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] Outline

A Bit of History of ML and LA

* Role of dataq, noise, randomization, and recently-popular algorithms

Large Informatics Graphs
* Characterize small-scale and large-scale clustering structure

* Provides novel perspectives on matrix and graph algorithms

New Machine Learning and New Linear Algebra
« Optimization view of “local” version of spectral partitioning

* Regularized optimization perspective on: PageRank, HeatKernel, and
Truncated Iterated Random Walk

* Beyond VC bounds: Learning in high-variability environments



) Outline

A Bit of History of ML and LA

* Role of dataq, noise, randomization, and recently-popular algorithms




] (Biased) History of NLA
< 1940s: Prehistory

* Close connections to data analysis, noise, statistics, randomization

1950s: Computers

* Banish randomness & downgrade data (except in scientific computing)

1980s: NLA comes of age - high-quality codes

* QR, SVD, spectral graph partitioning, etc. (written for HPC)

1990s: Lots of new DATA

« LST, PageRank, NCuts, etc., etc., etc. used in ML and Data Analysis

2000s: New problems force new approaches ...



] (Biased) History of ML
< 1940s: Prehistory

* Do statistical data analysis "by hand”; the "computers” were people

1960s: Beginnings of ML

- Artificial intelligence, neural networks, perceptron, etc.

1980s: Combinatorial foundations for ML

* VC theory, PAC learning, etc.

1990s: Connections to Vector Space ideas

 Kernels, manifold-based methods, Normalized Cuts, etc.

2000s: New problems force new approaches ...



) Spectral Partitioning and NCuts
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* Solvable via eigenvalue problem
* Bounds via Cheeger's inequality

« Used in parallel scientific
computing, Computer Vision
(called Normalized Cuts), and
Machine Learning

* Connections between graph
Laplacian and manifold Laplacian

« But, what if there are not
"good well-balanced” cuts (as in
"low-dim” data)?



] Spectral Ranking and PageRank

Vigna (TR - 2010)
PageRank - the "damped spectral ranking of
normalized adjacency matrix of web graph”

Long history of similar "ranking” ideas - Seely 1949;
Wei 1952; Katz 1953; Hubbell 1965; etc.; etc.; efc.

Potential Surprises:
* When computed, approximate it with the Power Method (Ugh?)
« Of minimal importance in today's ranking functions (Ugh?)

* Connections to Fiedler vector, clustering, and data partitioning.



LSI: A, for document-term "graphs”

E

(Berry, Dumais, and O'Brien '92)

Latent Semantic Indexing (LSI)

Replace A by A,; apply

clustering/classification algorithms on A,.

m
documents

(

\

n terms (words)

A

A;; = frequency of j-th
term in i-th document

/

Best rank-k approx to A.

Pros

- Less storage for small k.
O(km+kn) vs. O(mn)

- Improved performance.

Documents are represented in a “concept” space.
Cons

- A, destroys sparsity.

- Interpretation is difficult.

- Choosing a good k is Tough.

- Can interpret document corpus in ferms of k topics.

* Or think of this as just selecting one model from a parameterized class of models!



] Problem 1: SVD & “heavy-tailed” data

Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a graph
with power-law distributed degrees are also power-law
distributed.

* e, heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g., random
graph) implies heavy tail over eigenvalues.

* Idea: 10 components may give 10% of mass/information, but to get 20%,
you need 100, and to get 30% you need 1000, etc; i.e., no scale at which you
get most of the information

* No "latent” semantics without preprocessing.



) Problem 2: SVD & “high-leverage"” data

Given an m x n matrix A and rank parameter k:
* How localized, or coherent, are the (left) singular vectors?

* Let p; = (Puii = [UD]] , (where U, is any o.n. basis spanning that space)

These "statistical leverage scores” quantify which rows have the most
influence/leverage on low-rank fit

« Essential for "bridging the gap" between NLA and TCS-- and making TCS
randomized algorithms numerically-implementable

« Often very non-uniform in practice
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:. Q: Why do SVD-based methods work at all?

Given that the "assumptions” underlying its use (approximately low-
rank and no high-leverage data points) are so manifestly violated.

A: Low-rank spaces are very structured places.

* If "all models are wrong, but some are useful,” those that are useful have
“capacity control.”

* Low-rank structure is implicitly capacity control -- like bound on VC
dimension of hyperplanes

» Diffusions and L2 methods "aggregate” information in very particular way
(with associated plusses and minusses)

* Not so with multi-linearity, non-negativity, sparsity, graphs, etc.



