
Geometric Tools for Identifying Structure in
Large Social and Information Networks

Michael W. Mahoney

Stanford University

(ICML 2010 and KDD 2010 Tutorial)

(For more info, see:
http:// cs.stanford.edu/people/mmahoney/

or Google on “Michael Mahoney”)

Lots of “networked data” out there!

• Technological and communication networks
– AS, power-grid, road networks

• Biological and genetic networks
– food-web, protein networks

• Social and information networks
– collaboration networks, friendships; co-citation, blog cross-
postings, advertiser-bidded phrase graphs ...

• Financial and economic networks
– encoding purchase information, financial transactions, etc.

• Language networks
– semantic networks ...

• Data-derived “similarity networks”
– recently popular in, e.g., “manifold” learning

• ...

Large Social and Information Networks

Sponsored (“paid”) Search
Text-based ads driven by user query

Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information

Micro-markets in sponsored search

10 million keywords

1.
4

M
ill

io
n

A
dv

er
tis

er
s

Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI of sports

gambling keywords?

Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?

How people think about networks
“Interaction graph” model of networks:
• Nodes represent “entities”
• Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric
• Strength: powerful framework for analyzing algorithmic complexity
• Drawback: geometry used for learning and statistical inference

How people think about networks

advertiser

q
u

er
y

Some evidence for
micro-markets in
sponsored search?

A schematic illustration …

… of hierarchical clusters?

Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...

What do these networks “look” like?

Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):
• extreme heterogeneity in local environments, e.g., as captured by
degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based
models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):
• local environments of nodes have structure, e.g., captures with
clustering coefficient, that is meaningfully “geometric”

• basis for small world models that start with global “geometry” and
add random edges to get small diameter and preserve local “geometry”

Popular approaches to data more generally

Use geometric data analysis tools:
• Low-rank methods - very popular and flexible
• Manifold methods - use other distances, e.g., diffusions or
nearest neighbors, to find “curved” low-dimensional spaces

These geometric data analysis tools:
• View data as a point cloud in Rn, i.e., each of the m data
points is a vector in Rn

• Based on SVD*, a basic vector space structural result
• Geometry gives a lot -- scalability, robustness, capacity
control, basis for inference, etc.

*perhaps implicitly in an infinite-dimensional non-linearly transformed
feature space (as with manifold and other Reproducing Kernel methods)

Can these approaches be combined?

These approaches are very different:
• network is a single data point---not a collection of feature vectors
drawn from a distribution, and not really a matrix
• can’t easily let m or n (number of data points or features) go to
infinity---so nearly every such theorem fails to apply

Can associate matrix with a graph and vice versa, but:
• often do more damage than good
• questions asked tend to be very different
• graphs are really combinatorial things*

*But graph geodesic distance is a metric, and metric embeddings give fast algorithms!

Modeling data as matrices and graphs

In computer science:
• data are typically discrete, e.g.,
graphs
• focus is on fast algorithms for the
given data set

Data

Comp.Sci. Statistics

In statistics*:
• data are typically continuous, e.g.
vectors
• focus is on inferring something about
the world
*very broadly-defined!

Algorithmic vs. Statistical Perspectives

Computer Scientists
• Data: are a record of everything that happened.
• Goal: process the data to find interesting patterns and associations.
• Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians
• Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
• Goal: is to extract information about the world from noisy data.
• Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000)

Perspectives are NOT incompatible

• Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

• Intractable optimization problems on graphs/networks yield to
approximation when assumptions made about network participants.

• In boosting, the computation parameter (i.e., the number of
iterations) also serves as a regularization parameter.

• Approximations algorithms can implicitly regularize large graph
problems (which can lead to geometric network analysis tools!).

What do the data “look like” (if you
squint at them)?

A “hot dog”? A “tree”? A “point”?

(or pancake that embeds well
in low dimensions)

(or tree-like hyperbolic
structure)

(or clique-like or
expander-like structure)

Goal of the tutorial

Cover algorithmic and statistical work on identifying and
exploiting “geometric” structure in large “networks”

• Address underlying theory, bridging the theory-practice gap,
empirical observations, and future directions

Themes to keep in mind:

• Even infinite-dimensional Euclidean structure is too limiting
 (in adversarial environments, you never “flesh out” the low-dimensional space)

• Scalability and robustness are central
(tools that do well on small data often do worse on large data)

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

Overview (more detail, 1 of 4)

Popular algorithmic tools with a geometric flavor

• PCA and SVD, including computational/algorithmic and
statistical/geometric issues

• Domain-specific interpretation of spectral concepts, e.g.,
localization, homophily, centrality

• Kernel-based extensions currently popular in machine learning

• Difficulties and limitations of popular tools

Overview (more detail, 2 of 4)

Graph algorithms and their geometric underpinnings

• Spectral, flow, multi-resolution algorithms for graph
partitioning, including theoretical basis and implementation issues

• Geometric and statistical perspectives, including “worst case”
examples for each and behavior on “typical” classes of graphs

• Recent “local” methods and “cut improvement” methods;
methods that “interpolate” between spectral and flow

• Tools for identifying “tree-like” or “hyperbolic” structure, and
intuitions associated with this structure

Overview (more detail, 3 of 4)

Novel insights on structure in large informatics graphs

• Small-world and heavy-tailed models to capture local clustering
and/or large-scale heterogeneity

• Issues of “pre-existing” versus “generated” geometry

• Empirical successes and failings of popular models, including
densification, diameters, clustering, and community structure

• “Experimental” methodologies for “probing” network structure

Overview (more detail, 4 of 4)

Novel insights, (cont.)

