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Start with the Conclusions

Common (usually implicitly-accepted) picture:
• “As graphs corresponding to complex networks become bigger, the
complexity of their internal organization increases.”

Empirically, this picture is false.
• Empirical evidence is extremely strong ...
• ... and its falsity is “obvious,” if you really believe common small-
world and preferential attachment models

Very significant implications for data analysis on graphs
• Common ML and DA tools make strong local-global assumptions ...
• ... that are the opposite of the “local structure on global noise” that
the data exhibit



Implications for understanding networks
Diffusions appear (under the hood) in many guises (viral marketing,
controlling epidemics, query refinement, etc)
• low-dim = clustering = implicit capacity control and slow mixing; high-dim doesn’t
since “everyone is close to everyone”

• diffusive processes very different if deepest cuts are small versus large

Recursive algorithms that run one or Ω(n) steps not so useful
• E.g. if with recursive partitioning you nibble off 102 (out of 106) nodes per iteration

People find lack of few large clusters unpalatable/noninterpretable
and difficult to deal with statistically/algorithmically
• but that’s the way the data are …



Lots of “networked data” out there!

• Technological and communication networks
– AS, power-grid, road networks

• Biological and genetic networks
– food-web, protein networks

• Social and information networks
– collaboration networks, friendships; co-citation, blog cross-
postings, advertiser-bidded phrase graphs ...

• Financial and economic networks
– encoding purchase information, financial transactions, etc.

• Language networks
– semantic networks ...

• Data-derived “similarity networks”
– recently popular in, e.g., “manifold” learning

• ...



Large Social and Information Networks



Sponsored (“paid”) Search
Text-based ads driven by user query



Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information



Micro-markets in sponsored search
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What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?



How people think about networks
“Interaction graph” model of networks:
• Nodes represent “entities”
• Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric
• Strength: powerful framework for analyzing algorithmic complexity
• Drawback: geometry used for learning and statistical inference



How people think about networks
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A schematic illustration …

… of hierarchical clusters?



What do these networks “look” like?



These graphs have “nice geometric structure”

(in the sense of having some sort of low-dimensional Euclidean structure)



These graphs do not ...

(but they may have other/more-subtle structure that low-dim Euclidean)



Local “structure” and global “noise”

Many (most, all?) large informatics graphs

• have local structure that is meaningfully geometric/low-dimensional

• does not have analogous meaningful global structure



Local “structure” and global “noise”

Many (most, all?) large informatics graphs

• have local structure that is meaningfully geometric/low-dimensional

• does not have analogous meaningful global structure

Intuitive example:

• What does the graph of you and your
102 closest Facebook friends “look like”?

• What does the graph of you and your
105 closest Facebook friends “look like”?



Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...



Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):
• extreme heterogeneity in local environments, e.g., as captured by
degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based
models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):
• local environments of nodes have structure, e.g., captures with
clustering coefficient, that is meaningfully “geometric”

• basis for small world models that start with global “geometry” and
add random edges to get small diameter and preserve local “geometry”



Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)

• Both sides contain a lot of nodes

Several standard formulations:
• Graph bisection (minimum cut with 50-50 balance)

• β-balanced bisection (minimum cut with 70-30 balance)

• cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion)

• cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!



Why worry about both criteria?
• Some graphs (e.g., “space-like” graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “work together”

• For other classes of graphs (e.g., informatics graphs, as we will see) there is
a “tradeoff,” i.e., better cuts lead to worse balance
• For still other graphs (e.g., expanders) there are no good cuts of any size



The “lay of the land”

Spectral methods* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.



Comparison of “spectral” versus “flow”

Spectral:

• Compute an eigenvector

• “Quadratic” worst-case bounds

• Worst-case achieved -- on
“long stringy” graphs

• Embeds you on a line (or
complete graph)

Flow:

• Compute a LP

• O(log n) worst-case bounds

• Worst-case achieved -- on
expanders

• Embeds you in L1

Two methods -- complementary strengths and weaknesses

• What we compute will be determined at least as much by as
the approximation algorithm we use as by objective function.



Interplay between preexisting versus
generated versus implicit geometry

Preexisting geometry

• Start with geometry and add “stuff”

Generated geometry

• Generative model leads to structures
that are meaningfully-interpretable as
geometric

Implicitly-imposed geometry

• Approximation algorithms implicitly
embed the data in a metric/geometric
place and then round.

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)



“Local” extensions of the vanilla
“global” algorithms

Cut improvement algorithms

• Given an input cut, find a good one nearby or certify that none
exists

Local algorithms and locally-biased objectives

• Run in a time depending on the size of the output and/or are
biased toward input seed set of nodes

Combining spectral and flow

• to take advantage of their complementary strengths

To do: apply ideas to other objective functions



Illustration of “local spectral
partitioning” on small graphs

• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)



An awkward empirical fact
Can we cut “internet graphs” into two pieces that are “nice” and “well-balanced”?

