Machine Learning and Linear Algebra of Large Informatics Graphs

Michael W. Mahoney

Stanford University

(For more info, see: <u>http:// cs.stanford.edu/people/mmahoney/</u> or Google on "Michael Mahoney")

# Outline

### A Bit of History of ML and LA

• Role of data, noise, randomization, and recently-popular algorithms

### Large Informatics Graphs

- Characterize small-scale and large-scale clustering structure
- Provides novel perspectives on matrix and graph algorithms

### New Machine Learning and New Linear Algebra

- Optimization view of "local" version of spectral partitioning
- Regularized optimization perspective on: PageRank, HeatKernel, and Truncated Iterated Random Walk
- Beyond VC bounds: Learning in high-variability environments

# Outline

### A Bit of History of ML and LA

• Role of data, noise, randomization, and recently-popular algorithms

### Large Informatics Graphs

- Characterize small-scale and large-scale clustering structure
- Provides novel perspectives on matrix and graph algorithms

New Machine Learning and New Linear Algebra

- Optimization view of "local" version of spectral partitioning
- Regularized optimization perspective on: PageRank, HeatKernel, and Truncated Iterated Random Walk
- Beyond VC bounds: Learning in high-variability environments

# (Biased) History of NLA

- 1940s: Prehistory
- Close connections to data analysis, noise, statistics, randomization

#### 1950s: Computers

• Banish randomness & downgrade data (except in scientific computing)

1980s: NLA comes of age - high-quality codes

• QR, SVD, spectral graph partitioning, etc. (written for HPC)

1990s: Lots of new DATA

• LSI, PageRank, NCuts, etc., etc., etc. used in ML and Data Analysis

2000s: New problems force new approaches ...

# (Biased) History of ML

- ≤ 1940s: Prehistory
- Do statistical data analysis "by hand"; the "computers" were people

### 1960s: Beginnings of ML

• Artificial intelligence, neural networks, perceptron, etc.

1980s: Combinatorial foundations for ML

• VC theory, PAC learning, etc.

1990s: Connections to Vector Space ideas

• Kernels, manifold-based methods, Normalized Cuts, etc.

2000s: New problems force new approaches ...

# Spectral Partitioning and NCuts

minimize  $x^T L_G x$ s.t.  $\langle x, x \rangle_D = 1$  $\langle x, 1 \rangle_D = 0$ 



- Solvable via eigenvalue problem
- Bounds via Cheeger's inequality

• Used in parallel scientific computing, Computer Vision (called Normalized Cuts), and Machine Learning

- Connections between graph
   Laplacian and manifold Laplacian
- But, what if there are not "good well-balanced" cuts (as in "low-dim" data)?

# Spectral Ranking and PageRank

Vigna (TR - 2010)

PageRank - the "damped spectral ranking of normalized adjacency matrix of web graph"

Long history of similar "ranking" ideas - Seely 1949; Wei 1952; Katz 1953; Hubbell 1965; etc.; etc.; etc.

### Potential Surprises:

- When computed, *approximate it* with the Power Method (Ugh?)
- Of minimal importance in today's ranking functions (Ugh?)
- Connections to Fiedler vector, clustering, and data partitioning.



• Can interpret document corpus in terms of k topics.

• Or think of this as just selecting one model from a parameterized class of models!

# Problem 1: SVD & "heavy-tailed" data

Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a graph with power-law distributed degrees are also power-law distributed.

• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g., random graph) implies heavy tail over eigenvalues.

• Idea: 10 components may give 10% of mass/information, but to get 20%, you need 100, and to get 30% you need 1000, etc; i.e., no scale at which you get most of the information

• No "latent" semantics without preprocessing.

# Problem 2: SVD & "high-leverage" data

Given an m x n matrix A and rank parameter k:

- How localized, or coherent, are the (left) singular vectors?
- Let  $\rho_i = (P_{Uk})_{ii} = ||U_k^{(i)}||_2$  (where  $U_k$  is any o.n. basis spanning that space)

These "statistical leverage scores" quantify which rows have the most influence/leverage on low-rank fit

• Essential for "bridging the gap" between NLA and TCS-- and making TCS randomized algorithms numerically-implementable



# Q: Why do SVD-based methods work at all?

Given that the "assumptions" underlying its use (approximately lowrank and no high-leverage data points) are so manifestly violated.