) Outline

Large Informatics Graphs
* Characterize small-scale and large-scale clustering structure

* Provides novel perspectives on matrix and graph algorithms



) Networks and networked data

Lots of "networked"” datall

* technological networks
- AS, power-grid, road networks

* biological networks
- food-web, protein networks

- social networks
- collaboration networks, friendships

- information networks

- co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

* language networks
- semantic networks...

Interaction graph model of

networks:

* Nodes represent “entities”

- Edges represent “interaction”
between pairs of entities



Large Social and Information Networks

e Social nets | Nodes | Edges J Description
LIVEJOURNAL 1,843,953 | 42,845,684 | Blog Iriendships [4]
EPINIONS 75,877 405,739 | Who-trusts-whom [35]
FLICKR 404,733 2,110,078 | Photo sharing [21]
DELICIOUS 147,567 301,921 | Collaborative tagging
CA-DBLP 317,080 1,049,866 | Co-authorship (CA) [4]
CA-COND-MAT 21,363 91,286 | CA cond-mat [25]

e Information networks

CIT-HEP-TH 27,400 352,021 | hep-th citations [13]
Broc-PosTs 437,305 565,072 | Blog post links [28]

e Web graphs

WEB-GOOGLE 855,802 4,291,352 | Web graph Google
WEB-wT10G 1,458,316 6,225,033 | TREC WT10G web

e Bipartite afliliation (authors-to-papers) networks

ATp-DELP G15.67T8 944,456 | DBLP [25]
ATP-ASTRO-PH 54,1498 131,123 | Arxiv astro-ph [25]
e Internet networks

AS 6,474 12,572 | Autonomous systems
GNUTELLA 62,561 147,878 | P2P network [36]

Table 1: Some of the network datasets we studied.



l Micro-markets in sponsored search

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

What is the CTR and
advertiser ROl of sports

gambling keywords? Movies Media

o

3 Sports

.g
5 Gambling \ ~Sport
< mne VIdeOS
2 Sports

= Gambling

X

10 million keywords



= What do these networks

?
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) Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ¢ of a set S of nodes is:

Z@}ESJ@S Aij
min{ A(S), A(S)}

¢(5) =

The Network Community Profile (NCP) Plot of the graph is:

(k) = '
k) = s, )

Just as conductance captures a Surface-Area-To-Volume notion

* the NCP captures a Size-Resolved Surface-Area-To-Volume notion.



) Why worry about both criteria?

- Some graphs (e.g., "space-like" graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “"work together”

Tradeoff between cut quality and balance

Classical Isoperimetric Problem

(euclidean geometry) cuts in spacelike graphs real-world power—law graphs

~_ 7

enclosed volume # of separated nodes # of separated nodes

cutsize / enclosed nodes

surface area / volume
cutsize / # of separated nodes

* For other classes of graphs (e.g., informatics graphs, as we will see) there is
a "tradeoff," i.e., better cuts lead to worse balance
» For still other graphs (e.g., expanders) there are no good cuts of any size



. Widely-studied small social networks,

dimensional” graphs, and expanders
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) What do large networks look like?

Downward sloping NCPP
small social networks (validation)
"low-dimensional” networks (intuition)

hierarchical networks (model building)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etfc.

Large social/information networks are very very different
We examined more than 70 large social and information networks
We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



. Probing Large Networks with
) Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths"” with "deep cuts”
Multi-commodity flow - (log(n) approx) - difficulty with expanders
SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQT - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, reqularized communities!)

- We exploit the "statistical” properties implicit in "worst case” algorithms.



Typical example of our findings

General relativity collaboration network
(4:158 nOdCS, 13 1422 edges) Data are expander-like

at large size scales I
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) Large Social and Information Networks
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whiskers), and black (randomly rewired network) for consistency and cross-validation.



) "Whiskers" and the “core”

« "Whiskers"

» maximal sub-graph detached
from network by removing a
single edge

« contains 40% of nodes and 20%
of edges

« “Core"

* the rest of the graph, i.e., the
2-edge-connected core

* Global minimum of NCPP is a whisker

* And, the core has a core-peripehery
structure, recursively ...

NCP plot




A simple theorem on random graphs

Let w = (wq,...,w,), where
w; = i~/ 3 e (2,3).
Connect nodes ¢ and j w.p.

