is, the i-th column of A can be expressed as a linear
combination of the basis of the dominant k-dimensional
left singular space with vij as the coefficients. If, for
i = 1, . . . , n, we define the normalized leverage scores as

pi =
`iPn
j=1 `j

, (4)

where `i is defined in (3), and choose columns from A

according to those normalized leverage scores, then (by [6],
[12]) the selected columns are able to reconstruct the matrix
A nearly as well as Ak does.

The running time for CXDECOMPOSITION is determined
by the computation of the importance sampling distribution.
To compute the leverage scores based on (3), one needs to
compute the top k right-singular vectors Vk. This can be
prohibitive on large matrices. However, we can once again
use RANDOMIZEDSVD to compute approximate leverage
scores. This approach, originally proposed by Drineas et
al. [16], runs in “random projection time,” so requires fewer
FLOPS and fewer passes over the data matrix than determin-
istic algorithms that compute the leverage scores exactly.

III. HIGH PERFORMANCE IMPLEMENTATION

We undertake two classes of high performance imple-
mentations for the CX method. We start with a highly
optimized, close-to-the-metal C implementation that focuses
on obtaining peak efficiency from conventional multi-core
CPU chipsets and extend it to multiple nodes. Secondly, we
implement the CX method in Spark, an emerging standard
for parallel data analytics frameworks.

A. Single Node Implementation/Optimizations
We now focus on optimizing the CX implementation on

a single compute-node. We began by profiling our initial
scalar serial CX code and optimizing the steps in the order of

Computing the power iterations using Spark

is computed using a treeAggregate operation over the RDD

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]

(ATA)B =
mX

i=1

ai(a
T
i B)

https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html%5D

CX run-times: 1.1Tb

Platform Total Cores Core Frequency Interconnect DRAM SSDs

Amazon EC2 r3.8xlarge 960 (32 per-node) 2.5 GHz 10 Gigabit Ethernet 244 GiB 2 x 320 GB

Cray XC40 960 (32 per-node) 2.3 GHz Cray Aries [20], [21] 252 GiB None

Experimental Cray cluster 960 (24 per-node) 2.5 GHz Cray Aries [20], [21] 126 GiB 1 x 800 GB

Table I: Specifications of the three hardware platforms used in these performance experiments.

the full specifications of the three platforms. Note that these
are state-of-the-art configurations in datacenters and high
performance computing centers.

V. RESULTS

A. CX Performance using C and MPI

In Table II, we show the benefits of the optimizations
described in Sec. III-A. As far as single-node performance
is concerned, we started with a parallelized implementation
without any of the described optimizations. We first imple-
mented the multi-core synchronization scheme, wherein a
single copy of the output matrix is maintained, which re-
sulted in a speedup of 6.5X, primarily due to the reduction in
the amount of data traffic between the main memory and the
caches. We then implemented our cache blocking scheme,
which led to a further 2.4X speedup (overall 15.6X). We
then implemented our SIMD code that sped it up by a further
2.6X, for an overall speedup of 39.7X. Although the SIMD
width is 4, there are overheads of address computation,
stores, and not all computations (e.g. the QR decomposition)
were vectorized.

As far as the multi-node performance is concerned, on the
Amazon EC2 cluster, with 30 nodes (960-cores in total), and
the 1 TB dataset as input, it took 151 seconds to perform
CX computation (including the time to load the data into
main memory). Compared to the Scala code on the same
platform (whose performance is detailed in the next sub-
section), we achieve a speedup of 21X. This performance
gap can be attributed to the careful cache optimizations,
maintaining a single copy of the output matrix shared
across threads, bandwidth friendly access of matrices, and
vectorized computations using SIMD units.

Some of these optimizations can be implemented in Spark,
such as arranging the order of memory accesses to make ef-
ficient use of memory. However, other optimizations such as
sharing the output matrix between threads and use of SIMD
intrinsics fall outside the Spark programming model, and
would require piercing the abstractions provided by Spark
and the JVM. Thus there is a tradeoff between optimizing
performance and the ease of implementation provided by
expressing programs in the Spark programming model.

