Implementing regularization implicitly via approximate eigenvector computation

Michael W. Mahoney

Stanford University

(Joint work with Lorenzo Orecchia of UC Berkeley.)

(For more info, see: http://cs.stanford.edu/people/mmahoney)

Overview (1 of 4)

Regularization in statistics, ML, and data analysis

- involves making (explicitly or implicitly) assumptions about the data
- arose in integral equation theory to "solve" ill-posed problems
- computes a better or more "robust" solution, so better inference

Usually *implemented* in 2 steps:

- add a norm/capacity constraint g(x) to objective function f(x)
- then solve the modified optimization problem

 $x' = \operatorname{argmin}_{x} f(x) + \lambda g(x)$

• Often, this is a "harder" problem, e.g., L1-regularized L2-regression x' = $\operatorname{argmin}_{x} ||Ax-b||_{2} + \lambda ||x||_{1}$

Overview (2 of 4)

Practitioners often use heuristics:

- e.g., "early stopping" or "binning"
- these heuristics often have the "side effect" of regularizing the data

 similar results seen in graph approximation algorithms (where at most linear time algorithms can be used!)

Question:

• Can we formalize the idea that performing approximate computation can *implicitly* lead to more regular solutions?

Overview (3 of 4)

Question:

• Can we formalize the idea that performing approximate computation can *implicitly* lead to more regular solutions?

Special case today:

• Computing the first nontrivial eigenvector of a graph Laplacian?

Answer:

• Consider three random-walk-based procedures (heat kernel, PageRank, truncated lazy random walk), and show that each procedure is *implicitly* solving a regularized optimization *exactly*!

Overview (4 of 4)

What objective does the exact eigenvector optimize?

- Rayleigh quotient $R(A,x) = x^T A x / x^T x$, for a vector x.
- But can also express this as an SDP, for a SPSD matrix X.
- We will put regularization on this SDP!

Basic idea:

• Power method starts with v_0 , and iteratively computes

 $\mathbf{v}_{t+1} = \mathbf{A}\mathbf{v}_t / ||\mathbf{A}\mathbf{v}_t||_2$.

- Then, $\mathbf{v}_{t} = \Sigma_{i} \gamma_{i}^{\dagger} \mathbf{v}_{i} \rightarrow \mathbf{v}_{1}$.
- If we truncate after (say) 3 or 10 iterations, still have some mixing from other eigen-directions ... so don't overfit the data!

Outline

Overview

• Summary of the basic idea

Empirical motivations

- Finding clusters/communities in large social and information networks
- Empirical regularization and different graph approximation algorithms

Main technical results

• Implicit regularization defined precisely in one simple setting

A lot of loosely related* work

Machine learning and statistics

• Belkin-Niyogi-Sindhwan-O6; Saul-Roweis-O3; Rosasco-DeVito-Verri-O5; Zhang-Yu-O5; Shi-Yu-O5; Bishop-95

Numerical linear algebra

• O'Leary-Stewart-Vandergraft-79; Parlett-Simon-Stringer-82

Theoretical computer science

• Spielman-Teng-04; Andersen-Chung-Lang-06; Chung-07

Internet data analysis

• Andersen-Lang-06; Leskovec-Lang-Mahoney-08; Lu-Tsaparas-Ntoulas-Polanyi-10

*"loosely related" = "very different" when the devil is in the details!

Networks and networked data

Lots of "networked" data!!

- technological networks
 - AS, power-grid, road networks
- biological networks
 - food-web, protein networks
- social networks
 - collaboration networks, friendships
- information networks

- co-citation, blog cross-postings, advertiser-bidded phrase graphs...

language networks

• ...

- semantic networks...

