Scientific Matrix Factorizations in Spark at Scale

Cross-platform performance, scaling,
and comparisons with C+MP|

Alex Gittens, Aditya Devarakonda, Evan Racah, Michael Ringenburg,
Lisa Gerhardt, Jey Kottaalam, Jialin Liu, Kristyn Maschhoftf, Shane
Canon, Jatin Chhugani, Pramod Sharma, Jiyan Yang, James Demmel,
Jim Harrell, Venkat Krishnamurthy, Michael W. Mahoney, Prabhat

lab

Why do linear algebra in Spark?

Con: Classical MPI-based linear algebra
implementations will be faster and more efficient

Pros:

Faster development, easier reuse

One abstract uniform interface
An entire ecosystem that can be used before and after the

NLA computations
Spark can take advantage of available local linear algebra

codes
Automatic fault-tolerance, out-of-core support

Motivation

~ NERSC: Spark for data-centric workloads and scientific analytics
- AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix)
~ Cray: customers demand for Spark; understand performance concerns

Cancer Genomics, Energy Debugging, Smart Buildings
BlinkDB ‘ Sampie hLBaseJ SparkR

Basic Fluid Dynamics
43%

Clean

b | SparkSQL || GraphX MLiib
Asug%h.‘yslcs - R Cloog ayuct
Weather Prediciion Apache Spark Velox Model Serving
s.0% IPCC-ARS
4.2% 8.6% 2.3% HDFS' S3'

Apache Mesos Yarn

Our Goals

> Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

> Understand Spark performance on commodity clusters
vs HPC platforms

> Quantify the gaps between C+MPI and Spark
implementations

o Investigate the scalability ot current Spark-based linear
algebra on HPC platforms

Three Science Drivers

Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:
learn usetul patterns for
classification of subatomic particles

(NMF)

Mass Spectrometry:
location of chemically important ions

(CX)

Datasets

Science Area Format/Files Dimensions Size

MSI Parquet/2880 8,258,911 x 131, 048 1.1TB
Daya Bay HDF5/1 1,099,413,914 x 192 1.6TB
Ocean HDF5/1 6,349,676 x 46,715 2.2TB
Atmosphere HDF5/1 26,542,080 x 81,600 16TB

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF

Ocean and Atmosphere — climate variables (ocean temperature,

atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

Experiments

1. Compare EC2 and two HPC platforms using CX

implementation

2. More detailed analysis of Spark vs C+MPI scaling
for PCA and NMF on the two HPC platforms

Some

details:

o All datasets are tall and skinny

© The algorithms work with row-partitioned

matrices

© L
I_

se H5Spark to read dense matrices from

DF5, so MPl and S

®

ata source

oark reading from same

Platform comparisons

Two Cray HPC machines and EC2, using CX

The Randomized CX Decomposition

Dimensionality reduction is a ubiquitous tool in science
(bio-imaging, neuro-imaging, genetics, chemistry,
climatology, ...), typical approaches include PCA and NMF
which give approximations that rely on non-interpretable
combinations of the data points in A

PCA, NMF lack reitiability. Instead, CX matrix
decompositions identify exemplar data points (columns of
A) that capture the same information as the top singular
vectors, and give approximations of the form

A~CX

The Randomized CX Decomposition

© To get accuracy comparable to the truncated rank-k SVD,
the randomized CX algorithm randomly samples O(k)
columns with replacement from A according to the
leverage scores

i3

where Vi =1[vi,...,vy]

Pi

k)

2

The Randomized CX Decomposition

It is expensive to compute the right singular vectors

Since the algorithm is already randomized, we use a

randomized algorithm to quickly approximate them

CXDECOMPOSITION

Input: A € R™*", rank parameter £ < rank(A), number

of power iterations q.

Output: C.

1:

. Let £; = Zf , Vi, where V7,

Compute an approximation of the top-k right singular
vectors of A denoted by V., using RANDOMIZEDSVD
with ¢ power iterations

. 1s the (7, 7)-th element

of Vk, fort=1,.