• Empirical results on “local” geometric structure, “global” metric
structure, and the coupling between these

• Implicit regularization by worst-case approximation algorithms

• Implications for clustering, routing, information diffusion,
visualization, and the design of machine learning tools

• Implications for dynamics evolution of graphs, dynamics on
graphs, and machine learning and data analysis on networks

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

The Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing σ1 ≥ σ2 ≥ … ≥ σρ, the singular values of A.

The formal definition:

Given any m x n matrix A, one can decompose it as:

SVD is the “the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra.”*

*Dianne O’Leary, MMDS 2006

SVD: A fundamental structural result

SVD: a fundamental structural result of vector spaces (with both
algorithmic and statistical consequences)

U: orthogonal basis for
the column space

V: orthogonal basis for
the row space

Σ: gives orthogonalized
“stretch” factors*

*i.e., in the basis of U
and V, A is diagonal.

Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left (right) singular vectors of A.

Σk: diagonal matrix containing the top k singular values of A.

Important: Keeping top k singular vectors provides “best” rank-k
approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

Ak = argmin{ ||A-X||2,F : rank(X) ≤ k }.

Truncate the SVD at the top-k terms: Keep the “most
important” k-dim
subspace.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

Singular vectors, intuition

Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return …

1st (right)
singular vector

1st (right) singular vector:

direction of maximal variance,

2nd (right)
singular vector

2nd (right) singular vector:

direction of maximal variance, after
removing the projection of the data
along the first singular vector.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right)
singular vector

2nd (right)
singular vector

Singular values, intuition

σ1: measures how much of the data variance
is explained by the first singular vector.

σ2: measures how much of the data variance
is explained by the second singular vector.

σ1

σ2

A first use of the SVD in data analysis

feature 1

fe
at

ur
e

2

Object x

Object d

(d,x)

Matrix rows: points (vectors) in a Euclidean space,
e.g., given 2 objects (x & d), each described with
respect to two features, we get a 2-by-2 matrix.

Common assumption: Two objects are “close” if angle
between their corresponding vectors is “small.”

Common hope: k « m,n directions are important --
e.g., Ak captures most of the “information” and/or is
“discriminative” for classification, etc tasks.

Common to model the data as points in a vector space -- this
gives a matrix, with m rows (one for each object) and n columns
(one for each feature).

Latent Semantic Indexing (LSI)

Replace A by Ak; apply
clustering/classification algorithms on Ak.

m
documents

n terms (words)

Aij = frequency of j-th
term in i-th document

Pros

- Less storage for small k.
O(km+kn) vs. O(mn)

- Improved performance.
Documents are represented in a “concept” space.

Cons

- Ak destroys sparsity.

- Interpretation is difficult.

- Choosing a good k is tough.

LSI: Ak for document-term “matrices”
(Berry, Dumais, and O'Brien ’92)

• Sometimes people interpret document corpus in terms of k topics when use this.

• Better to think of this as just selecting one model from a parameterized class of models!

LSI/SVD and heavy-tailed data
Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a
graph with power-law distributed degrees are also
power-law distributed.

• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g.,
random graph) implies heavy tail over eigenvalues.

• Idea: 10 components may give 10% of mass/information, but to get
20%, you need 100, and to get 30% you need 1000, etc; i.e., no scale at
which you get most of the information

• No “latent” semantics without preprocessing.

Singular-stuff and eigen-stuff
If A is any m x n matrix:

A = U Σ VT (the SVD - general eigen-systems can be non-robust and hard to work with)

A is diagonal in orthogonal U and V basis; and Σ nonnegative

If A is any m x m square matrix:
A = U Λ UT (the eigen-decomposition - of course, A also has an SVD)

A is diagonal in orthogonal U basis; but Λ is not nonnegative

If A is any m x m SPSD (i.e., correlation) matrix:
A = U Σ UT (SVD = eigen-decomposition)

A is diagonal in orthogonal U basis; and Σ nonnegative

In data analysis, structural properties of SVD are used most
often via square (e.g., adjacency) or SPSD (e.g., kernel or
Laplacian) matrices

Algorithmic Issues with the SVD

A big area with a lot of subtleties:
• “Exact” computation of the full SVD* takes O(min{mn2 , m2n})
time.
• The top k left/right singular vectors/values can be computed
faster using iterative Lanczos/Arnoldi methods.
• Specialized numerical methods for very large sparse
matrices.
• A lot of work in TCS, NLA, etc on randomized algorithms and
ε-approximation algorithms (for ε ≈ 0.1 or ε ≈ 10-16).

*Given the full SVD, you can do “everything.” But you “never” need the full
SVD. Just compute what you need!

PCA and MDS
Principal Components Analysis (PCA)
• Given {Xi}i=1,…,n with Xi ε RD,

Find k-dimensional subspace P and embedding Yi=PXi

s.t. Variance(Y) is maximized or Error(Y) is minimized

• Do SVD on covariance matrix C =XXT

Multidimensional Scaling (MDS)
• Given {Xi}i=1,…,n with Xi ε RD,

Find k-dimensional subspace P and embedding Yi=PXi

s.t. Dist(Yi-Yj) ≈ Dist(Xi-Xj), i.e., dot products (or distances) preserved

• Do SVD on Gram matrix G = XT X

SVD is the structural basis behind PCA, MDS, Factor Analysis, etc.

