Extracting insight from large networks: implications of small-scale and large-scale structure

Michael W. Mahoney

Stanford University

(For more info, see: <u>http:// cs.stanford.edu/people/mmahoney/</u> or Google on "Michael Mahoney")

Start with the Conclusions

Common (usually implicitly-accepted) picture:

• "As graphs corresponding to complex networks become bigger, the complexity of their internal organization increases."

Empirically, this picture is false.

• Empirical evidence is extremely strong ...

• ... and its falsity is "obvious," if you *really* believe common smallworld and preferential attachment models

Very significant implications for data analysis on graphs

Common ML and DA tools make strong local-global assumptions ...

• ... that are the opposite of the "local structure on global noise" that the data exhibit

Implications for understanding networks

- Diffusions appear (under the hood) in many guises (viral marketing, controlling epidemics, query refinement, etc)
- low-dim = clustering = implicit capacity control and slow mixing; high-dim doesn't since "everyone is close to everyone"
- diffusive processes very different if deepest cuts are small versus large

Recursive algorithms that run one or $\Omega(n)$ steps not so useful

• E.g. if with recursive partitioning you nibble off 10² (out of 10⁶) nodes per iteration

People find lack of few large clusters unpalatable/noninterpretable and difficult to deal with statistically/algorithmically

• but that's the way the data are ...

Lots of "networked data" out there!

- Technological and communication networks
 - AS, power-grid, road networks
- Biological and genetic networks
 - food-web, protein networks
- Social and information networks
 - collaboration networks, friendships; co-citation, blog crosspostings, advertiser-bidded phrase graphs ...
- Financial and economic networks
 - encoding purchase information, financial transactions, etc.
- Language networks
 - semantic networks ...
- Data-derived "similarity networks"
 - recently popular in, e.g., "manifold" learning

Large Social and Information Networks

• Social nets	Nodes	Edges	Description		
LIVEJOURNAL	4,843,953	42,845,684	Blog friendships [4]		
Epinions	75,877	405,739	Who-trusts-whom [35]		
FLICKR	404,733	2,110,078	Photo sharing [21]		
Delicious	147,567	301,921	Collaborative tagging		
CA-DBLP	317,080	1,049,866	Co-authorship (CA) [4]		
CA-COND-MAT	21,363	91,286	CA cond-mat [25]		
• Information networks					
CIT-HEP-TH	27,400	352,021	hep-th citations [13]		
Blog-Posts	437,305	565,072	Blog post links [28]		
• Web graphs					
Web-google	855,802	4,291,352	Web graph Google		
Web-wt10g	1,458,316	6,225,033	TREC WT10G web		
• Bipartite affiliation (authors-to-papers) networks					
ATP-DBLP	615,678	944,456	DBLP [25]		
ATP-ASTRO-PH	54,498	131,123	Arxiv astro-ph [25]		
• Internet networks					
AS	6,474	12,572	Autonomous systems		
GNUTELLA	62,561	147,878	P2P network [36]		

Table 1: Some of the network datasets we studied.

