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Overview (1 of 4)
Regularization in statistics, ML, and data analysis
• involves making (explicitly or implicitly) assumptions about the data

• arose in integral equation theory to “solve” ill-posed problems

• computes a better or more “robust” solution, so better inference

Usually implemented in 2 steps:
• add a norm/capacity constraint g(x) to objective function f(x)

• then solve the modified optimization problem

x’ = argminx f(x) + λ g(x)

• Often, this is a “harder” problem, e.g., L1-regularized L2-regression

x’ = argminx ||Ax-b||2 + λ ||x||1



Overview (2 of 4)
Practitioners often use heuristics:
• e.g., “early stopping” or “binning”

• these heuristics often have the “side effect” of regularizing the data

• similar results seen in graph approximation algorithms (where at most
linear time algorithms can be used!)

Question:
• Can we formalize the idea that performing approximate computation
can implicitly lead to more regular solutions?



Overview (3 of 4)
Question:
• Can we formalize the idea that performing approximate computation
can implicitly lead to more regular solutions?

Special case today:
• Computing the first nontrivial eigenvector of a graph Laplacian?

Answer:
• Consider three random-walk-based procedures (heat kernel, PageRank,
truncated lazy random walk), and show that each procedure is implicitly
solving a regularized optimization exactly!



Overview (4 of 4)
What objective does the exact eigenvector optimize?
• Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x.

• But can also express this as an SDP, for a SPSD matrix X.

• We will put regularization on this SDP!

Basic idea:
• Power method starts with v0, and iteratively computes

vt+1 = Avt / ||Avt||2   .

• Then, vt = Σi γi
t vi -> v1   .

• If we truncate after (say) 3 or 10 iterations, still have some mixing
from other eigen-directions ... so don’t overfit the data!



Outline

Overview
• Summary of the basic idea

Empirical motivations
• Finding clusters/communities in large social and information networks

• Empirical regularization and different graph approximation algorithms

Main technical results
• Implicit regularization defined precisely in one simple setting



A lot of loosely related* work
Machine learning and statistics
• Belkin-Niyogi-Sindhwan-06; Saul-Roweis-03; Rosasco-DeVito-Verri-05; Zhang-
Yu-05; Shi-Yu-05; Bishop-95

Numerical linear algebra
• O'Leary-Stewart-Vandergraft-79; Parlett-Simon-Stringer-82

Theoretical computer science
• Spielman-Teng-04; Andersen-Chung-Lang-06; Chung-07

Internet data analysis
• Andersen-Lang-06; Leskovec-Lang-Mahoney-08; Lu-Tsaparas-Ntoulas-Polanyi-10

*“loosely related” = “very different” when the devil is in the details!



Networks and networked data

Interaction graph model of
networks:
• Nodes represent “entities”
• Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
• technological networks

– AS, power-grid, road networks

• biological networks
– food-web, protein networks

• social networks
– collaboration networks, friendships

• information networks
– co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

• language networks
– semantic networks...

• ...



Sponsored (“paid”) Search
Text-based ads driven by user query



Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

“Community-related” problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information



Spectral Partitioning and NCuts

• Solvable via eigenvalue problem

• Bounds via Cheeger’s inequality

• Used in parallel scientific
computing, Computer Vision
(called Normalized Cuts), and
Machine Learning

• But, what if there are not
“good well-balanced” cuts (as in
“low-dim” data)?



Probing Large Networks with
Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductanceExternal/internal conductance

Diameter of the clusterDiameter of the clusterConductance of  bounding cutConductance of  bounding cut

Local Spectral

Connected

Disconnected

Lower is good



Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:



Approximate eigenvector computation …

Many uses of Linear Algebra in ML and Data
Analysis involve approximate computations
• Power Method, Truncated Power Method, HeatKernel, Truncated
Random Walk, PageRank, Truncated PageRank, Diffusion Kernels,
TrustRank, etc.

•  Often they come with a “generative story,” e.g., random web surfer,
teleportation preferences, drunk walkers, etc.

What are these procedures actually computing?
• E.g., what optimization problem is 3 steps of Power Method solving?

• Important to know if we really want to “scale up”



… and implicit regularization
Regularization: A general method for computing “smoother” or
“nicer” or “more regular” solutions - useful for inference, etc.

Recall: Regularization is usually implemented  by adding
“regularization penalty” and optimizing the new objective.

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc.
often implicitly perform regularization.

Question: Can approximate computation* implicitly lead to more
regular solutions?  If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation.  But, can it be done with graph algorithms?



Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

• Heat Kernel:

• PageRank:

• q-step Lazy Random Walk:

Ques: Do these “approximation procedures” exactly
optimizing some regularized objective?



Two versions of spectral partitioning

VP:

R-VP:



Two versions of spectral partitioning

VP: SDP:

R-SDP:R-VP:



A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).

Mahoney and Orecchia  (2010)



Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

gives Truncated Lazy Random Walk, with λ ~ η

Answer: These “approximation procedures” compute
regularized versions of the Fiedler vector exactly!



Large-scale applications

A lot of work on large-scale data already implicitly
uses these ideas:
• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-
click for automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully “whittling down”
neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like
implicit regularization models are most consistent with data



Conclusion

Main technical result
• Approximating an exact eigenvector is exactly optimizing a regularized
objective function

More generally
• Can regularization as a function of different graph approximation
algorithms (seen empirically) be formalized?

• If yes, can we construct a toolbox (since, e.g., spectral and flow
regularize differently) for interactive analytics on very large graphs?