Statistical Aspects of the SVD

Can always compute best rank-k SVD approximation
• in “nice” Gaussian settings, corresponding statistical interpretation

• more generally, model selection in a place with nice geometry

Least-squares regression and PCA
• optimal (in terms of mean squared error) linear compression scheme for
compressing and reconstructing any high-dimensional vectors

• if the data were generated from Guassian distributions, then it is the
“right thing to do”

• several related ways to formalize these ideas

Geometric Aspects of the SVD

Can always compute best rank-k SVD approximation
• in “nice” Gaussian settings, corresponding statistical interpretation

• more generally, model selection in a place with nice geometry

Least-squares regression and PCA
• embed the data in a line or low-dimensional hyperplane

• reconstruct clusters when data consist of “separated” Gaussians

• geometry permits Nystrom-based and other out-of-sample schemes
and “robustness” due to constraints imposed by low-dimensional space

• several related ways to formalize these ideas

These are a very strong properties

Contrast these properties with tensors*

• Computing the rank of a tensor (qua tensor) is intractable, and best
rank k approximation may not even exist

• Many other strong hardness results (Lim 2006)

• Researchers “fall back” on matrices along each mode

That matrices are so nice is the exception, not the rule,
among algebraic structures---vector spaces are very
structured places, with associated benefits and limitations.

*Tensors are another algebraic structure used to model data: Think of them as Aijk, i.e., matrices
with an additional subscript, where multiplication is linear along each “direction”

Kernel Methods

Many algorithms access data only
through elements of Correlation
or Gram matrix.
• Can use another SPSD matrix and to
encode nearness information.

• Many learning bounds generalize

• E.g., K(xi,xj) = f(||xi-xj||), Gaussian r.b.f.,
polynomial kernels, etc - good but limited
• Data-dependent kernels - operationally define a kernel on graph constructed
from point cloud data; typically viewed as implicitly defining a manifold

Kernels and linear methods

Kernel methods are basically linear methods in some
other feature space that is non-linearly related to the
original representation of the data:

• Good news: still linear (classify with hyperplanes, have capacity
control since hyperplanes are structured objects, etc.)

• Bad news: still linear (so still boiling down to SVD); determining
features is an art; very hard to deal with very non-linear metrics

Kernel methods basically give you a lot more
statistical (or descriptive) flexibility without too
much additional computational cost.

Data-dependent kernels, cont.
ISOMAP:
• Compute geodesics on adjacency graph

• MetricMDS gives k eigenvectors for embedding

LLE:
• Compute edge weights from local least-squares
approximation

• Compute global embedding vectors as bottom
k+1 eigenvectors of a matrix

Laplacian eigenmaps:
• Assign edge weights Wij = exp(-β||xi-xj||2

2)

• Compute embedding vectors as bottom k+1
eigenvectors of Laplacian

Kernels and Manifolds and Diffusions

Laplacian Eigenmaps:
• Defined on graphs, but close connections to “analysis on manifolds”

Laplacian in Rd:

Manifold Laplacian
• measure change along tangent space of manifold

Connections with
diffusions (and
Markov chains):

What is a manifold?

A topological manifold is a topological space which locally looks
Euclidean in a certain (weak) sense

A Riemannian manifold is a differentiable manifold in which the
tangent space is Rn. (Tangent space has inner product that varies
smoothly and that gives lengths, angles, areas, gradients, etc.)

Barring “pathological” curvature or density behavior, i.e., permitting
a huge amount of descriptive flexibility, think of a ML manifolds as
a “curved” low-dimensional space.

Kernels and learning a manifold

Practice and Theory:

• Choose kernel, and see if eigen-methods give good visualization,
clustering, etc.

• Thm: If the hypothesized manifold and sampling density are
“nice,” then Lgraph will converge to Lmanifold.

Manifold learning is not of classification, clustering,
regression; but of the hypothesized manifold

• Empirically (or theoretically) useful when two large clusters

• Basically, “exploratory” data modeling, using one class of models

Interpreting the SVD - be very careful

Reification

• assigning a “physical
reality” to large
singular directions

• invalid in general

Just because “If the
data are ‘nice’ then
SVD is appropriate”
does NOT imply
converse.

Mahoney and Drineas (PNAS, 2009)

Interpretation: Centrality

Centrality (of a vertex) - measures relative importance
of a vertices in a graph
• degree centrality - number of links incident upon a node

• betweenness centrality - high for vertices that occur on many shortest
paths

• closeness centrality - mean geodesic distance between a vertex and other
reachable nodes

• eigenvector centrality - connections to high-degree nodes are more
important, and so on iteratively (a “spectral ranking” measure)

Motivation and behavior on nice graphs is clear -- but
what do they actually compute on non-nice graphs?

Eigen-methods in ML and data analysis

Eigen-tools appear (explicitly or implicitly*) in
many data analysis and machine learning tools:

• Latent semantic indexing

• Manifold-based ML methods

• Diffusion-based methods

• k-means clustering

• Spectral partitioning and spectral ranking

*What are the limitations imposed when these methods are implicitly used? Can we
get around those limitations with complementary methods?

k-means clustering

A standard objective function that measures cluster quality.

(Often denotes an iterative algorithm that attempts to optimize the k-means
objective function.)

k-means objective

Input: set of m points in Rn, positive integer k

Output: a partition of the m points to k clusters

Partition the m points to k clusters in order to minimize the sum of the squared
Euclidean distances from each point to its cluster centroid.

(Drineas, Frieze, Kannan, Vempala, and Vinay ’99; Boutsidis, Mahoney, and Drineas ‘09)

k-means clustering

k-means clustering, cont’d

Goal: We seek to split the input
points in 5 clusters.

Recall: The cluster centroid is the
“average” of all the points in the
cluster:

Note: The intuition underlying the
combinatorial objective is that there
are several “nice” clusters in a low-
dimensional space.

k-means: a matrix formulation

Let A be the m-by-n matrix representing m points in Rn. Then, we seek to

X is a special “cluster membership” matrix: Xij denotes if the i-th point
belongs to the j-th cluster.

po
in

ts

clusters • Columns of X are normalized to have unit length.

(We divide each column by the square root of the
number of points in the cluster.)

• Every row of X has at most one non-zero element.

(Each element belongs to at most one cluster.)