Interaction graph model of networks:

- Nodes represent "entities"
- Edges represent "interaction" between pairs of entities

Sponsored ("paid") Search

Text-based ads driven by user query

🕲 recipe indian food - Yahoo! Search Results - Mozilla Firefox	_ 2 2 🔀
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>Y</u> ahoo! <u>T</u> ools <u>H</u> elp	\sim
<	▶ G • indian food recipes
🖉 Rutgers University Li 🗋 my del.icio.us 🗋 post to del.icio.us	
MN - powered by MICOL SEARCH + Q Web Search - 2 😥	▼ 👼 Storage 👻
Y 🗸 🔹 recipe indian food 🔹 🗄 Search Web 🔹 🏟 🔹 🖄 Mail 🔹 🐨 My Yahoo! 🌾 NCAA Hoops 🔹 🖞 Fantasy Sports 🔹 📥 Games 🔹 🔊 Music 🔹 🚿	
Yahoo! My Yahoo! Mail Welcome, Guest [Sign In]	Advertiser Sign In Help
Web Images Video Local Shopping more Video Search recipe indian food Search	Answers
Search Results 1 - 10 of about 7,260,000 for re	cipe indian food - 0.19 sec. (<u>About this page</u>)
Recipe Indian Food www.MonsterMarketplace.com - Browse and compare great deals on recipe indian food. Indian Food sanfrancisco.citysearch.com - Find great Indian restaurants in your area today. Search here.	SPONSOR RESULTS Indian Food Buy indian food at SHOP.COM. Search our free shipping offers. www.SHOP.com
1. <u>indian food recipe</u> indian food recipe Title: Indian Food Recipe. Yield: 4 Servings. Ingredients. 1 bunch to the echo by: Jonathan Kandell Indian Food Recipes Put recipes.chef2chef.net/recipe-archive/43/231458.shtml - 13k - <u>Cached</u> - <u>More from this site</u>	Recipe India Food Find and Compare prices on recipe india food at Smarter.com. www.smarter.com
 Recipe Gal: Indian Foods Indian Recipes from Recipe Gal's Archives All Food Posters. Travel Posters. Indian Recipes. Indian Breads Indian Chicken Recipes www.recipegal.com/indian - 10k - <u>Cached</u> - <u>More from this site</u> 	Chinese Food Recipe Books on Cataloglink Find chinese food recipe books on CatalogLink. www.CatalogLink.com
 Indian Recipes, Indian Food Recipe, South Indian Recipes, Indian indian recipes, indian food recipe, south indian Recipes, indian cooking Recipes, Indian Recipes, Indian Food Recipe, South Indian Recipes, Indian Cooking Recipe, www.india4world.com/indian-recipe - 17k - <u>Cached</u> - <u>More from this site</u> Paav Bhaaji - Recipe for Paav Bhaaji - Pao Bhaji 	\$19.97 Over 500 Chinese Recipes Cookbook 100% Satisfaction Guaranteed, 543-Page Chinese Cookbook Only \$19.97. ✓

Sponsored Search Problems

Keyword-advertiser graph:

- provide new ads
- maximize CTR, RPS, advertiser ROI

"Community-related" problems:

Marketplace depth broadening:

Keywords Advertisers bids, clicks or impressions www.allbets.com www.soccer.com soccer videos sports movies hollywood hits www.netflix.com

find new advertisers for a particular query/submarket

• Query recommender system:

suggest to advertisers new queries that have high probability of clicks

Contextual query broadening:

broaden the user's query using other context information

Spectral Partitioning and NCuts

minimize $x^T L_G x$ s.t. $\langle x, x \rangle_D = 1$ $\langle x, 1 \rangle_D = 0$

- Solvable via eigenvalue problem
- Bounds via Cheeger's inequality
- Used in parallel scientific computing, Computer Vision (called Normalized Cuts), and Machine Learning
- But, what if there are not "good well-balanced" cuts (as in "low-dim" data)?

Probing Large Networks with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses "long paths" with "deep cuts" Multi-commodity flow - (log(n) approx) - difficulty with expanders SDP - (sqrt(log(n)) approx) - best in theory Metis - (multi-resolution for mesh-like graphs) - common in practice X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.