#### A: Low-rank spaces are very structured places.

- If "all models are wrong, but some are useful," those that are useful have "capacity control."
- Low-rank structure is implicitly capacity control -- like bound on VC dimension of hyperplanes
- Diffusions and L2 methods "aggregate" information in very particular way (with associated plusses *and* minusses)
- Not so with multi-linearity, non-negativity, sparsity, graphs, etc.

# Outline

### A Bit of History of ML and LA

• Role of data, noise, randomization, and recently-popular algorithms

### Large Informatics Graphs

- Characterize small-scale and large-scale clustering structure
- Provides novel perspectives on matrix and graph algorithms

New Machine Learning and New Linear Algebra

- Optimization view of "local" version of spectral partitioning
- Regularized optimization perspective on: PageRank, HeatKernel, and Truncated Iterated Random Walk
- Beyond VC bounds: Learning in high-variability environments

### Networks and networked data

#### Lots of "networked" data!!

- technological networks
  - AS, power-grid, road networks
- biological networks
  - food-web, protein networks
- social networks
  - collaboration networks, friendships
- information networks

- co-citation, blog cross-postings, advertiser-bidded phrase graphs...

language networks

• ...

- semantic networks...

# Interaction graph model of networks:

- Nodes represent "entities"
- Edges represent "interaction" between pairs of entities



# Large Social and Information Networks

| • Social nets                                        | Nodes     | Edges      | Description            |
|------------------------------------------------------|-----------|------------|------------------------|
| LIVEJOURNAL                                          | 4,843,953 | 42,845,684 | Blog friendships [4]   |
| Epinions                                             | 75,877    | 405,739    | Who-trusts-whom [35]   |
| FLICKR                                               | 404,733   | 2,110,078  | Photo sharing [21]     |
| Delicious                                            | 147,567   | 301,921    | Collaborative tagging  |
| CA-DBLP                                              | 317,080   | 1,049,866  | Co-authorship (CA) [4] |
| CA-COND-MAT                                          | 21,363    | 91,286     | CA cond-mat [25]       |
| • Information networks                               |           |            |                        |
| CIT-HEP-TH                                           | 27,400    | 352,021    | hep-th citations [13]  |
| Blog-Posts                                           | 437,305   | 565,072    | Blog post links [28]   |
| • Web graphs                                         |           |            |                        |
| Web-google                                           | 855,802   | 4,291,352  | Web graph Google       |
| Web-wt10g                                            | 1,458,316 | 6,225,033  | TREC WT10G web         |
| • Bipartite affiliation (authors-to-papers) networks |           |            |                        |
| ATP-DBLP                                             | 615,678   | 944,456    | DBLP [25]              |
| ATP-ASTRO-PH                                         | 54,498    | 131,123    | Arxiv astro-ph [25]    |
| • Internet networks                                  |           |            |                        |
| AS                                                   | 6,474     | 12,572     | Autonomous systems     |
| GNUTELLA                                             | 62,561    | 147,878    | P2P network [36]       |

Table 1: Some of the network datasets we studied.

# Micro-markets in sponsored search

Goal: Find *isolated* markets/clusters with *sufficient money/clicks* with *sufficient coherence*. Ques: Is this even possible?



10 million keywords

# What do these networks "look" like?



# Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E). The conductance  $\phi$  of a set S of nodes is:

$$\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(\overline{S})\}}$$

$$= \sum \sum A_{ii}$$

 $A(S) = \sum_{i \in S} \sum_{j \in V} A_i$ 

The Network Community Profile (NCP) Plot of the graph is:

$$\Phi(k) = \min_{S \subset V, |S| = k} \phi(S)$$

Just as conductance captures a Surface-Area-To-Volume notion

• the NCP captures a Size-Resolved Surface-Area-To-Volume notion.