• X is an orthogonal matrix, i.e., XTX = I.

k-means: the SVD connection

If we only require that X is an orthogonal matrix and remove the condition
on the number of non-zero entries per row of X, then

is easy to minimize! The solution is X = Uk.

Using SVD to solve k-means

• We can get a 2-approximation algorithm for k-means. (Drineas, Frieze, Kannan, Vempala, and Vinay ’99, ’04)

• We can get heuristic schemes to assign points to clusters. (Zha, He, Ding, Simon, and Gu ’01)

• There exist PTAS (based on random projections) for k-means problem. (Ostrovsky and Rabani ’00, ’02)

• Deeper connections between SVD and clustering. (Kannan, Vempala, and Vetta ’00, ’04)

k-means and “kernelized” k-means

Regular k-means in R3 “Kernelized” k-means in
some transformed space

A few high-level observations
Eigenvectors are global entities--awkward to find local structure.
• Basically, due to the orthogonality requirement -- usually, the most significant thing
about the 17th eigenvector is that it is orthogonal to the first 16!

• Typically only the top few eigenvectors can be localized.

Eigenvectors identify linear structure
• Can associate matrix with any graph, but questions you ask are different -- e.g., what is
the matrix that is least like a “low-dimensional” matrix?

• That is why we kernelize -- to be linear somewhere else and exploit eigen-methods.

Eigen-tools and the SVD give “sweet spot” between descriptive
flexibility and algorithmic tractability
• E.g., analogue of SVD for tensors and other algebraic structures fails to hold -- so
researchers there fall back on the SVD too.

• Question: Are there other “sweet spots” when eigen-methods are too limited?

Unfortunately …

Relationship b/w small-scale and large-scale structure is not
reproduced (even qualitatively) by popular models

• Relationship governs diffusion of information; decentralized search;
routing; dynamic properties; applicability of common ML tools

Also: ∃ a BIG disconnect b/w common data analysis tools and
network properties

• low-dimensional & geometric tools (SVD, diffusion-based manifold
methods, ...) common in ML, but networks are more expander-like

• network is single data point---not really a bunch of feature vectors

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)

• Both sides contain a lot of nodes

Several standard formulations:
• Graph bisection (minimum cut with 50-50 balance)

• β-balanced bisection (minimum cut with 70-30 balance)

• cutsize/min{|A|,|B|}, or cutsize/(|A||B|) (expansion)

• cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!

Why graph partitioning? (1 of 2*)

Graph partitioning algorithms:
• capture a qualitative notion of connectedness
• well-studied problem in traditionally/recently both in theory and
practice
• many machine learning and data analysis applications

Don’t care about exact solution to intractable problem:
• output of approximation algs is not something we “settle for”
•randomized/approximation algs often give “better” answers than
exact solution
• nearly-linear/poly-time computation captures “qualitative existence”

*(2 of 2) is later

Squint at the data graph …

Say we want to find a “best fit” of the adjacency
matrix to:

What does the data “look like”? How big are α, β, γ?

α β

β γ

α≈ γ » β
low-dimensional

α» β » γ
core-periphery

α≈ β ≈ γ
expander or Kn

β» α ≈ γ
bipartite graph

Why worry about both criteria?
• Some graphs (e.g., “space-like” graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “work together”

• For other classes of graphs (e.g., informatics graphs, as we will see) there is
a “tradeoff,” i.e., better cuts lead to worse balance
• For still other graphs (e.g., expanders) there are no good cuts of any size

The “lay of the land”

Spectral methods - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods - single-commodity or multi-
commodity version of max-flow-min-cut ideas

Spectral Methods

Fiedler (1973) and Donath & Hoffman (1973)

• use eigenvectors of discrete graph Laplacian

Popular in scientific computing, parallel computing, etc.
(1980s) and machine learnint (200s)

Algorithm:

1. Compute the exact/approximate eigenvector.

2. Perform “rounding”: choose the best of the n cuts
defined by that eigenvector.

Cheeger’s inequality

Theorem: If λ2(g) is second eigenvalue of Laplacian
and φ(G) is the conductance, then

Note: only need to get an approximate eigenvector.

Actually, there is a version for any test vector:

Spectral graph partitioning

Cluster based on the 2nd eigenvector:

Note: “Looks” like k-means when cuts are well-balanced.

How bad can spectral be?
Guattery and Miller (1998)

• exhibit n-node graph with spectral bisection cut O(n2/3) edges,
versus optimal of O(n1/3); takes advantage of spectral’s confusion
between long paths and deep cuts

Spielman and Teng (1996)

• Spectral partitioning “works” on bounded degree planar graphs
and well-shaped finite element meshes, i.e., nice geometries
where it was traditionally applied

An “embedding” view of spectral

Use Rayleigh quotient to
characterize λ1:

But since x ⊥ D1, this is
equivalent to:

Interpretation:
• Minimize “mixing” subject to
variance constraint

• Embed graph on a line and cut

• But duality not tight

Interpretation:
• Minimize “mixing” subject to
“mixing” in complete graph Kn

• Embed graph in Kn

• Duality tighter (can also see
this in dual later)

“Regularization” and spectral methods

• regularization properties: spectral embeddings stretch along
directions in which the random-walk mixes slowly

–Resulting hyperplane cuts have "good" conductance cuts, but may
not yield the optimal cuts

spectral embedding notional flow based
 embedding

Local improvement methods
Kernighan and Lin (1960s) and Fiduccia and Matheyses (1970s)

• multi-pass heuristic to avoid some local minimum, but not necessarily
find global optimum

Johnson et al (1990)

• Graphs up to 1000 nodes. Simulated Annealing good on random graphs,
and KL work well on geometric/spacelike graphs

Lang-Rao (1993), etc.