Sponsored ("paid") Search

Text-based ads driven by user query

🕲 recipe indian food - Yahoo! Search Results - Mozilla Firefox	_ 2 2 🔀
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>Y</u> ahoo! <u>T</u> ools <u>H</u> elp	\sim
<	▶ G • indian food recipes
🖉 Rutgers University Li 🗋 my del.icio.us 🗋 post to del.icio.us	
MN - powered by MICOL SEARCH + Q Web Search - 2 😥	▼ 👼 Storage 👻
Y - 🖉 - recipe indian food - 🔹 🔶 Search Web - 🔶 - 🔯 Mail - 💽 - 🐼 My Yahoo! 🕉 NCAA Hoops - 🦞 Fant	asy Sports 🔻 📥 Games 🔹 🧞 Music 🔹 🛛 🚿
Yahoo! My Yahoo! Mail Welcome, Guest [Sign In]	Advertiser Sign In Help
Web Images Video Local Shopping more Video Search recipe indian food Search	Answers
Search Results 1 - 10 of about 7,260,000 for re	cipe indian food - 0.19 sec. (<u>About this page</u>)
Recipe Indian Food www.MonsterMarketplace.com - Browse and compare great deals on recipe indian food. Indian Food sanfrancisco.citysearch.com - Find great Indian restaurants in your area today. Search here.	SPONSOR RESULTS Indian Food Buy indian food at SHOP.COM. Search our free shipping offers. www.SHOP.com
1. <u>indian food recipe</u> indian food recipe Title: Indian Food Recipe. Yield: 4 Servings. Ingredients. 1 bunch to the echo by: Jonathan Kandell Indian Food Recipes Put recipes.chef2chef.net/recipe-archive/43/231458.shtml - 13k - <u>Cached</u> - <u>More from this site</u>	Recipe India Food Find and Compare prices on recipe india food at Smarter.com. www.smarter.com
 Recipe Gal: Indian Foods Indian Recipes from Recipe Gal's Archives All Food Posters. Travel Posters. Indian Recipes. Indian Breads Indian Chicken Recipes www.recipegal.com/indian - 10k - <u>Cached</u> - <u>More from this site</u> 	Chinese Food Recipe Books on Cataloglink Find chinese food recipe books on CatalogLink. www.CatalogLink.com
 Indian Recipes, Indian Food Recipe, South Indian Recipes, Indian indian recipes, indian food recipe, south indian Recipes, indian cooking Recipes, Indian Recipes, Indian Food Recipe, South Indian Recipes, Indian Cooking Recipe, www.india4world.com/indian-recipe - 17k - <u>Cached</u> - <u>More from this site</u> Paav Bhaaji - Recipe for Paav Bhaaji - Pao Bhaji 	\$19.97 Over 500 Chinese Recipes Cookbook 100% Satisfaction Guaranteed, 543-Page Chinese Cookbook Only \$19.97. ✓

Sponsored Search Problems

Keyword-advertiser graph:

- provide new ads
- maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:

Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:

suggest to advertisers new queries that have high probability of clicks

Contextual query broadening:

broaden the user's query using other context information

Micro-markets in sponsored search

Goal: Find *isolated* markets/clusters (in an advertiser-bidded phrase bipartite graph) with *sufficient money/clicks* with *sufficient coherence*.

How people think about networks

"Interaction graph" *model* of networks:

- Nodes represent "entities"
- Edges represent "interaction" between pairs of entities

Graphs are combinatorial, not obviously-geometric

- Strength: powerful framework for analyzing *algorithmic complexity*
- Drawback: geometry used for learning and statistical inference

How people think about networks

A schematic illustration ...

Some evidence for micro-markets in sponsored search?

query

advertiser

What do these networks "look" like?

These graphs have "nice geometric structure"

(in the sense of having some sort of low-dimensional Euclidean structure)

(but they may have other/more-subtle structure that low-dim Euclidean)

Local "structure" and global "noise"

Many (most, all?) large informatics graphs

- have local structure that is meaningfully geometric/low-dimensional
- does *not* have analogous meaningful global structure

Local "structure" and global "noise"

Many (most, all?) large informatics graphs

- have local structure that is meaningfully geometric/low-dimensional
- does not have analogous meaningful global structure

Intuitive example:

• What does the graph of you and your 10² closest Facebook friends "look like"?

• What does the graph of you and your 10⁵ closest Facebook friends "look like"?

Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.? Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ... Are there natural clusters, communities, partitions, etc.? Concept-based clusters, link-based clusters, density-based clusters, ... (e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence) How do networks grow, evolve, respond to perturbations, etc.? Preferential attachment, copying, HOT, shrinking diameters, ... How do dynamic processes - search, diffusion, etc. - behave on networks? Decentralized search, undirected diffusion, cascading epidemics, ... How best to do learning, e.g., classification, regression, ranking, etc.? Information retrieval, machine learning, ...

Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):

• extreme heterogeneity in local environments, e.g., as captured by degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):

- local environments of nodes have structure, e.g., captures with clustering coefficient, that is meaningfully "geometric"
- basis for small world models that start with global "geometry" and add random edges to get small diameter and preserve local "geometry"

Graph partitioning

- A family of combinatorial optimization problems want to partition a graph's nodes into two sets s.t.:
- Not much edge weight across the cut (cut quality)
- Both sides contain a lot of nodes

Several standard formulations:

- Graph bisection (minimum cut with 50-50 balance)
- β -balanced bisection (minimum cut with 70-30 balance)
- cutsize/min{|A|,|B|}, or cutsize/(|A||B|) (expansion)
- cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!