For many real-world social-and-information “power-law graphs,” there is an inverse
relationship between “cut quality” and “cut balance.”

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella



Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



NCPP: LiveJournal (N=5M, E=43M)
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Consequences of this empirical fact

Relationship b/w small-scale structure and large-
scale structure in social/information networks* is
not reproduced (even qualitatively) by popular models

• This relationship governs diffusion of information, routing and
decentralized search, dynamic properties, etc., etc., etc.

• This relationship also governs (implicitly) the applicability of
nearly every common data analysis tool in these apps

*Probably much more generally--social/information networks are just so messy and
counterintuitive that they provide very good methodological test cases.



Popular approaches to network analysis

Define simple statistics (clustering coefficient,
degree distribution, etc.) and fit simple models

• more complex statistics are too algorithmically complex or
statistically rich

• fitting simple stats often doesn’t capture what you wanted

Beyond very simple statistics:

• Density, diameter, routing, clustering, communities, …

• Popular models often fail egregiously at reproducing more
subtle properties (even when fit to simple statistics)



Failings of “traditional” network approaches

Three recent examples of failings of “small world” and
“heavy tailed” approaches:

• Algorithmic decentralized search - solving a (non-ML) problem:
can we find short paths?

• Diameter and density versus time - simple dynamic property

• Clustering and community structure - subtle/complex static
property (used in downstream analysis)

All three examples have to do with the coupling b/w
“local” structure and “global” structure --- solution
goes beyond simple statistics of traditional approaches.



How do we know this plot it “correct”?
• Algorithmic Result

Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

• Statistical Result
Spectral method implicitly regularizes, gets more meaningful communities

• Lower Bound Result
Spectral and SDP lower bounds for large partitions

• Structural Result

Small barely-connected “whiskers” responsible for minimum

• Modeling Result
Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts



Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductanceExternal/internal conductance

Diameter of the clusterDiameter of the clusterConductance of  bounding cutConductance of  bounding cut

Local Spectral

Connected

Disconnected

Lower is good



Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:



Interpretation: “Whiskers” and the
“core” of large informatics graphs

• “Whiskers”

• maximal sub-graph detached
from network by removing a
single edge

• contains 40% of nodes and 20%
of edges

• “Core”

• the rest of the graph, i.e., the
2-edge-connected core

• Global minimum of NCPP is a whisker

• BUT, core itself has nested
whisker-core structure

NCP plot

Largest
whisker

Slope upward as
cut into core



What if the “whiskers” are removed?

LiveJournal Epinions

Then the lowest conductance sets - the “best” communities - are “2-whiskers.”

(So, the “core” peels apart like an onion.)



Interpretation:
A simple theorem on random graphs

Power-law random graph with β ε (2,3).

Structure of the G(w) model, with β ε (2,3).

• Sparsity (coupled with randomness)
is the issue, not heavy-tails.

• (Power laws with β ε (2,3) give us
the appropriate sparsity.)



Look at (very simple) whiskers
Ten largest “whiskers” from CA-cond-mat.



What do the data “look like” (if you
squint at them)?

A “hot dog”? A “tree”? A “point”?

(or pancake that embeds well
in low dimensions)

(or tree-like hyperbolic
structure)

(or clique-like or
expander-like structure)



Squint at the data graph …

Say we want to find a “best fit” of the adjacency
matrix to:

What does the data “look like”? How big are α, β, γ?

α β

β γ

α≈ γ » β
low-dimensional

α» β » γ
core-periphery

α≈ β ≈ γ
expander or Kn

β» α ≈ γ
bipartite graph



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

0.99 0.55

0.55 0.15

0.99 0.17

0.17 0.82
K1 =

E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

0.2 0.2

0.2 0.2

(also, an expander)



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

K1 =
E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

(also, an expander)



Implications: high level

What is simplest explanation for empirical facts?
• Extremely sparse Erdos-Renyi reproduces qualitative NCP (i.e.,
deep cuts at small size scales and no deep cuts at large size
scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for
analogous reason

• Iterative forest-fire model gives mechanism to put local
geometry on sparse quasi-random scaffolding to get qualitative
property of relatively gradual increase of NCP

Data are local-structure on global-noise, not small noise on global structure!



Implications: high level, cont.

Remember the Stochastic Kronecker theorem:
• Connected, if b+c>1: 0.55+0.15 > 1. No!
• Giant component, if (a+b)_(b+c)>1: (0.99+0.55)_(0.55+0.15) > 1. Yes!

Real graphs are in a region of parameter space analogous
to extremely sparse Gnp.
• Large vs small cuts, degree variability, eigenvector localization, etc.

1/n
Gnp log(n)/n

real-networks theory & models
≈3

PLRG
≈2

p

β

Data are local-structure on global-noise, not small noise on global structure!



Implications for understanding networks
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• “As graphs corresponding to complex networks become bigger, the
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