• FM worse than flow methods on medium-sized graphs since local
minimum problems lead to many small patches

1990s: Multi-resolution FM does better job of finding globally
coherent solutions -> Metis

Multiresolution methods

Chaco (1993)
• use multiresolution ides from
Linear Algebra to couple local
search with long range structure

Metis (1995)
• coarsening by contracting edges
(like Karger’s mincut algorithm)

• very fast, and better cuts than
Vanilla Spectral

Graclus, etc similar

Maximum flow problem
• Directed graph G=(V,E).

• Source s ε V, sink t ε V.

• Capacity c(e) ε Z+ for each edge e.

• Flow: function f: E -> N s.t.

• For all e: f(e) ≤ c(e)

• For all v, except s and t: flow into v = flow out of v

• Flow value: flow out of s

• Problem: find flow from s to t with maximum value

Important Variant: Multiple Sources and Multiple Sinks

s t
16

12
20

10 4 9 7

413
14

Solving maximum flow problems

Single commodity flow

• Linear Programming, Ford-Fulkerson, Edmonds-Karp, Many Push-
Relabel Algorithms

• MaxFlow = Min Cut

Multiple commodity flow problem

• Several different versions

• MaxFlow ≈ MinCut (up to log(k) factor for k-commodities (LR88))

Flow and graph partitioning

Single commodity flow:

• Do single commodity flow computation on all 2n cuts and return best

Multi-commodity flow:

• Route flow between “all pairs” - n(n-1)/2 at once and then cut edges
that are most congested

• log(n) gap leads to log(n) approximation guarantee

• can detect solution if bottleneck forces those edges to be more
congested than average

• for expander graphs, average edge congestion is lg(n) worst than
that forces by bottleneck (so achieve worst-case guarantee)

IP and LP view of flow

An Integer Program: A Linear Program:

Let: x(e) = 0,1, for eεE, depending on whether edge e is cut

 y(i) = 0,1, for i ε k (commodities), depending if commodity i disconnected

 Pi, i ε k, is set of paths si to ti

An “embedding” view of flow
Theorem: (Bourgain)

Every n-point metric space embeds into L1 with distortion
O(log(n)).

Flow-based algorithm to get sparsest cuts.

(1) Solve LP to get distance d:VxV->R+.

(2) Obtain L1 embedding using Bourgain’s constructive
theorem

(3) Perform an appropriate “rounding.”

Thus, it boils down to an embedding and expanders are worst.

Implementing these ideas

Spectral
• eigenvector code, e.g., Matlab, LAPACK, etc

• ≈ O(nonzeros) time to compute few eigenvectors

Metis
• nontrivial publicly-available and very usable code

• very fast in practice (tricky to analyze running time)

Flow
• Single-commodity: roughly O(n3/2) time

• Multi-commodity: roughly O(n2) time

LPs, SDPs, etc
good for theory
& understanding
basic ideas -- in
practice, one
typically depend
on high-quality
numerical code.

What is a good partitioning algorithm?
Theory says:
• Flow-based methods - since always give O(lg n) guarantee.

• Spectral methods may be ok on expanders, since quadratic of a
constant is a constant

Practice says:
• Spectral methods - fast, robust, denoise, so method of choice

• Don’t know or care about max-flow.

Graph partitioning highlights a deep theory-practice
disconnect (and also a deep algorithmic-statistical
disconnect) - they don’t even qualitatively agree.

Comparison of “spectral” versus “flow”

Spectral:

• Compute an eigenvector

• “Quadratic” worst-case bounds

• Worst-case achieved -- on
“long stringy” graphs

• Embeds you on a line (or
complete graph)

Flow:

• Compute a LP

• O(log n) worst-case bounds

• Worst-case achieved -- on
expanders

• Embeds you in L1

Two methods -- complementary strengths and weaknesses

• What we compute will be determined at least as much by as
the approximation algorithm we use as by objective function.

Extensions of the basic ideas

Cut improvement algorithms

• Given an input cut, find a good one nearby or certify that none
exists

Local algorithms and locally-biased objectives

• Run in a time depending on the size of the output and/or are
biased toward input seed set of nodes

Combining spectral and flow

• to take advantage of their complementary strengths

Apply ideas to other objective functions

Cut-improvement algorithms

Given a graph G=(V,E) and a cut T⊂V, find a “good” conductance cut
that is “near” T, or produce a certificate that none exists.

Prior work: flow-based improvement methods
• GGT89 - can find best subset S⊆T with minimum conductance in poly time

• LR04 - implement related method and show it’s good at improving cuts from Metis

• AL08 - single-commodity flows to get bounds of the above form

Uses of flow-based cut-improvement algorithms
• algorithmic primitive in fast versions of theoretically best partitioning algorithms

• identifying community structure in large social and information networks

Flow “improvement” algorithms
Andersen and Lang (2008)

• Modified quotient cost - cost relative to input set A penalizes
sets for including vertices outside of A

• Constructing and solving sequence of s-t min cut problems in
augmented graph

Flow “improvement” algorithms
Andersen and Lang (2008)

• Modified quotient cost - cost relative to input set A penalizes
sets for including vertices outside of A

• Constructing and solving sequence of s-t min cut problems in
augmented graph

Theorem: Let C be any set whose intersection with the
proposed set A s.t.

Then, the set S returned has quotient cost almost as small
as C:

Local clustering algorithms

Spielman and Teng (2008)

• local algorithm finds a solution containing or near a given vertex
without looking at the entire graph

• running time is “nearly linear” in the size of output cluster

• gets Cheeger-like quadratically-good approximation guarantees

• Based on Lovasz-Simonovitz (90,93) random walk

Local spectral methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated “local” random walks to compute locally-biased cut

ACL06: approximate locally-biased PageRank vector computations

Chung08: approximate heat-kernel computation to get a vector

Spectral “improvement” algorithms and
optimization programs

Global Spectral and Flow

• Can write objective function and optimization

• Algorithm solves that objective function

Local and Improvement Methods

• More “operationally” defined using steps similar to global but
subject to constraints (locality constraints of modified objective

Can we write these as optimization programs?