# Why worry about both criteria?

• Some graphs (e.g., "space-like" graphs, finite element meshes, road networks, random geometric graphs) cut quality and cut balance "work together"

Tradeoff between cut quality and balance



- For other classes of graphs (e.g., informatics graphs, as we will see) there is a "tradeoff," i.e., better cuts lead to worse balance
- For still other graphs (e.g., expanders) there are no good cuts of any size

# Widely-studied small social networks, "lowdimensional" graphs, and expanders



d-dimensional meshes



Zachary's karate club





#### Newman's Network Science



RoadNet-CA

# What do large networks look like?

#### Downward sloping NCPP

small social networks (validation)

"low-dimensional" networks (intuition)

hierarchical networks (model building)



#### Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

#### Large social/information networks are very very different

We examined more than 70 large social and information networks We developed principled methods to interrogate large networks Previous community work: on small social networks (hundreds, thousands)

# Probing Large Networks with Approximation Algorithms

**Idea**: Use approximation algorithms for NP-hard graph partitioning problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses "long paths" with "deep cuts" Multi-commodity flow - (log(n) approx) - difficulty with expanders SDP - (sqrt(log(n)) approx) - best in theory Metis - (multi-resolution for mesh-like graphs) - common in practice X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

• We exploit the "statistical" properties implicit in "worst case" algorithms.



# Large Social and Information Networks



Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of whiskers), and black (randomly rewired network) for consistency and cross-validation.

# "Whiskers" and the "core"

- "Whiskers"
  - maximal sub-graph detached from network by removing a single edge
  - contains 40% of nodes and 20% of edges
- "Core"
  - the rest of the graph, i.e., the
    2-edge-connected core
- Global minimum of NCPP is a whisker

• And, the core has a core-peripehery structure, recursively ...



# A simple theorem on random graphs

Let  $\mathbf{w} = (w_1, \dots, w_n)$ , where  $w_i = ci^{-1/(\beta-1)}, \quad \beta \in (2,3).$ Connect nodes *i* and *j* w.p.  $p_{ij} = w_i w_j / \sum_k w_k.$ 





Structure of the G(w) model, with  $\beta \epsilon$  (2,3).

- Sparsity (coupled with randomness) is the issue, not heavy-tails.
- (Power laws with  $\beta \epsilon$  (2,3) give us the appropriate sparsity.)



#### What is simplest explanation for empirical facts?

• *Extremely* sparse Erdos-Renyi reproduces qualitative NCP (i.e., deep cuts at small size scales and no deep cuts at large size scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for analogous reason

Think of the data as: local-structure on global-noise; not small noise on global structure!

# Outline

- A Bit of History of ML and LA
- Role of data, noise, randomization, and recently-popular algorithms

### Large Informatics Graphs

- Characterize small-scale and large-scale clustering structure
- Provides novel perspectives on matrix and graph algorithms

### New Machine Learning and New Linear Algebra

- Optimization view of "local" version of spectral partitioning
- Regularized optimization perspective on: PageRank, HeatKernel, and Truncated Iterated Random Walk
- Beyond VC bounds: Learning in high-variability environments

# Lessons learned ...

... on local and global clustering properties of messy data:

• Often good clusters "near" particular nodes, but no good meaningful global clusters.

#### ... on approximate computation and implicit regularization:

• Approximation algorithms (Truncated Power Method, Approx PageRank, etc.) are very useful; but what do they actually compute?

### ... on learning and inference in high-variability data:

• Assumptions underlying common methods, e.g., VC dimension bounds, eigenvector delocalization, etc. often manifestly violated.

New ML and LA (1 of 3): Local spectral optimization methods

Local spectral methods - provably-good local version of global spectral STO4: truncated "local" random walks to compute locally-biased cut ACLO6: approximate locally-biased PageRank vector computations Chung08: approximate heat-kernel computation to get a vector



Q: Can we write these procedures as optimization programs?