. Define p; —éz/zjzléj fori=1,....,n

4. Randomly sample ¢ columns from A in i.1.d. trials, using

the importance sampling distribution {p;}"_,

The Randomized SVD algorithm

The matrix analog of the power method:
ATAXt
X —
AT A%,

Qit1,- = QR(ATAQ;) — Vi

> V1

RANDOMIZEDS VD Algorithm

Input: A € R™*", number of power iterations ¢ > 1,
target rank k > 0, slack p > 0, and let £ = k£ + p.

Output: UXV'! ~ A,.

1: Initialize B € R™"*¢ by sampling B;; ~ N (0, 1).

2: for ¢ times do

3 B+ ATAB

4; (B,_) < THINQR(B)

5: end for

6: Let () be the first £ columns of B.

7: Let M = AQ).

8: Compute (U, 3, VT) = THINSVD(M).

9: Let V = QV

Computing the power iterations using Spark

(ATA)B =) a,(a B)
i=1
is computed using a treeAggregate operation over the RDD

aggregate S tree aggregate
Exec &_
Exec
X Exec
Exec
Exec Exec Driver \
- Driver)
Exec Exec

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]

https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html%5D

CX run-times: 1.1Tb

Platform	Total Cores	Core Frequency	Interconnect	DRAM	SSDs
Amazon EC2 r3.8xlarge	960 (32 per-node)	2.5 GHz	10 Gigabit Ethernet	244 GiB	2 x 320 GB
Cray XC40	960 (32 per-node)	2.3 GHz	Cray Aries [20], [21]	252 GiB	None
Experimental Cray cluster	960 (24 per-node)	2.5 GHz	Cray Aries [20], [21]	126 GiB	1 x 800 GB

1800 . EC2

1600

1400

1200

1000

EC2

Time(s)

800

600

400

200

16 32
Rank

[- Load Matrix Metadata [Load Matrix [Power Iterations [Finalization (Post—Processing)]]

Timing breakdowns

35 1 1 1]
30 | | Differences in write timings
I
have more impact:
25 T i .
v « 4800 write tasks per
= 20 X - Iteration
:u
£ o= * 68 read tasks per
= 15 | _
I . .
| Iiteration
l +
10 :
5 T i 1
0 5 | 5 5 5
EAs fas TS < Tast
20" ad e e re
4CAO . i?’c.ﬂ"'f'*g e ™ oW o d_I:LﬂT e
Platform Total Load Time Per | Average Average Average
Runtime Time Iteration Local Aggregation | Network
Task Task Wait
Amazon EC2 r3.8xlarge	240 min	1.53 min	2.69 min	44sec	27.1sec	21.7sec
Cray XC40	23.1 min	232 min	2.09 min	35sec	68sec	Il.Isec
Experimental Cray cluster	152 min	0.88 min	1.54 min	28sec	99sec	27sec

Observations

EXP_CC outpertorms EC2 and XC40 because of local
storage and faster interconnect

On HPC platforms, can focus on modifying Spark to
mitigate drawbacks of the global filesystem:

1. clean scratch more often to help fit scratch entirely
in RAM, no need to spill to Lustre

2. allow user to specify order to fill scratch
directories (RAM disk, *then* Lustre)

3. exploit fact that scratch on shared filesystem is
global, to avoid wasted communication

Spark vs MP]

PCA and NMF, on NERSC's Cori supercomputer

Running times tfor NMF and PCA

Cori's specs:

* 1630 compute nodes,

e 128 GB/node,

e 32 2.3GHz Haswell cores/node

Nodes / cores MPI Time Spark Time | Gap

50/ 1,600 1 minés 4 min 38 s 4.2x

NMF ({100 / 3,200 45 s 3min 27 s 4.6x
300/ 9,600 30s /0 s 2.3X

PCA 100/ 3,200 1 min 34 s 15 min 34 s 9.9x
300/ 9,600 1T min 13mind/ s | 13.8x
(2.2TB) | (500 /16,000 56 s T9min20s | 20.7x
PCA 1IMPI: 1,600 / 51,200 2 min 40 s 69 min 35 s 26X