Recall spectral graph partitioning
• Relaxation of:

The basic optimization
problem:

• Solvable via the eigenvalue
problem:

• Sweep cut of second eigenvector
yields:

Also recall Mihail’s sweep cut for a general test vector:

Geometric correlation and
generalized PageRank vectors

Given a cut T, define the
vector:

Can use this to define a geometric
notion of correlation between cuts:

• PageRank: a spectral ranking method (regularized version of second eigenvector of LG)

• Personalized: s is nonuniform; & generalized: teleportation parameter α can be negative.

Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:

• Find a cut well-correlated with the
seed vector s.

• If s is a single node, this relax:

Interpretation:
• Embedding a combination of scaled
complete graph Kn and complete
graphs T and T (KT and KT) - where
the latter encourage cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)

Main results (1 of 2)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter α, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.

Mahoney, Orecchia, and Vishnoi (2010)

Main results (2 of 2)

Theorem: If x* is optimal solution to LocalSpect(G,s,κ),
one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*.

Theorem: Let s be seed vector and κ correlation
parameter. For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ)
if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.

Other “Local” Spectral and Flow and
“Improvement” Methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated”local” random walks to compute locally-biased cut

ACL06/Chung08 : locally-biased PageRank vector/heat-kernel vector

Flow improvement methods - Given a graph G and a partition, find a
“nearby” cut that is of similar quality:

GGT89: find min conductance subset of a “small” partition

LR04,AL08: find “good” “nearby” cuts using flow-based methods

Optimization ansatz ties these two together (but is not strongly local
in the sense that computations depend on the size of the output).

Illustration on small graphs
• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)

Illustration with general seeds
• Seed vector doesn’t need to correspond to cuts.

• It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n].

Comparison with Flow-Improve
AL08 (implicitly) measure how much more of C in T than expected:

Spectral and flow correlation measures are related:

Notes (aside from that this is eigenvector computation):

• Spectral better (in theory) if φ(C) large, e.g., G an expander

• Spectral better if input cut volume << volume of cut we bound

Comparison with local spectral algorithms

Optimization ansatz

• is local in the sense that seed vector is local

• is not local in sense that computations depend on the size of output

PageRank, HeatKernel, Truncated Random Walks - can all be viewed
as regularized versions of computing second eigenvector (see below)

Previous algorithms introduce structured approximations to
approximate PageRank, HeatKernel, Diffusions

• Question: Can these be formalized as optimization problems?

Combining spectral and flow

Arora, Rao, Vazirani (2004)

• Can we improve O(log(n)) from L1 embedding?

• Relax to L2 - No. (Not convex, so can’t optimize efficiently.)

• Relax to L22, space of squared L2 metrics - No. (Can optimize,
but “gap” is O(n). Note: not even a metric, since triangle
inequality violated, but “average” squared distance is small.)

Relax to Metrics∩L22 - Yes!!

• Can write as SDP.

• Get O(sqrt(log(n))) approximation with a O(n4.5) algorithm

Combining spectral and flow, cont.
Arora, Hazan, and Kale (AHK, 2004)
• multi-commodity flow implementation of expander flow framework to
achieve an O(sqrt(log n)) approximation in roughly O(n2) time

Arora and Kale (AK, 2007)
•similar ideas to give an O(log n) approximation more generally

Khandekar, Rao, and Vazirani (KRV, 2006)
•polylogarithmic single commodity max-flow computations iteratively to
embed an expander flow, O(log2 n) approximation in roughly O(n3/2) time.

Orecchia, Schulman, Vazirani, and Vishnoi (OSVV, 2008)
• related algorithm also performs only polylogarithmic single commodity
max-flow computations to achieve an O(log n) approximation.

OSVV “spectral-flow” partitioning

1A 1A

1S

SPECTRAL STEP

1A 1A

FLOW IMPROVEMENT STEP 11 += MGG

SPECTRAL STEP FLOW IMPROVEMENT STEP

2A

2A

2S

2A

2A

OPTIMAL CUT FOUND

OSVVSPECTRAL

GOOD CASE

BAD CASE: LONG PATHS

• 2nd eigenvector

• Spectral cut

• Optimal cut

Orecchia, Schulman, Vazirani, and Vishnoi (2008) - variant of Arora, Rao, Vazirani (2004); also Lang, Mahoney, Orecchis (2009)

Initial evaluation of OSVV

Classes of Graphs:

• GM (Guattery-Miller)
graph where
eigenvector methods
fail.

• PLAN - Expanders
with planted bisections
- where LR is known to
fail

• WING - finite
element mesh

• RND - Random
Geometric Graph

• Random geometric
graph with random
edges added

Connections with boosting
Iterative nature of “fast ARV” algorithms can be done
with cut-matching game
• Cut player - choose bisection (to make game last long)

• Matching player - choose matching to add to G, i.e., G’=G+M

• Game stop when G’ is an expander

Connections b/w game theory, online learning, & boosting
• Freund and Schapire (1996), Warmuth et al (2008)

Online algorithms: practice follows theory quite closely
• Question: can this be used as a model to understand statistical properties
implicit in approximation algorithms more generally?

Other applications of spectral and flow

Recall: graph partitioning was a “hydrogen atom”

• For studying spectral/flow/etc relaxations to combinatorial
problems

• Much of this “spectral” and “flow” structure inherited by
approximations to other optimization problem

Spectral: NCut, k-means, Transductive Learning,
Modularity relaxations, (esp, in ML), etc.