Pij = Wiw;/ > Wi

O0{conductance)
e

No cuts in this
region

®{1log n)

Allogm  @llegn) Kk (number of nodes in the cluster)

Power-law random graph with ¢ (2,3).

v

Structure of the 6(w) model, with g ¢ (2,3).

* Sparsity (coupled with randomness)
is the issue, not heavy-tails.

* (Power laws with § ¢ (2,3) give us
the appropriate sparsity.)



) Implications: high level

What is simplest explanation for empirical facts?

« Extremely sparse Erdos-Renyi reproduces qualitative NCP (i.e.,
deep cuts at small size scales and no deep cuts at large size
scales) since:

sparsity + randomness = measure fails to concentrate

* Power law random graphs also reproduces qualitative NCP for
analogous reason

Think of the data as: local-structure on global-noise,
not small noise on global structure!



l Outline

New Machine Learning and New Linear Algebra
« Optimization view of “local” version of spectral partitioning

* Regularized optimization perspective on: PageRank, HeatKernel, and
Truncated Iterated Random Walk

* Beyond VC bounds: Learning in high-variability environments



:. Lessons learned ...

... on local and global clustering properties of messy data:

« Often good clusters "near” particular nodes, but no good meaningful global
clusters.

... on approximate computation and implicit regularization:

« Approximation algorithms (Truncated Power Method, Approx PageRank, etc.)
are very useful; but what do they actually compute?

... on learning and inference in high-variability data:

« Assumptions underlying common methods, e.g., VC dimension bounds,
eigenvector delocalization, etc. of ten manifestly violated.



. New ML and LA (1 of 3):
) Local spectral optimization methods

Local spectral methods - provably-good local version of global spectral
STO4: truncated “local” random walks to compute locally-biased cut
ACLO6: approximate locally-biased PageRank vector computations

Chung08: approximate heat-kernel computation to get a vector

Q: Can we write these procedures as optimization programs?



) Recall spectral graph partitioning

» Relaxation of:

The basic optimization | E(S,S)
G) = _
problem: AG) = B SV ol(3)
minimize 2z! Loz « Solvable via the eigenvalue
roblem:
s.t. (x,x)p =1 P Loy = \(G)y
(x,1)p =0 * Sweep cut of second eigenvector
yields

Ao (G)/2 < 6(G) < /8\a(G

Also recall Mihail's sweep cut for a general test vector:
Thm.|Mihail|] Let x be such that < x,1 >p= 0. Then

- mtiefiae ToLg 2
there is a cut along x that satisfies “775% > ¢°(5)/8.



. Geometric correlation and
) generalized PageRank vectors

Can use this to define a geometric

Given a cut T, define the , _
notion of correlation between cuts:

vector: < sp, 1 >p=20
VDI(T VDI(T 1 1+ o
ST = \/ (VDI?T) o vol?T)) < 57,57 > D= 1

< ST,SU >p= K(T, U)

Defn. Given a graph G = (V| E), a number a € (—o0, A\2(G)) and any vector
s€ R", s Lp1l, a Generalized Personalized PageRank (GPPR) vector

is any vector of the form

Pa,s -— (LG — CELKR)—F Ds.
* PageRank: a spectral ranking method (regularized version of second eigenvector of L)

* Personalized: s is nonuniform; & generalized: teleportation parameter o can be negative.



) Local spectral partitioning ansatz

Mahoney, Orecchia, and Vishnoi (2010)

Primal program: Dual program:
minimize ! Lox max «— (1 — k)
s.t. <z,x>p=1 st. Lag>aLg —p3 LKT + LS,
0 - " vol(T') ~ vol(T)
<x,8s >pH2 K 8> 0
Interpretation: Interpretation:
* Find a cut well-correlated with the « Embedding a combination of scaled
seed vector s. complete graph K, and complete

graphs T and T (Kt and Ky) - where

« If s is a single node, this relax:
f s is asingle node, this rela the latter encourage cuts near (T,T).

. E(S,S)
min —
scv,ses,|5|<1/k Vol(S)Vol(S5)




) Main results (1 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter o, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.



) Main results (2 of 2)
Mahoney, Orecchia, and Vishnoi (2010)
Theorem: If x* is optimal solution to LocalSpect(G,s k),
one can find a cut of conductance < 8\(6,s,x) in time
O(n Ig n) with sweep cut of x*.

Upper bound, as usual from
sweep cut & Cheeger.