B. CX Performance Using Spark

1) CX Spark Phases: The RANDOMIZEDSVD subroutine
accounts for the bulk of the runtime and all of the distributed

Single Node Optimization Overall Speedup
Original Implementation 1.0

Multi-Core Synchronization 6.5
Cache Blocking 15.6

SIMD 39.7

Table II: Single node optimizations to the CX C implemen-
tation and the subsequent speedup each additional optimiza-
tion provides.

computations in our Spark CX implementation. The exe-
cution of RANDOMIZEDSVD proceeds in four distributed
phases listed below, along with a small amount of additional
local computation.

1) Load Matrix Metadata The dimensions of the matrix
are read from the distributed filesystem to the driver.

2) Load Matrix A distributed read is performed to load
the matrix entries into an in-memory cached RDD
containing one entry per row of the matrix.

3) Power Iterations The MULTIPLYGRAMIAN loop
(lines 2-5 of RANDOMIZEDSVD) is run to compute
an approximate basis Q of the dominant right singular
subspace.

4) Finalization (Post-Processing) Right multiplication
by Q (line 7 of RANDOMIZEDSVD) to compute C.

Figure 2: Strong scaling for the 4 phases of CX on an XC40
for a 100GB dataset at k = 32 and default partitioning as
concurrency is increased.

Platform Total Load Time Per Average Average Average
Runtime Time Iteration Local Aggregation Network

Task Task Wait

Amazon EC2 r3.8xlarge 24.0 min 1.53 min 2.69 min 4.4 sec 27.1 sec 21.7 sec

Cray XC40 23.1 min 2.32 min 2.09 min 3.5 sec 6.8 sec 1.1 sec

Experimental Cray cluster 15.2 min 0.88 min 1.54 min 2.8 sec 9.9 sec 2.7 sec

Table III: Total runtime for the 1 TB dataset (k = 16), broken down into load time and per-iteration time. The per-iteration
time is further broken down into the average time for each task of the local stage and each task of the aggregation stage.
We also show the average amount of time spent waiting for a network fetch, to illustrate the impact of the interconnect.

Figure 4: A box and whisker plot of the distribution of
local (write) and aggregation (read) task times on our three
platforms for the 1TB dataset with k = 16. The boxes
represent the 25th through 75th percentiles, and the lines in
the middle of the boxes represent the medians. The whiskers
are set at 1.5 box widths outside the boxes, and the crosses
are outliers (results outside the whiskers). Note that each
iteration has 4800 write tasks and just 68 read tasks.

This eliminated many of the straggler tasks and brought our
performance closer to the experimental Cray cluster, but still
did not match it (the results in Figure 3 and Table III include
this configuration optimization). We discuss future directions
for improving the performance on Spark on HPC systems
in Section V-E.

D. Science Results

The rows and columns of our data matrix A correspond
to pixels and (⌧,m/z) values of ions, respectively, where
⌧ denotes drift time and m/z denotes the mass to charge
ratio. We compute the CX decompositions of both A and A

T

in order to identify important ions in addition to important
pixels.

In Figure 5, we present the distribution of the normalized
ion leverage scores marginalized over ⌧ . That is, each score
corresponds to an ion with m/z value shown in the x-

Figure 5: Normalized leverage scores (sampling probabili-
ties) for m/z marginalized over ⌧ . Three narrow regions of
m/z account for 59.3% of the total probability mass.

axis. Leverage scores of ions in three narrow regions have
significantly larger magnitude than the rest. This indicates
that these ions are more informative and should be kept in
the reconstruction basis. Encouragingly, several other ions
with significant leverage scores are chemically related to
the ions with the highest leverage scores. For example, the
ion with an m/z value of 453.0983 has the second highest
leverage score among the CX results. Also identified as
having significant leverage scores are ions at m/z values
of 439.0819, 423.0832, and 471.1276, which correspond to
neutral losses of CH2, CH2O, and a neutral “gain” of H2O
from the 453.0983 ion. These relationships indicate that this
set of ions, all identified by CX as having significant leverage
scores, are chemically related. That fact indicates that these
ions may share a common biological origin, despite having
distinct spatial distributions in the plant tissue sample.