Flow: Lots of graph approximation algorithms, (in TCS)

Another application of similar ideas:
Finding dense sub-graphs

• Optimize f(S) with max-flow or parametric flow.

• Greedy approx algorithms optimize f(S) and d(S,T).

• Global/Local spectral algs approximate d(S,T) - more amenable to spectral algorithms.

Also, tradeoff dense versus isolated sub-graphs. (Lang and Andersen 2007).

Andersen and Chellapilla (2009), Andersen (2008), Charikar (2000), Kannan and Vinay (1999), GGR (1998), Goldberg (1984), etc.

What is the shape of a graph?
Can we generalize the following intuition to general graphs:

• A 2D grid or well-shaped mesh “looks like” a 2D plane*

• A random geometric graph “looks like” a 2D plane

• An expander “looks like” a clique or complete graph or a point.

The basic idea:

• If a graph embeds well in another metric space, then it “looks like”
that metric space**!

*A “planar graph” is typically a very different combinatorial thing.

**Gromov (1987); Linial, London, & Rabinovich (1985); ISOMAP, LLE, LE, … (2001)

What is the shape of a space?
A long history:

• Euclid (BC): Rn lengths, angles, dot products, etc
come from his Fifth Parallel Lines Postulate

• Bolyai, Lobachevsky etc. (1830s): formulate
consistent geometries with other fifth postulates

• Riemann (1850s): work on manifolds and curvature
more generally

• Einstein (1910s): applications to curvature properties
of physical spacetime

• Gromov (1980s): discrete curvature and hyperbolicity

• 1990s and 2000s: applications of network curvature
in routing, visualization, embedding, etc.

Hyperbolic Spaces

Lobachevsky and Bolyai constructed
hyperbolic space - (between a point and a line,
there are many “parallel” lines) - Euclid’s fifth
postulate is independent of the others!

A d-dimensional metric space which is
homogeneous and isotropic (looks the same at
every point and in every direction) is locally
identical to one of:
 Sphere
 Hyperbolic space
 Euclidean plane

The 3 maximally
symmetric
geometries

Models of the Hyperbolic Plane

dt
dt

dz

z∫
1

0)Im(

1 dt
dt

dz

z
∫
−

1

0
2

1

1

UPPER HALF PLANE

MODEL

 Points are {z:Im(z)>0}
 Length of a path z(t) is

POINCARE DISK
MODEL

 Points are {z: |z|<1}.
 Length of a path z(t) is

Distances in hyperbolic space

p

q

 Vectors are longer near
the boundary.
 Shortest path from p to q
bends toward the center,
where vectors are shorter.
 Geodesics are circular
arcs meeting the boundary
at right angles.

 If you draw circles of
hyperbolic radius 1,2,3,…
around the center of the
Poincare disk, each is ≈ e
times closer to the boundary
than the previous one. Their
circumferences grow
exponentially!

1
2

3

Interpreting visualizations …

Negative curvature:Positive curvature:

How much space is there in a space?

Intuitively,
• positively-curved spaces have
less space than flat spaces.

• flat spaces have less space
than negatively-spaces.

Imagine starting with a flat piece of paper
and trying “cover” a sphere (you’ll need to
crumple it) or a saddle (you’ll need to cut it
to make room).

Comparison between different curvatures

Discrete vs. continuous

“Squint” at data with “coarse embedding”

• Line graph is “like” a line (random
geometric graph is like underlying
geometry).

• Expander is “like” a complete graph.
(Hard to visualize.)

• Hyperbolic metric is “like” tree!

See: “Discrete Geometric Analysis,” T. Sunada (2007)

δ-hyperbolic metric spaces

Things to note about δ-hyperbolicity:

• Graph property that is both local (by four points) and global (by
the distance) in the graph

• Polynomial time computable - naively in O(n4) time

• Metric space embeds into a tree iff δ = 0.

• Poincare half space in Rk is δ-hyperbolic with δ = log23

• Theory of δ-hyperbolic spaces generalize theory of Riemannian
manifold with negative sectional curvature to metric spaces

δ-hyperbolic metric spaces, cont.

Theory of δ-hyperbolic spaces generalize
theory of Riemannian manifold with negative
sectional curvature to metric spaces.

• Measures deviation from tree-ness of a discrete space

• Equivalent definition in terms of δ-thin triangle
condition:

Expanders and hyperbolicity

Different concepts that really are
different (Benjamini 1998) :

• Constant-degree expanders - like sparsified
complete graphs

• Hyperbolic metric space - like a tree-like graph

But, degree heterogeneity enhances
hyperbolicity* (so real networks will often
have both properties).

*Question: Does anyone know a reference that makes these
connections precise?

Trees come in all
sizes and shapes:

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

An awkward empirical fact
Can we cut “internet graphs” into two pieces that are “nice” and “well-balanced”?

For many real-world social-and-information “power-law graphs,” there is an inverse
relationship between “cut quality” and “cut balance.”

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

Consequences of this empirical fact

Relationship b/w small-scale structure and large-
scale structure in social/information networks* is
not reproduced (even qualitatively) by popular models

• This relationship governs diffusion of information, routing and
decentralized search, dynamic properties, etc., etc., etc.

• This relationship also governs (implicitly) the applicability of
nearly every common data analysis tool in these apps

*Probably much more generally--social/information networks are just so messy and
counterintuitive that they provide very good methodological test cases.

Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...