# Recall spectral graph partitioning

The basic optimization problem:

minimize

$$x^T L_G x$$

s.t.  $\langle x, x \rangle_D = 1$  $\langle x, 1 \rangle_D = 0$ 

- Relaxation of:  $\phi(G) = \min_{S \subset V} \frac{E(S,\bar{S})}{Vol(S)Vol(\bar{S})}$
- Solvable via the eigenvalue problem:  $\mathcal{L}_G y = \lambda_2(G) y$
- Sweep cut of second eigenvector yields:

$$\lambda_2(G)/2 \le \phi(G) \le \sqrt{8\lambda_2(G)}$$

Also recall Mihail's sweep cut for a general test vector:

**Thm.**[Mihail] Let x be such that  $\langle x, 1 \rangle_D = 0$ . Then there is a cut along x that satisfies  $\frac{x^T L_G x}{x^T D x} \ge \phi^2(S)/8$ . Geometric correlation and generalized PageRank vectors

Given a cut T, define the vector:

$$s_T := \sqrt{\frac{\operatorname{vol}(T)\operatorname{vol}(\bar{T})}{2m}} \left(\frac{1_T}{\operatorname{vol}(T)} - \frac{1_{\bar{T}}}{\operatorname{vol}(\bar{T})}\right)$$

Can use this to define a geometric notion of correlation between cuts:  $< s_T, 1 >_D = 0$  $< s_T, s_T >_D = 1$  $< s_T, s_U >_D = K(T, U)$ 

**Defn.** Given a graph G = (V, E), a number  $\alpha \in (-\infty, \lambda_2(G))$  and any vector  $s \in \mathbb{R}^n$ ,  $s \perp_D 1$ , a *Generalized Personalized PageRank (GPPR)* vector is any vector of the form

$$p_{\alpha,s} := \left(L_G - \alpha L_{K_n}\right)^+ Ds.$$

- PageRank: a spectral ranking method (regularized version of second eigenvector of  $L_G$ )
- Personalized: s is nonuniform; & generalized: teleportation parameter  $\alpha$  can be negative.

# Local spectral partitioning ansatz

Mahoney, Orecchia, and Vishnoi (2010)

#### Primal program:

minimize  $x^T L_G x$ 

s.t.  $\langle x, x \rangle_D = 1$  $\langle x, s \rangle_D^2 \ge \kappa$ 

#### Dual program:

$$\max \quad \alpha - \beta (1 - \kappa)$$
s.t. 
$$L_G \succeq \alpha L_{K_n} - \beta \left( \frac{L_{K_T}}{\operatorname{vol}(\bar{T})} + \frac{L_{K_{\bar{T}}}}{\operatorname{vol}(T)} \right)$$

$$\beta \ge 0$$

#### Interpretation:

- Find a cut well-correlated with the seed vector s.
- If s is a single node, this relax:  $\min_{S \subset V, s \in S, |S| \le 1/k} \frac{E(S, \bar{S})}{Vol(S)Vol(\bar{S})}$

#### Interpretation:

• Embedding a combination of scaled complete graph  $K_n$  and complete graphs T and <u>T</u> ( $K_T$  and  $K_{\underline{T}}$ ) - where the latter encourage cuts near (T,<u>T</u>).

# Main results (1 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

**Theorem:** If  $x^*$  is an optimal solution to LocalSpectral, it is a GPPR vector for parameter  $\alpha$ , and it can be computed as the solution to a set of linear equations. Proof:

- (1) Relax non-convex problem to convex SDP
- (2) Strong duality holds for this SDP
- (3) Solution to SDP is rank one (from comp. slack.)
- (4) Rank one solution is GPPR vector.

# Main results (2 of 2)

Mahoney, Orecchia, and Vishnoi (2010)

**Theorem:** If  $x^*$  is optimal solution to LocalSpect(G,s, $\kappa$ ), one can find a cut of conductance  $\leq 8\lambda(G,s,\kappa)$  in time  $O(n \ lg \ n)$  with sweep cut of  $x^*$ . Upper bound, as usual from sweep cut & Cheeger.