Theorem: Let s be seed vector and « correlation
parameter. For all sets of nodes T s.t. k' :=<s,5pp% , we
have: ¢(T) = M6,5x) if x = x', and ¢(T) = (K /K))\(G S K)

if <K' <x.

Lower bound: Spectral
version of flow-
improvement algs.
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* Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

« Often, it finds
“worse" quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we'll see later.)



‘ Illustration with general seeds

* Seed vector doesn't need to correspond to cuts.

* It could be any vector on the nodes, e.g., can find a cut "near” low-
degree vertices with s; = -(d.-d_,), ie[n].




.~ New ML and LA (2 of 3):

l Approximate eigenvector computation

Many uses of Linear Algebra in ML and Data
Analysis involve approximate computations

* Power Method, Truncated Power Method, HeatKernel, Truncated
Random Walk, PageRank, Truncated PageRank, Diffusion Kernels,
TrustRank, etc.

« Often they come with a "generative story,” e.g., random web surfer,
teleportation preferences, drunk walkers, etc.

What are these procedures actually computing?
* E.g., what optimization problem is 3 steps of Power Method solving?

« Important to know if we really want to "scale up”



l Implicit Regularization

Regularization: A general method for computing "smoother” or
“nicer” or "more regular” solutions - useful for inference, etc.
Recall: Regularization is usually implemented by adding
“regularization penalty” and optimizing the new objective.

argmin, f(x) + Ag(x)

X

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc.
often implicitly perform regularization.

Question: Can approximate computation™ implicitly lead to more
regular solutions? If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation. But, can it be done with graph algorithms?



) Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. maTrix)'

* Heat Kernel: H, = exp(—tL) = 37°
* PageRank: w(v,s) =vs+ (1 — f}/)ﬂ&'ﬁ(% s)
Ry=~(I—(1—»)M)"

Lk

- g-step Lazy Random Walk: W4 = (ol + (1 — o) M )*?

Ques: Do these "approximation procedures” exactly
optimizing some reqularized objective?



) Two versions of spectral partitioning

VP: <+ SDP:
min. z! Lax min. LgoX
st. 'Ly x=1 st. Lg oX =1
l <x,1>p=20 l X =0
R-VP: R-SDP:

min. a! Lax + \f(x) min. Lgo X + AF(X)

s.t. constraints s.t. constraints



) A simple theorem

odification of the usual
(F.7)-SDP min Le X + L F(X) 500 formr spectral to

n have regularization (but,
st. JeX =1 onh the matrix X, not the
vector x).
X =0

Theorem: Let G be a connected, weighted, undirected graph,
with normalized Laplacian L. Then, the following conditions
are sufficient for X* to be an optimal solution to (F,n)-SDP.

e X*=(VF) ' (n-(\I—L)), for some \* € R,
o [o X" =1,
o X* 0.



) Three simple corollaries
Fu(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = n

Fo(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ n

F.(X) = (1/p)IIX]|p (i.e., matrix p-norm, for p>1)
gives Truncated Lazy Random Walk, with A ~ n

Answer: These "approximation procedures” compute
regularized versions of the Fiedler vector!



:. Large-scale applications

A lot of work on large-scale data already implicitly
uses variants of these ideas:

« Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for
automatic keyword generation

* Najork, Gallapudi, and Panigraphy (2009): carefully "whittling down"
neighborhood graph makes SALSA faster and better

* Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit
regularization models are most consistent with data

Question: Can we formalize this to understand when it
succeeds and when it fails, for either matrix and/or
graph approximation algorithms?



. New ML and LA (3 of 3):
) Classification in high-variability environments

Supervised binary classification
« Observe (X,Y) e (X,¥Y)=(R", {-1,+1} ) sampled from unknown distribution P

* Construct classifier a:X->Y (drawn from some family A, e.g., hyper-planes) after
seeing k samples from unknown P

Question: How big must k be to get good prediction, i.e., low error?
* Risk: R(a) = probability that a misclassifies a random data point

» Empirical Risk: Rgp,(c) = risk on observed data

Ways to bound | R(c) - R

« VC dimension: distribution-independent; typical method

emp(Ct) | over all o € A

* Annealed entropy: distribution-dependent; but can get much finer bounds



) Unfortunately ...

Sample complexity of dstbn-free learning typically depends on
the ambient dimension to which the data to be classified belongs

« E.g., Q(d) for learning half-spaces in R4,

Very unsatisfactory for formally high-dimensional data

« approximately low-dimensional environments (e.g., close to manifolds,
empirical signatures of low-dimensionality, etc.)