Why worry about both criteria?

• Some graphs (e.g., "space-like" graphs, finite element meshes, road networks, random geometric graphs) cut quality and cut balance "work together"

Tradeoff between cut quality and balance

- For other classes of graphs (e.g., informatics graphs, as we will see) there is a "tradeoff," i.e., better cuts lead to worse balance
- For still other graphs (e.g., expanders) there are no good cuts of any size

The "lay of the land"

Spectral methods* - compute eigenvectors of associated matrices

Local improvement - easily get trapped in local minima, but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at multiple size scales

Flow-based methods* - single-commodity or multicommodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.

Comparison of "spectral" versus "flow"

Spectral:

- Compute an eigenvector
- "Quadratic" worst-case bounds
- Worst-case achieved -- on "long stringy" graphs
- Embeds you on a line (or complete graph)

Flow:

- Compute a LP
- O(log n) worst-case bounds
- Worst-case achieved -- on expanders
- Embeds you in L1

Two methods -- complementary strengths and weaknesses

• What we compute will be determined at least as much by as the approximation algorithm we use as by objective function.

Interplay between preexisting versus generated versus implicit geometry

Preexisting geometry

Start with geometry and add "stuff"

Generated geometry

• Generative model leads to structures that are meaningfully-interpretable as geometric

Implicitly-imposed geometry

• Approximation algorithms *implicitly* embed the data in a metric/geometric place and then round.

"Local" extensions of the vanilla "global" algorithms

Cut improvement algorithms

• Given an input cut, find a good one nearby or certify that none exists

Local algorithms and locally-biased objectives

• Run in a time depending on the size of the output and/or are biased toward input seed set of nodes

Combining spectral and flow

• to take advantage of their complementary strengths

To do: apply ideas to other objective functions

Illustration of "local spectral partitioning" on small graphs

• Similar results if we do local random walks, truncated PageRank, and heat kernel diffusions.

Often, it finds
"worse" quality but
"nicer" partitions
than flow-improve
methods. (Tradeoff
we'll see later.)

An awkward empirical fact

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

Can we cut "internet graphs" into two pieces that are "nice" and "well-balanced"?

For many **real-world** social-and-information "power-law graphs," there is an *inverse* relationship between "cut quality" and "cut balance."

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of whiskers), and black (randomly rewired network) for consistency and cross-validation.

More large networks

10⁶

10⁵

Widely-studied small social networks

Newman's Network Science

"Low-dimensional" graphs (and expanders)

NCPP for common generative models

NCPP: LiveJournal (N=5M, E=43M)

Consequences of this empirical fact

Relationship b/w small-scale structure and largescale structure in social/information networks* is not reproduced (even qualitatively) by popular models

- This relationship governs diffusion of information, routing and decentralized search, dynamic properties, etc., etc., etc.
- This relationship also governs (implicitly) the applicability of nearly every common data analysis tool in these apps

*Probably *much* more generally--social/information networks are just so messy and counterintuitive that they provide very good methodological test cases.

Popular approaches to network analysis

Define simple statistics (clustering coefficient, degree distribution, etc.) and fit simple models

• more complex statistics are too algorithmically complex or statistically rich

• fitting simple stats often doesn't capture what you wanted

Beyond very simple statistics:

- Density, diameter, routing, clustering, communities, ...
- Popular models often fail egregiously at reproducing more subtle properties (even when fit to simple statistics)

Failings of "traditional" network approaches

Three recent examples of *failings* of "small world" and "heavy tailed" approaches:

- Algorithmic decentralized search solving a (non-ML) problem: can we find short paths?
- Diameter and density versus time simple dynamic property
- Clustering and community structure subtle/complex static property (used in downstream analysis)

All three examples have to do with the coupling b/w "local" structure and "global" structure --- solution goes beyond simple statistics of traditional approaches.

How do we know this plot it "correct"?

Algorithmic Result

Ensemble of sets returned by different algorithms are very different Spectral vs. flow vs. bag-of-whiskers heuristic

Statistical Result

Spectral method implicitly regularizes, gets more meaningful communities

Lower Bound Result

Spectral and SDP lower bounds for large partitions

Structural Result

Small barely-connected "whiskers" responsible for minimum

Modeling Result

Very sparse Erdos-Renyi (or PLRG wth $\beta \epsilon$ (2,3)) gets imbalanced deep cuts

Regularized and non-regularized communities (1 of 2)

- Metis+MQI (red) gives sets with better conductance.
- Local Spectral (blue) gives tighter and more well-rounded sets.

Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Interpretation: "Whiskers" and the "core" of large informatics graphs

- "Whiskers"
 - maximal sub-graph detached from network by removing a single edge
 - contains 40% of nodes and 20% of edges
- "Core"
 - the rest of the graph, i.e., the 2-edge-connected core
- Global minimum of NCPP is a whisker
- BUT, core itself has nested whisker-core structure

What if the "whiskers" are removed?

Then the lowest conductance sets - the "best" communities - are "2-whiskers." (So, the "core" peels apart like an onion.)

Interpretation: A simple theorem on random graphs

Let $\mathbf{w} = (w_1, \dots, w_n)$, where $w_i = ci^{-1/(\beta-1)}, \quad \beta \in (2,3).$ Connect nodes *i* and *j* w.p. $p_{ij} = w_i w_j / \sum_k w_k.$

Structure of the G(w) model, with $\beta \epsilon$ (2,3).

- Sparsity (coupled with randomness) is the issue, not heavy-tails.
- (Power laws with $\beta \ \epsilon$ (2,3) give us the appropriate sparsity.)

Look at (very simple) whiskers

Ten largest "whiskers" from CA-cond-mat.

What do the data "look like" (if you squint at them)?

(or pancake that embeds well in low dimensions)

(or tree-like hyperbolic structure)

A "point"?

(or clique-like or expander-like structure)

Squint at the data graph ...

Say we want to find a "best fit" of the adjacency

matrix to:

What does the data "look like"? How big are $\alpha,\beta,\gamma?$

Small versus Large Networks

Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

Small and large networks are very different:

(also, an expander)

E.g., fit these networks to Stochastic Kronecker Graph with "base" K=[a b; b c]:

K _	0.99	0.17
$\Lambda_1 -$	0.17	0.82

0.99	0.55
0.55	0.15

0.2	0.2
0.2	0.2

Small versus Large Networks

Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

Small and large networks are very different:

(also, an expander)

E.g., fit these networks to Stochastic Kronecker Graph with "base" K=[a b; b c]:

Implications: high level

What is simplest explanation for empirical facts?

• *Extremely* sparse Erdos-Renyi reproduces qualitative NCP (i.e., deep cuts at small size scales and no deep cuts at large size scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for analogous reason

• Iterative forest-fire model gives mechanism to put local geometry on sparse quasi-random scaffolding to get qualitative property of relatively gradual increase of NCP

Data are local-structure on global-noise, not small noise on global structure!

Implications: high level, cont.

Remember the Stochastic Kronecker theorem:

- Connected, if b+c>1: 0.55+0.15 > 1. No!
- Giant component, if (a+b)_(b+c)>1: (0.99+0.55)_(0.55+0.15) > 1. Yes!

Real graphs are in a region of parameter space analogous to extremely sparse G_{np} .

• Large vs small cuts, degree variability, eigenvector localization, etc.

Data are local-structure on global-noise, not small noise on global structure!

Implications for understanding networks

- Diffusions appear (under the hood) in many guises (viral marketing, controlling epidemics, query refinement, etc)
- low-dim = clustering = implicit capacity control and slow mixing; high-dim doesn't since "everyone is close to everyone"
- diffusive processes very different if deepest cuts are small versus large

Recursive algorithms that run one or $\Omega(n)$ steps not so useful

• E.g. if with recursive partitioning you nibble off 10² (out of 10⁶) nodes per iteration

People find lack of few large clusters unpalatable/noninterpretable and difficult to deal with statistically/algorithmically

• but that's the way the data are ...

Conclusions

Common (usually implicitly-accepted) picture:

• "As graphs corresponding to complex networks become bigger, the complexity of their internal organization increases."

Empirically, this picture is false.

• Empirical evidence is extremely strong ...

• ... and its falsity is "obvious," if you *really* believe common smallworld and preferential attachment models

Very significant implications for data analysis on graphs

Common ML and DA tools make strong local-global assumptions ...

• ... that are the opposite of the "local structure on global noise" that the data exhibit