**Theorem**: Let s be seed vector and  $\kappa$  correlation parameter. For all sets of nodes T s.t.  $\kappa' := \langle s, s_T \rangle_D^2$ , we have:  $\phi(T) \ge \lambda(G, s, \kappa)$  if  $\kappa \le \kappa'$ , and  $\phi(T) \ge (\kappa'/\kappa)\lambda(G, s, \kappa)$ if  $\kappa' \le \kappa$ . Lower bound: Spectral version of flow-

improvement algs.

# Illustration on small graphs



• Similar results if we do local random walks, truncated PageRank, and heat kernel diffusions.

Often, it finds
"worse" quality but
"nicer" partitions
than flow-improve
methods. (Tradeoff
we'll see later.)

# Illustration with general seeds

- Seed vector doesn't need to correspond to cuts.
- It could be any vector on the nodes, e.g., can find a cut "near" lowdegree vertices with  $s_i = -(d_i - d_{av})$ , is[n].



New ML and LA (2 of 3):

Approximate eigenvector computation

### Many uses of Linear Algebra in ML and Data Analysis involve *approximate* computations

• Power Method, Truncated Power Method, HeatKernel, Truncated Random Walk, PageRank, Truncated PageRank, Diffusion Kernels, TrustRank, etc.

• Often they come with a "generative story," e.g., random web surfer, teleportation preferences, drunk walkers, etc.

### What are these procedures *actually* computing?

- E.g., what optimization problem is 3 steps of Power Method solving?
- Important to know if we really want to "scale up"

# Implicit Regularization

**Regularization**: A general method for computing "smoother" or "nicer" or "more regular" solutions - useful for inference, etc.

**Recall**: Regularization is usually *implemented* by adding "regularization penalty" and optimizing the new objective.

$$\hat{x} = \operatorname{argmin}_{x} f(x) + \lambda g(x)$$

**Empirical Observation**: Heuristics, e.g., binning, early-stopping, etc. often implicitly perform regularization.

**Question**: Can approximate computation\* *implicitly* lead to more regular solutions? If so, can we exploit this algorithmically?

\*Here, consider approximate eigenvector computation. But, can it be done with graph algorithms?

# Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

- Heat Kernel:  $H_t = \exp(-tL) = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} L^k$
- PageRank:  $\pi(\gamma, s) = \gamma s + (1 \gamma)M\pi(\gamma, s)$

$$R_{\gamma} = \gamma \left( I - (1 - \gamma) M \right)^{-1}$$

• q-step Lazy Random Walk:  $W^q_{\alpha} = (\alpha I + (1 - \alpha)M)^q$ 

Ques: Do these "*approximation* procedures" *exactly* optimizing some regularized objective?

# Two versions of spectral partitioning

 $VP: \qquad \longleftrightarrow SDP: \\ min. \quad x^T L_G x \qquad min. \quad L_G \circ X \\ s.t. \quad x^T L_{K_n} x = 1 \qquad s.t. \quad L_{K_n} \circ X = 1 \\ \downarrow \qquad \langle x, 1 \rangle_D = 0 \qquad \downarrow \qquad X \succeq 0 \\ \downarrow \qquad \downarrow \qquad X \ge 0$ 

**R-VP:R-SDP:**min. $x^T L_G x + \lambda f(x)$ min. $L_G \circ X + \lambda F(X)$ s.t.constraintss.t.constraints

# A simple theorem

(F,
$$\eta$$
)-SDP min  $L \bullet X + \frac{1}{\eta} \cdot F(X)$   
s.t.  $I \bullet X = 1$   
 $X \succeq 0$ 

Modification of the usual SDP form of spectral to have regularization (but, on the matrix X, not the vector x).

**Theorem:** Let G be a connected, weighted, undirected graph, with normalized Laplacian L. Then, the following conditions are sufficient for  $X^*$  to be an optimal solution to  $(\mathsf{F},\eta)$ -SDP.