* high-variability environments (e.g., heavy-tailed data, sparse data, pre-
asymptotic sampling regime, etc.)

Ques: Can distribution-dependent tools give improved learning
bounds for data with more realistic sparsity and noise?



) Annealed entropy

Definition (Annealed Entropy): Let P be a probability measure on H.
Given a set A of decision rules and a set of points Z = {z1,...,2,} C H, let
N2(z1,...,2¢) be the number of ways of labeling {z1,...,z¢} into positive and
negative samples. Then,

HY (k) :=InEpx N2, ..., 21)

anmn

is the annealed entropy of the classifier A with respect to P.

Theorem: Given the above notation, the inequality

B A 2
Prob |sup f(@) = Bemp(a, £) > €| < 4dexp ((HG‘””(%) — E—) E)
acA R(Q’) 14 4

holds true, for any number of samples ¢ and for any error parameter e.



"Toward" learning on informatics graphs

Dimension-independent sample complexity bounds for

* High-variability environments
* probability that a feature is nonzero decays as power law
« maghitude of feature values decays as a power law
« Approximately low-dimensional environments
 when have bounds on the covering number in a metric space

* when use diffusion-based spectral kernels

Bound H_,, to get exact or gap-tolerant classification

Note: "toward" since we still learning in a vector space, not directly on the graph



Eigenvector localization ...

Let {fi}"_, be the eigenfunctions of the normalized Laplacian of L5 and let
{A\i}I*; be the corresponding eigenvalues. Then, Diffusion Maps is:

D v ()\ﬁfo(v), I )‘ifn(v))ﬂ

and Laplacian Eigenmaps is the special case of this feature map when £ = 0.

When do eigenvectors localize?
* High degree nodes.
* Articulation/boundary points.

* Points that "stick out” a lot.

* Sparse random graphs

This is seen in many data sets when eigen-methods are chosen for
algorithmic, and not statistical, reasons.



) Exact learning with a heavy-tail model

Mahoney and Narayanan (2009,2010)

Heavy-tailed model: Let P be a probability distribution in R?. Suppose
Plx; # 0] < Ci~ for some absolute constant C' > 0, with « > 1.

Theorem: In this model, H? (/) < ( C l~ + 1) In(¢). Thus, need only

a—1

a—+4+1

(=0 ((%ﬁl)) &> samples, independent of (possibly infinite) d.
e (/JMbr
O0OXXO0OX0X0X0X000000000000
XO0OX0X0X0X0X000/000000000O0O

k O0OO0O0O0XXXXX000X/0X00000000 «— outlier
X00XX0XX000X0X00000000060

v = " mEn
< >

A

kot



) Gap-tolerant classification

Mahoney and Narayanan (2009,2010)

Def: A gap-tolerant classifier consists of
an oriented hyper-plane and a margin of
thickness A around it. Points outside the
margin are labeled +1; points inside the
margin are simply declared “correct.”

Only the expectation of the norm needs to be

bounded! Particular elements can behave poorly!
Theoremy/d.ct P be a probability measure on a Hilbert space ‘H, and let A > 0.
If Ep||z]|? = r? < oo, then then the annealed entropy of gap-tolerant classifiers
in H, where the gap is A, is

HA,.(0) < (¢ (%) +1) (1+ (e +1)).
\

so can get dimension-independent bounds!



. Large-margin classification with very
) “outlying” data points

Mahoney and Narayanan (2009,2010)

Apps to dimension-independent large-margin learning:

- with spectral kernels, e.g. Diffusion Maps kernel underlying manifold-
based methods, on arbitrary graphs

 with heavy-tailed data, e.g., when the magnitude of the elements of the
feature vector decay in a heavy-tailed manner

Technical notes:

* new proof bounding VC-dim of gap-tolerant classifiers in Hilbert space
generalizes to Banach spaces - useful if dot products & kernels too limiting

* Ques: Can we control aggregate effect of "outliers” in other data models?

* Ques: Can we learn if measure never concentrates?



Conclusions

E

Large informatics graphs

» Important in theory -- starkly illustrate that many common assumptions
are inappropriate, so a good “hydrogen atom” for method development --
as well as important in practice

Local pockets of structure on global noise

* Implication for clustering and community detection, & implications for
the use of common ML and DA tools

Several examples of new directions for ML and DA
* Principled algorithmic tools for local versus global exploration
» Approximate computation and implicit regularization

* Learning in high-variability environments