E. Improving Spark on HPC Systems
The differences in performance between the Cray® XC40™

system [20], [21] and the experimental Cray cluster point to
optimizations to Spark that could improve its performance
on HPC-style architectures. The two platforms have very
similar configurations, with the primary difference being
the lack of local persistent storage on the XC40 nodes.
As described in Section V-C, this forces some of Spark’s
local scratch space to be allocated on the remote Lustre
file system, rather than in local storage. To mitigate this,

Platform Total Load Time Per Average Average Average
Runtime Time Iteration Local Aggregation Network

Task Task Wait

Amazon EC2 r3.8xlarge 24.0 min 1.53 min 2.69 min 4.4 sec 27.1 sec 21.7 sec

Cray XC40 23.1 min 2.32 min 2.09 min 3.5 sec 6.8 sec 1.1 sec

Experimental Cray cluster 15.2 min 0.88 min 1.54 min 2.8 sec 9.9 sec 2.7 sec

Table III: Total runtime for the 1 TB dataset (k = 16), broken down into load time and per-iteration time. The per-iteration
time is further broken down into the average time for each task of the local stage and each task of the aggregation stage.
We also show the average amount of time spent waiting for a network fetch, to illustrate the impact of the interconnect.

Figure 4: A box and whisker plot of the distribution of
local (write) and aggregation (read) task times on our three
platforms for the 1TB dataset with k = 16. The boxes
represent the 25th through 75th percentiles, and the lines in
the middle of the boxes represent the medians. The whiskers
are set at 1.5 box widths outside the boxes, and the crosses
are outliers (results outside the whiskers). Note that each
iteration has 4800 write tasks and just 68 read tasks.

This eliminated many of the straggler tasks and brought our
performance closer to the experimental Cray cluster, but still
did not match it (the results in Figure 3 and Table III include
this configuration optimization). We discuss future directions
for improving the performance on Spark on HPC systems
in Section V-E.

D. Science Results

The rows and columns of our data matrix A correspond
to pixels and (⌧,m/z) values of ions, respectively, where
⌧ denotes drift time and m/z denotes the mass to charge
ratio. We compute the CX decompositions of both A and A

T

in order to identify important ions in addition to important
pixels.

In Figure 5, we present the distribution of the normalized
ion leverage scores marginalized over ⌧ . That is, each score
corresponds to an ion with m/z value shown in the x-

Figure 5: Normalized leverage scores (sampling probabili-
ties) for m/z marginalized over ⌧ . Three narrow regions of
m/z account for 59.3% of the total probability mass.

axis. Leverage scores of ions in three narrow regions have
significantly larger magnitude than the rest. This indicates
that these ions are more informative and should be kept in
the reconstruction basis. Encouragingly, several other ions
with significant leverage scores are chemically related to
the ions with the highest leverage scores. For example, the
ion with an m/z value of 453.0983 has the second highest
leverage score among the CX results. Also identified as
having significant leverage scores are ions at m/z values
of 439.0819, 423.0832, and 471.1276, which correspond to
neutral losses of CH2, CH2O, and a neutral “gain” of H2O
from the 453.0983 ion. These relationships indicate that this
set of ions, all identified by CX as having significant leverage
scores, are chemically related. That fact indicates that these
ions may share a common biological origin, despite having
distinct spatial distributions in the plant tissue sample.

E. Improving Spark on HPC Systems
The differences in performance between the Cray® XC40™

system [20], [21] and the experimental Cray cluster point to
optimizations to Spark that could improve its performance
on HPC-style architectures. The two platforms have very
similar configurations, with the primary difference being
the lack of local persistent storage on the XC40 nodes.
As described in Section V-C, this forces some of Spark’s
local scratch space to be allocated on the remote Lustre
file system, rather than in local storage. To mitigate this,

Differences in write timings
have more impact:
• 4800 write tasks per

iteration
• 68 read tasks per

iteration

Timing breakdowns

Observations

EXP_CC outperforms EC2 and XC40 because of local
storage and faster interconnect
On HPC platforms, can focus on modifying Spark to
mitigate drawbacks of the global filesystem:

1. clean scratch more often to help fit scratch entirely
in RAM, no need to spill to Lustre

2. allow user to specify order to fill scratch
directories (RAM disk, *then* Lustre)

3. exploit fact that scratch on shared filesystem is
global, to avoid wasted communication