• 
$$X^{\star} = (\nabla F)^{-1} (\eta \cdot (\lambda^* I - L))$$
, for some  $\lambda^* \in R$ ,

• 
$$I \bullet X^{\star} = 1$$
,

•  $X^{\star} \succeq 0.$ 

# Three simple corollaries

 $F_{H}(X) = Tr(X \log X) - Tr(X)$  (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t =  $\eta$ 

F<sub>D</sub>(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~  $\eta$ 

 $F_p(X) = (1/p)||X||_p^p$  (i.e., matrix p-norm, for p>1) gives Truncated Lazy Random Walk, with  $\lambda \sim \eta$ 

Answer: These "approximation procedures" compute regularized versions of the Fiedler vector!

# Large-scale applications

A lot of work on large-scale data already implicitly uses variants of these ideas:

• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully "whittling down" neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit regularization models are most consistent with data

**Question**: Can we formalize this to understand when it succeeds and when it fails, *for either matrix and/or graph approximation algorithms*?

New ML and LA (3 of 3): Classification in high-variability environments

#### Supervised binary classification

- Observe (X,Y)  $\varepsilon$  (X,Y) = (  $\mathbb{R}^n$ , {-1,+1} ) sampled from unknown distribution P
- Construct classifier  $\alpha: X \rightarrow Y$  (drawn from some family  $\Lambda$ , e.g., hyper-planes) after seeing k samples from unknown P

Question: How big must k be to get good prediction, i.e., low error?

- Risk:  $R(\alpha)$  = probability that  $\alpha$  misclassifies a random data point
- Empirical Risk:  $R_{emp}(\alpha)$  = risk on observed data

Ways to bound |  $R(\alpha) - R_{emp}(\alpha)$  | over all  $\alpha \in \Lambda$ 

- VC dimension: distribution-independent; typical method
- Annealed entropy: distribution-dependent; but can get much finer bounds

# Unfortunately ...

Sample complexity of dstbn-free learning typically depends on the ambient dimension to which the data to be classified belongs

• E.g.,  $\Omega(d)$  for learning half-spaces in R<sup>d</sup>.

#### Very unsatisfactory for formally high-dimensional data

- approximately low-dimensional environments (e.g., close to manifolds, empirical signatures of low-dimensionality, etc.)
- *high-variability environments* (e.g., heavy-tailed data, sparse data, preasymptotic sampling regime, etc.)

**Ques**: Can distribution-dependent tools give improved learning bounds for data with more realistic sparsity and noise?

# Annealed entropy

**Definition (Annealed Entropy):** Let  $\mathcal{P}$  be a probability measure on  $\mathcal{H}$ . Given a set  $\Lambda$  of decision rules and a set of points  $Z = \{z_1, \ldots, z_\ell\} \subset \mathcal{H}$ , let  $N^{\Lambda}(z_1, \ldots, z_\ell)$  be the number of ways of labeling  $\{z_1, \ldots, z_\ell\}$  into positive and negative samples. Then,

$$H_{ann}^{\Lambda}(k) := \ln E_{\mathcal{P}^{\times k}} N^{\Lambda}(z_1, \dots, z_k)$$

is the annealed entropy of the classifier  $\Lambda$  with respect to  $\mathcal{P}$ .

Theorem: Given the above notation, the inequality

$$\operatorname{Prob}\left[\sup_{\alpha\in\Lambda}\frac{R(\alpha)-R_{emp}(\alpha,\ell)}{\sqrt{R(\alpha)}}>\epsilon\right]<4\exp\left(\left(\frac{H_{ann}^{\Lambda}(2\ell)}{\ell}-\frac{\epsilon^{2}}{4}\right)\ell\right)$$

holds true, for any number of samples  $\ell$  and for any error parameter  $\epsilon$ .

# "Toward" learning on informatics graphs

Dimension-independent sample complexity bounds for

- High-variability environments
  - probability that a feature is nonzero decays as power law
  - magnitude of feature values decays as a power law
- Approximately low-dimensional environments
  - when have bounds on the covering number in a metric space
  - when use diffusion-based spectral kernels

Bound H<sub>ann</sub> to get exact or gap-tolerant classification

Note: "toward" since we still learning in a vector space, not *directly* on the graph

# Eigenvector localization ...

Let  $\{f_i\}_{i=1}^n$  be the eigenfunctions of the normalized Laplacian of  $\mathcal{L}_G$  and let  $\{\lambda_i\}_{i=1}^n$  be the corresponding eigenvalues. Then, **Diffusion Maps** is:

 $\Phi: v \mapsto (\lambda_0^k f_0(v), \dots, \lambda_n^k f_n(v)),$ 

and **Laplacian Eigenmaps** is the special case of this feature map when k = 0.