(16TB)

Spark: 1,522 / 48,704

Computing the truncated PCA

Often (for dimensionality reduction, physical interpretation, etc.),
the rank-k truncated PCA (SVD) is desired. It is defined as

Ak — argmiﬂrank(B):kHA o BH%’

The two steps in computing the truncated PCA of A are:

1. Compute the truncated EVD of A'A to get Vi
2. Compute the SVD of AV to get 2 and Vi

Computing the Lanczos iterations using Spark

We call the spark.mllib.linalg.EigenvalueDecomposition
interface to the ARPACK implementation of the Lanczos
method

This requires a function which computes a matrix-product
against ATA

T
f A = | o |then the product can be computed as
al T _ N o (aT
a; (ATA)x Z,;:l a;(al x)

Spark Overheads: the view of one task

scheduler delay task overheads
task start delay —— —>
part 1 part
task overheads
oart 2 <«—— compute -
scheduler delay time waiting
part 2 until stage end

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+ (time
between task result serialization and driver receiving task’'s completion message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result
serialization time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

PCA Run Times: rank 20 PCA of 2.2TB Climate

800+
600+
ol
(]
£ ’
= 400
200+
| -
’ o E—
. 1N
Spark 100 MPI 100 Spark 300 MPI 300 Spark 500 MPI 500

Parallel HDFS Read m Gram Matrix Vector Product - Distributed AV
m Local SVD A+V m Task Start Delay = Scheduler Delay m Task Overheads

m Time Waiting Until Stage End

Rank 20 PCA of 16 TB Climate using 48K+ cores

1000

100

Time (s)

10

Spark MPI Spark MPI Spark MPI Spark MPI

Parallel HDFS Read m Gram Matrix Vector Product

Spark Overheads

Distributed AV

m Local SVD A+V m Task Start Delay = Scheduler Delay m Task Overheads

m Time Waiting Until Stage End

Spark PCA Overheads: 16 TB Climate, 1522 nodes

PCA Hero Run Stage 121

30
25
20 : :
L :
15
E 5
— T
10 i
5 E ; é 2
° : E“_ \ay — \ay mne
S © e e
- unt! Sgtgx?edu\ef > Tas¥ orart L Dese(\a\\ze N cror ¥f
Walth R e

Nonnegative Matrix Factorization

Useful when the observations are positive, and assumed to
be positive combinations of basis vectors (e.g., medical
imaging modalities, hyperspectral imaging)

(W, H) = argminw>o||A — WH|| g
H>0

In general, NMF factorizations are non-unique and NP-
hard to compute for a fixed rank.

We use the one-pass approach of Benson et al. 2014

Nearly-Separable NMF

Assumption: some k-subset of the columns of A comprise a
good W

Key observation of Benson et al. : finding those columns of A
can be done on the R factor from the QR decomposition of A

=1 R

So the problem reduces to a distributed QR on a tall matrix
A, then a local NMF on a much smaller matrix

Tall-Skinny QR (TSQR)

-
g
-

When A is tall and skinny, you can efticiently compute R:
o uses a tree reduce
© requires only one pass over A

150+

100}

Time (s)

S50

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

Spark 50

MPI 50 Spark 100 MPI 100 Spark 300 MPI 300

m Parallel HDFS Read = TSQR m XRay
m Task Start Delay = Scheduler Delay m Task Overheads
m Time Waiting Until Stage End

MPI vs Spark: Lessons Learnead

» With favorable data (tall and skinny) and well-adapted

algorithms, Spark LA is 2x-26x slower than MPI when 10
is included

» Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time). A more
efficient algorithm is needed

o H5Spark performance is inconsistent this needs more
work

» The gaps in performance suggests it may be better to
investigate efficiently interfacing MPI-based codes with
Spark

Thanks for your attention

