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(Biased) History of NLA
≤ 1940s: Prehistory
• Close connections to data analysis, noise, statistics, randomization

1950s: Computers
• Banish randomness & downgrade data (except in scientific computing)

1980s: NLA comes of age - high-quality codes
• QR, SVD, spectral graph partitioning, etc. (written for HPC)

1990s: Lots of new DATA
• LSI, PageRank, NCuts, etc., etc., etc. used in ML and Data Analysis

2000s: New problems force new approaches ...



(Biased) History of ML
≤ 1940s: Prehistory
• Do statistical data analysis “by hand”; the “computers” were people

1960s: Beginnings of ML
• Artificial intelligence, neural networks, perceptron, etc.

1980s: Combinatorial foundations for ML
• VC theory, PAC learning, etc.

1990s: Connections to Vector Space ideas
• Kernels, manifold-based methods, Normalized Cuts, etc.

2000s: New problems force new approaches ...



Spectral Partitioning and NCuts
• Solvable via eigenvalue problem

• Bounds via Cheeger’s inequality

• Used in parallel scientific
computing, Computer Vision
(called Normalized Cuts), and
Machine Learning

• Connections between graph
Laplacian and manifold Laplacian

• But, what if there are not
“good well-balanced” cuts (as in
“low-dim” data)?



Spectral Ranking and PageRank

PageRank - the “damped spectral ranking of
normalized adjacency matrix of web graph”

Long history of similar “ranking” ideas - Seely 1949;
Wei 1952; Katz 1953; Hubbell 1965; etc.; etc.; etc.

Potential Surprises:

• When computed, approximate it with the Power Method (Ugh?)

• Of minimal importance in today’s ranking functions (Ugh?)

• Connections to Fiedler vector, clustering, and data partitioning.

Vigna (TR - 2010)



Latent Semantic Indexing (LSI)

Replace A by Ak; apply
clustering/classification algorithms on Ak.

m
documents

n terms (words)

Aij = frequency of j-th
term in i-th document

Pros

- Less storage for small k.
O(km+kn) vs. O(mn)

- Improved performance.
Documents are represented in a “concept” space.

Cons

- Ak destroys sparsity.

- Interpretation is difficult.

- Choosing a good k is tough.

LSI: Ak for document-term “graphs”
(Berry, Dumais, and O'Brien ’92)

• Can interpret document corpus in terms of k topics.

• Or think of this as just selecting one model from a parameterized class of models!

Best rank-k approx to A.



Problem 1: SVD & “heavy-tailed” data

Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a graph
with power-law distributed degrees are also power-law
distributed.

• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g., random
graph) implies heavy tail over eigenvalues.

• Idea: 10 components may give 10% of mass/information, but to get 20%,
you need 100, and to get 30% you need 1000, etc; i.e., no scale at which you
get most of the information

• No “latent” semantics without preprocessing.



Problem 2: SVD & “high-leverage” data
Given an m x n matrix A and rank parameter k:

• How localized, or coherent, are the (left) singular vectors?

• Let ρi = (PUk)ii = ||Uk
(i)||_2 (where Uk is any o.n. basis spanning that space)

These “statistical leverage scores” quantify which rows have the most
influence/leverage on low-rank fit

• Essential for “bridging the gap” between NLA and TCS-- and making TCS
randomized algorithms numerically-implementable

• Often very non-uniform in practice



Q: Why do SVD-based methods work at all?

Given that the “assumptions” underlying its use (approximately low-
rank and no high-leverage data points) are so manifestly violated.

A: Low-rank spaces are very structured places.

• If “all models are wrong, but some are useful,” those that are useful have
“capacity control.”

• Low-rank structure is implicitly capacity control -- like bound on VC
dimension of hyperplanes

• Diffusions and L2 methods “aggregate” information in very particular way
(with associated plusses and minusses)

• Not so with multi-linearity, non-negativity, sparsity, graphs, etc.
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Networks and networked data

Interaction graph model of
networks:
• Nodes represent “entities”
• Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
• technological networks

– AS, power-grid, road networks

• biological networks
– food-web, protein networks

• social networks
– collaboration networks, friendships

• information networks
– co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

• language networks
– semantic networks...

• ...



Large Social and Information Networks



Micro-markets in sponsored search

10 million keywords
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Movies Media
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videos

What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?



What do these networks “look” like?



Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

Just as conductance captures  a Surface-Area-To-Volume notion

• the NCP captures a Size-Resolved Surface-Area-To-Volume notion.