#### When do eigenvectors localize?

- High degree nodes.
- Articulation/boundary points.
- Points that "stick out" a lot.
- Sparse random graphs



This is seen in many data sets when eigen-methods are chosen for algorithmic, and not statistical, reasons.

# Exact learning with a heavy-tail model

Mahoney and Narayanan (2009,2010)

 $k^{\frac{1}{\alpha+1}}$ 

**Heavy-tailed model**: Let  $\mathcal{P}$  be a probability distribution in  $\mathbb{R}^d$ . Suppose  $\mathcal{P}[x_i \neq 0] \leq Ci^{-\alpha}$  for some absolute constant C > 0, with  $\alpha > 1$ .

Theorem: In this model,  $H_{ann}^{\Lambda}(\ell) \leq \left(\frac{C}{\alpha-1}\ell^{\frac{1}{\alpha}}+1\right)\ln(\ell)$ . Thus, need only  $\ell = \tilde{O}\left(\left(\frac{C\ln(\delta^{-1})}{\epsilon^2}\right)^{\frac{\alpha+1}{\alpha}}\right)$  samples, independent of (possibly infinite) d.  $k = \frac{1}{2} \left(\frac{C\ln(\delta^{-1})}{\epsilon^2}\right)^{\frac{\alpha+1}{\alpha}} \left(\frac{1}{2} + \frac{1}{\epsilon}\right) \left(\frac{1}{\epsilon^2}\right)^{\frac{\alpha+1}{\alpha}} \left(\frac{1}{\epsilon^2}\right)^{\frac{$ 

# Gap-tolerant classification

Mahoney and Narayanan (2009,2010)

**Def**: A gap-tolerant classifier consists of an oriented hyper-plane and a margin of thickness  $\Delta$  around it. Points outside the margin are labeled ±1; points inside the margin are simply declared "correct."



Only the expectation of the norm needs to be bounded! Particular elements can behave poorly!

**Theorem:** Let  $\mathcal{P}$  be a probability measure on a Hilbert space  $\mathcal{H}$ , and let  $\Delta > 0$ . If  $E_{\mathcal{P}} ||x||^2 = r^2 < \infty$ , then then the annealed entropy of gap-tolerant classifiers in  $\mathcal{H}$ , where the gap is  $\Delta$ , is

$$H_{ann}^{\Lambda}(\ell) \le \left(\ell^{\frac{1}{2}}\left(\frac{r}{\Delta}\right) + 1\right) (1 + \ln(\ell + 1)).$$

so can get dimension-independent bounds!

# Large-margin classification with very "outlying" data points

Mahoney and Narayanan (2009,2010)

Apps to dimension-independent large-margin learning:

- with **spectral kernels**, e.g. Diffusion Maps kernel underlying manifoldbased methods, on arbitrary graphs
- with heavy-tailed data, e.g., when the magnitude of the elements of the feature vector decay in a heavy-tailed manner

#### Technical notes:

- new proof bounding VC-dim of gap-tolerant classifiers in Hilbert space generalizes to Banach spaces useful if dot products & kernels too limiting
- Ques: Can we control aggregate effect of "outliers" in other data models?
- Ques: Can we learn if measure never concentrates?

# Conclusions

### Large informatics graphs

• Important in theory -- starkly illustrate that many common assumptions are inappropriate, so a good "hydrogen atom" for method development -- as well as important in practice

### Local pockets of structure on global noise

• Implication for clustering and community detection, & implications for the use of common ML and DA tools

### Several examples of new directions for ML and DA

- Principled algorithmic tools for local versus global exploration
- Approximate computation and implicit regularization
- Learning in high-variability environments