Regularized and non-regularized communities (1 of 2)

- Metis+MQI (red) gives sets with better conductance.
- Local Spectral (blue) gives tighter and more well-rounded sets.

Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Approximate eigenvector computation ...

Many uses of Linear Algebra in ML and Data Analysis involve *approximate* computations

• Power Method, Truncated Power Method, HeatKernel, Truncated Random Walk, PageRank, Truncated PageRank, Diffusion Kernels, TrustRank, etc.

• Often they come with a "generative story," e.g., random web surfer, teleportation preferences, drunk walkers, etc.

What are these procedures *actually* computing?

- E.g., what optimization problem is 3 steps of Power Method solving?
- Important to know if we really want to "scale up"

... and *implicit* regularization

Regularization: A general method for computing "smoother" or "nicer" or "more regular" solutions - useful for inference, etc.

Recall: Regularization is usually *implemented* by adding "regularization penalty" and optimizing the new objective.

$$\hat{x} = \operatorname{argmin}_{x} f(x) + \lambda g(x)$$

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc. often implicitly perform regularization.

Question: Can approximate computation* *implicitly* lead to more regular solutions? If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation. But, can it be done with graph algorithms?

Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

- Heat Kernel: $H_t = \exp(-tL) = \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} L^k$
- PageRank: $\pi(\gamma, s) = \gamma s + (1 \gamma)M\pi(\gamma, s)$

$$R_{\gamma} = \gamma \left(I - (1 - \gamma) M \right)^{-1}$$

• q-step Lazy Random Walk: $W^q_{\alpha} = (\alpha I + (1 - \alpha)M)^q$

Ques: Do these "*approximation* procedures" *exactly* optimizing some regularized objective?

Two versions of spectral partitioning

$\begin{array}{c} \mathsf{VP:}\\ \text{min.} \quad x^T L_G x\\ \text{s.t.} \quad x^T L_{K_n} x = 1\\ & \checkmark \quad < x, 1 >_D = 0 \end{array}$

R-VP:

min. $x^T L_G x + \lambda f(x)$ s.t. constraints

Two versions of spectral partitioning

 $VP: \qquad \longleftrightarrow SDP: \\ min. \quad x^T L_G x \qquad min. \quad L_G \circ X \\ s.t. \quad x^T L_{K_n} x = 1 \qquad s.t. \quad L_{K_n} \circ X = 1 \\ \downarrow \qquad \langle x, 1 \rangle_D = 0 \qquad \downarrow \qquad X \succeq 0 \\ \downarrow \qquad \downarrow \qquad X \ge 0$

R-VP:R-SDP:min. $x^T L_G x + \lambda f(x)$ min. $L_G \circ X + \lambda F(X)$ s.t.constraintss.t.constraints

Theorem: Let G be a connected, weighted, undirected graph, with normalized Laplacian L. Then, the following conditions are sufficient for X^* to be an optimal solution to (F,η) -SDP.

•
$$X^* = (\nabla F)^{-1} (\eta \cdot (\lambda^* I - L))$$
, for some $\lambda^* \in R$,

- $I \bullet X^{\star} = 1$,
- $X^{\star} \succeq 0.$

Three simple corollaries

 $F_{H}(X) = Tr(X \log X) - Tr(X)$ (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = η

F_D(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ η

 $F_p(X) = (1/p)||X||_p^p$ (i.e., matrix p-norm, for p>1) gives Truncated Lazy Random Walk, with $\lambda \sim \eta$

Answer: These "approximation procedures" compute regularized versions of the Fiedler vector *exactly*!

Large-scale applications

A lot of work on large-scale data already implicitly uses these ideas:

• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on queryclick for automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully "whittling down" neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit regularization models are most consistent with data

Conclusion

Main technical result

• Approximating an exact eigenvector is exactly optimizing a regularized objective function

More generally

- Can regularization as a function of different graph approximation algorithms (seen empirically) be formalized?
- If yes, can we construct a toolbox (since, e.g., spectral and flow regularize differently) for interactive analytics on very large graphs?