Why worry about both criteria?
• Some graphs (e.g., “space-like” graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “work together”

• For other classes of graphs (e.g., informatics graphs, as we will see) there is
a “tradeoff,” i.e., better cuts lead to worse balance
• For still other graphs (e.g., expanders) there are no good cuts of any size



Widely-studied small social networks, “low-
dimensional” graphs, and expanders

Zachary’s karate club Newman’s Network Scienced-dimensional meshes

RoadNet-CA



What do large networks look like?

Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different
We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Probing Large Networks with
Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

• We exploit the “statistical” properties implicit in “worst case” algorithms.



Typical example of our findings
General relativity collaboration network

(4,158 nodes, 13,422 edges)
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Data are expander-like
at large size scales !!!



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.



“Whiskers” and the “core”

• “Whiskers”

• maximal sub-graph detached
from network by removing a
single edge

• contains 40% of nodes and 20%
of edges

• “Core”

• the rest of the graph, i.e., the
2-edge-connected core

• Global minimum of NCPP is a whisker

• And, the core has a core-peripehery
structure, recursively ...

NCP plot

Largest
whisker

Slope upward as
cut into core



A simple theorem on random graphs

Power-law random graph with β ε (2,3).

Structure of the G(w) model, with β ε (2,3).

• Sparsity (coupled with randomness)
is the issue, not heavy-tails.

• (Power laws with β ε (2,3) give us
the appropriate sparsity.)



Implications: high level

What is simplest explanation for empirical facts?
• Extremely sparse Erdos-Renyi reproduces qualitative NCP (i.e.,
deep cuts at small size scales and no deep cuts at large size
scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for
analogous reason

Think of the data as: local-structure on global-noise;
not small noise on global structure!
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Lessons learned …

... on local and global clustering properties of messy data:
• Often good clusters “near” particular nodes, but no good meaningful global
clusters.

... on approximate computation and implicit regularization:
• Approximation algorithms (Truncated Power Method, Approx PageRank, etc.)
are very useful; but what do they actually compute?

... on learning and inference in high-variability data:
• Assumptions underlying common methods, e.g., VC dimension bounds,
eigenvector delocalization, etc. often manifestly violated.



New ML and LA (1 of 3):
Local spectral optimization methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated “local”  random walks to compute locally-biased cut

ACL06: approximate locally-biased PageRank vector computations

Chung08: approximate heat-kernel computation to get a vector

Q: Can we write these procedures as optimization programs?



Recall spectral graph partitioning
• Relaxation of:

The basic optimization
problem:

• Solvable via the eigenvalue
problem:

• Sweep cut of second eigenvector
yields:

Also recall Mihail’s sweep cut for a general test vector:



Geometric correlation and
generalized PageRank vectors

Given a cut T, define the
vector:

Can use this to define a geometric
notion of correlation between cuts:

• PageRank: a spectral ranking method (regularized version of second eigenvector of LG)

• Personalized: s is nonuniform; & generalized: teleportation parameter α can be negative.



Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:

• Find a cut well-correlated with the
seed vector s.

• If s is a single node, this relax:

Interpretation:
• Embedding a combination of scaled
complete graph Kn and complete
graphs T and T (KT and KT) - where
the latter encourage cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)



Main results (1 of 2)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter α, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.

Mahoney, Orecchia, and Vishnoi (2010)



Main results (2 of 2)

Theorem: If x* is optimal solution to LocalSpect(G,s,κ),
one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*.

Theorem: Let s be seed vector and κ correlation
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ)
if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.



Illustration on small graphs
• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)



Illustration with general seeds
• Seed vector doesn’t need to correspond to cuts.

• It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n].



New ML and LA (2 of 3):
Approximate eigenvector computation

Many uses of Linear Algebra in ML and Data
Analysis involve approximate computations
• Power Method, Truncated Power Method, HeatKernel, Truncated
Random Walk, PageRank, Truncated PageRank, Diffusion Kernels,
TrustRank, etc.

•  Often they come with a “generative story,” e.g., random web surfer,
teleportation preferences, drunk walkers, etc.

What are these procedures actually computing?
• E.g., what optimization problem is 3 steps of Power Method solving?

• Important to know if we really want to “scale up”



Implicit Regularization
Regularization: A general method for computing “smoother” or
“nicer” or “more regular” solutions - useful for inference, etc.

Recall: Regularization is usually implemented  by adding
“regularization penalty” and optimizing the new objective.

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc.
often implicitly perform regularization.