Spark vs MPI
PCA and NMF, on NERSC’s Cori supercomputer

Cori’s specs:
• 1630 compute nodes,
• 128 GB/node,
• 32 2.3GHz Haswell cores/node

Running times for NMF and PCA

Nodes / cores MPI Time

NMF
50 / 1,600 1 min 6 s
100 / 3,200
300 / 9,600

45 s
30 s

PCA
(2.2TB)

100 / 3,200 1 min 34 s
300 / 9,600
500 / 16,000

1 min
56 s

PCA
(16TB) 2 min 40 sMPI: 1,600 / 51,200

Spark: 1,522 / 48,704

Spark Time
4 min 38 s
3 min 27 s

70 s

Gap
4.2x
4.6x
2.3x

15 min 34 s
13 min 47 s
19 min 20 s

9.9x
13.8x
20.7x

69 min 35 s 26x

Computing the truncated PCA

The two steps in computing the truncated PCA of A are:

1. Compute the truncated EVD of ATA to get Vk

2. Compute the SVD of AVk to get Σk and Vk

use Lanczos: requires only matrix vector multiplies

assume this is small enough that the SVD can be computed locally

Often (for dimensionality reduction, physical interpretation, etc.),
the rank-k truncated PCA (SVD) is desired. It is defined as

Ak = argminrank(B)=kkA�Bk2F

Computing the Lanczos iterations using Spark

(AT
A)x =

Xm

i=1
ai(a

T
i x)

If A =

2

64
aT1
...
aT2

3

75then the product can be computed as

We call the spark.mllib.linalg.EigenvalueDecomposition
interface to the ARPACK implementation of the Lanczos
method

This requires a function which computes a matrix-product
against ATA

Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+ (time
between task result serialization and driver receiving task’s completion message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result
serialization time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

task start delay
scheduler delay

part 1
task overheads

part 1

compute

scheduler delay
part 2

task overheads
part 2

time waiting
until stage end

PCA Run Times: rank 20 PCA of 2.2TB Climate

Spark 100 MPI 100 Spark 300 MPI 300 Spark 500 MPI 500
0

200

400

600

800

Ti
m
e
(s
)

Parallel HDFS Read Gram Matrix Vector Product Distributed A*V
Local SVD A*V Task Start Delay Scheduler Delay Task Overheads
Time Waiting Until Stage End

Rank 20 PCA of 16 TB Climate using 48K+ cores

Spark MPI Spark MPI Spark MPI Spark MPI Spark Overheads

1

10

100

1000

Ti
m
e
(s
)

Parallel HDFS Read Gram Matrix Vector Product Distributed A*V
Local SVD A*V Task Start Delay Scheduler Delay Task Overheads
Time Waiting Until Stage End

Spark PCA Overheads: 16 TB Climate,1522 nodes

Nonnegative Matrix Factorization

Useful when the observations are positive, and assumed to
be positive combinations of basis vectors (e.g., medical
imaging modalities, hyperspectral imaging)

In general, NMF factorizations are non-unique and NP-
hard to compute for a fixed rank.

We use the one-pass approach of Benson et al. 2014

(W,H) = argminW�0
H�0

kA�WHkF

Nearly-Separable NMF

Assumption: some k-subset of the columns of A comprise a
good W

Key observation of Benson et al. : finding those columns of A
can be done on the R factor from the QR decomposition of A

So the problem reduces to a distributed QR on a tall matrix
A, then a local NMF on a much smaller matrix

)A R

Tall-Skinny QR (TSQR)

When A is tall and skinny, you can efficiently compute R:
uses a tree reduce
requires only one pass over A

A

A1 R01

A2 R02

A3 R03

R11

R

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

Spark 50 MPI 50 Spark 100 MPI 100 Spark 300 MPI 300
0

50

100

150

Ti
m
e
(s
)

Parallel HDFS Read TSQR XRay
Task Start Delay Scheduler Delay Task Overheads
Time Waiting Until Stage End

MPI vs Spark: Lessons Learned

With favorable data (tall and skinny) and well-adapted
algorithms, Spark LA is 2x-26x slower than MPI when IO
is included

Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time). A more
efficient algorithm is needed

H5Spark performance is inconsistent this needs more
work

The gaps in performance suggests it may be better to
investigate efficiently interfacing MPI-based codes with
Spark

Thanks for your attention