Question: Can approximate computation* implicitly lead to more
regular solutions?  If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation.  But, can it be done with graph algorithms?



Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

• Heat Kernel:

• PageRank:

• q-step Lazy Random Walk:

Ques: Do these “approximation procedures” exactly
optimizing some regularized objective?



Two versions of spectral partitioning

VP: SDP:

R-SDP:R-VP:



A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).



Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

gives Truncated Lazy Random Walk, with λ ~ η

Answer: These “approximation procedures” compute
regularized versions of the Fiedler vector!



Large-scale applications

A lot of work on large-scale data already implicitly
uses variants of these ideas:
• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for
automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully “whittling down”
neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit
regularization models are most consistent with data

Question: Can we formalize this to understand when it
succeeds and when it fails, for either matrix and/or
graph approximation algorithms?



New ML and LA (3 of 3):
Classification in high-variability environments

Supervised binary classification
• Observe (X,Y) ε (X,Y) = ( Rn , {-1,+1} ) sampled from unknown distribution P

• Construct classifier α:X->Y (drawn from some family Λ, e.g., hyper-planes) after
seeing k samples from unknown P

Question: How big must k be to get good prediction, i.e., low error?
• Risk: R(α) = probability that α misclassifies a random data point

• Empirical Risk:  Remp(α) = risk on observed data

Ways to bound | R(α) - Remp(α) | over all α ε Λ

• VC dimension: distribution-independent; typical method

• Annealed entropy: distribution-dependent; but can get much finer bounds



Unfortunately …
Sample complexity of dstbn-free learning typically depends on
the ambient dimension to which the data to be classified belongs

• E.g., Ω(d) for learning half-spaces in Rd.

Very unsatisfactory for formally high-dimensional data

• approximately low-dimensional environments (e.g., close to manifolds,
empirical signatures of low-dimensionality, etc.)

• high-variability environments (e.g., heavy-tailed data, sparse data, pre-
asymptotic sampling regime, etc.)

Ques: Can distribution-dependent tools give improved learning
bounds for data with more realistic sparsity and noise?



Annealed entropy



“Toward” learning on informatics graphs

Dimension-independent sample complexity bounds for

• High-variability environments

• probability that a feature is nonzero decays as power law

• magnitude of feature values decays as a power law

• Approximately low-dimensional environments

• when have bounds on the covering number in a metric space

• when use diffusion-based spectral kernels

Bound Hann to get exact or gap-tolerant classification

Note: “toward” since we still learning in a vector space, not directly on the graph



Eigenvector localization …

When do eigenvectors localize?
• High degree nodes.

• Articulation/boundary points.

• Points that “stick out” a lot.

• Sparse random graphs

This is seen in many data sets when eigen-methods are chosen for
algorithmic, and not statistical, reasons.



Exact learning with a heavy-tail model

…..                                                                            inlier
0 0 X X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0
X 0 X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 X X X X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0        outlier
X 0 0 X X 0 X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0 0 0
…..

Mahoney and Narayanan (2009,2010)



Gap-tolerant classification

Def: A gap-tolerant classifier consists of
an oriented hyper-plane and a margin of
thickness Δ around it.  Points outside the
margin are labeled ±1; points inside the
margin are simply declared “correct.”

so can get dimension-independent bounds!

Only the expectation of the norm needs to be
bounded!  Particular elements can behave poorly!

Mahoney and Narayanan (2009,2010) 2Δ



Large-margin classification with very
“outlying” data points

Apps to dimension-independent large-margin learning:
• with spectral kernels, e.g. Diffusion Maps kernel underlying manifold-
based methods, on arbitrary graphs

• with heavy-tailed data, e.g., when the magnitude of the elements of the
feature vector decay in a heavy-tailed manner

Technical notes:
• new proof bounding VC-dim of gap-tolerant classifiers in Hilbert space
generalizes to Banach spaces - useful if dot products & kernels too limiting

• Ques: Can we control aggregate effect of “outliers” in other data models?

• Ques: Can we learn if measure never concentrates?

Mahoney and Narayanan (2009,2010)



Conclusions
Large informatics graphs
• Important in theory -- starkly illustrate that many common assumptions
are inappropriate, so a good “hydrogen atom” for method development --
as well as important in practice

Local pockets of structure on global noise
• Implication for clustering and community detection, & implications for
the use of common ML and DA tools

Several examples of new directions for ML and DA
• Principled algorithmic tools for local versus global exploration

• Approximate computation and implicit regularization

• Learning in high-variability environments