Popular approaches to network analysis

Define simple statistics (clustering coefficient,
degree distribution, etc.) and fit simple models

• more complex statistics are too algorithmically complex or
statistically rich

• fitting simple stats often doesn’t capture what you wanted

Beyond very simple statistics:

• Density, diameter, routing, clustering, communities, …

• Popular models often fail egregiously at reproducing more
subtle properties (even when fit to simple statistics)

Failings of “traditional” network approaches

Three recent examples of failings of “small world” and
“heavy tailed” approaches:

• Algorithmic decentralized search - solving a (non-ML) problem:
can we find short paths?

• Diameter and density versus time - simple dynamic property

• Clustering and community structure - subtle/complex static
property (used in downstream analysis)

All three examples have to do with the coupling b/w
“local” structure and “global” structure --- solution
goes beyond simple statistics of traditional approaches.

Failing 1: Search in social graphs
Milgram (1960s)

• Small world experiments - study short paths in social networks

• Individuals from Midwest forward letter to people they know to get it
to an individual in Boston.

Watts and Strogatz (1998)

• “Small world” model, i.e., add random edges to an underlying local
geometry, reproduces local clustering and existence of short paths

Kleinberg (2000)

• But, even Erdos-Renyi Gnp random graphs have short paths …

• … so the existence of short paths is not so interesting

• Milgram’s experiment also demonstrated people found those paths

Failing 2: Time evolving graphs
Albert and Barabasi (1999)

• “Preferential attachment” model, i.e., at each time step add a
constant number of links according to a “rich-get-richer” rule

• Constant average degree, i.e., average node degree remains
constant

• Diameter increases roughly logarithmically in time

Leskovec, Kleinberg, and Faloutsos (2005)

• But, empirically, graphs densify over time (i.e., number of edges
grows superlinearly with number of nodes) and diameter shrinks
over time

Failing 3:
Clustering and community structure

Sociologists (1900s)

• A “community” is any group of two or more people that is useful

Girvan and Newman (2002,2004) and MANY others

• A “community” is a set of nodes “joined together in tightly-knit
groups between which there are only loose connections

• Modularity becomes a popular “edge counting” metric

Leskovec, Lang, Dasgupta, and Mahoney (2008)

• All work on community detection validated on networks with good
well-balanced partitions (i.e., low-dimensional and not expanders)

• But, empirically, larger clusters/communities are less-and-less
cluster-like than smaller clusters (i.e., networks are expander-like)

Interplay between preexisting versus
generated versus implicit geometry

Preexisting geometry

• Start with geometry and add “stuff”

Generated geometry

• Generative model leads to structures
that are meaningfully-interpretable as
geometric

Implicitly-imposed geometry

• Approximation algorithms implicitly
embed the data in a metric/geometric
place and then round.

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)

What do these networks “look” like?

Approximation algorithms as
experimental probes?

Usual modus operandi for approximation algorithms for general problems:

• define an objective, the numerical value of which is intractable to compute

• develop approximation algorithm that returns approximation to that number

• graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g.
matrix, regression, eigenvector algorithms; duality algorithms, etc):

• often can approximate the vector achieving the exact solution

• randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

• maybe compare different approximation algorithms for the same problem.

Exptl Tools: Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.

Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.

Experimenting with data with CS tools
• Networks as non-engineered phenomena to be studied as a
natural/physical scientist would. (Jon Kleinberg 2006)

• The emergence of cyberspace and the WWW is like the discovery
of a new continent. (Jim Gray 1998)

• Want Kepler’s Laws of Motion for the Web. (Mike Steuerwalt 1998)

To study data “scientifically,” you need

• “Experimental” data (and hopefully lots of it)

• “Experimental” tools (that do the job well)

Use approximation algorithms (and their implicit
statistical properties) as experimental tools!

Why graph partitioning? (2 of 2)

Graph partitioning algorithms:
• tools to “experimentally probe” network structure
• “scalable” and “robust” way to explore extremely non-
Euclidean structures in data
• primitive for machine learning and data analysis applications,
e.g., image partitioning, semi-supervised learning, etc

For data more generally:
• “hydrogen atom” for theory/practice disconnect
• “hydrogen atom” for algorithmic vs statistical perspectives
• “hydrogen atom” for regularization implicit in graph
algorithms (where you can’t “cheat” by data preprocessing)

Communities, Conductance, and NCPPs
Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

Just as conductance captures the “gestalt” notion of cluster/community quality,
the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Since algorithms often
have non-obvious size-
dependent behavior.

Community Score: Conductance
S

S’

130

 How community like is a set of
nodes?

 Need a natural intuitive
measure:

 Conductance (normalized cut)
φ(S) ≈ # edges cut / # edges inside

 Small φ(S) corresponds to more
community-like sets of nodes

Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

131

Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Bad
community
φ=5/6 = 0.83

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

132

Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

133

Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

Best
community
φ=2/8 = 0.25

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

134

Widely-studied small social networks

Zachary’s karate club Newman’s Network Science

“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA

Lots of Generative Models

• Preferential attachment - add edges to high-degree nodes
(Albert and Barabasi 99, etc.)

• Copying model - add edges to neighbors of a seed node
(Kumar et al. 00, etc.)

• Hierarchical methods - add edges based on distance in hierarchy
(Ravasz and Barabasi 02, etc.)

• Geometric PA and Small worlds - add edges to geometric scaffolding
(Flaxman et al. 04; Watts and Strogatz 98; etc.)

• Random/configuration models - add edges randomly
(Molloy and Reed 98; Chung and Lu 06; etc.)

NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA

What do large networks look like?
Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)

Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)

140Community size

Co
m

m
un

ity
 s

co
re

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella

NCPP: LiveJournal (N=5M, E=43M)
Co

m
m

un
ity

 s
co

re

Community size

Better and
better

communities
Best communities get

worse and worse

 Best community
has ≈100 nodes

143

How do we know this plot it “correct”?
• Algorithmic Result

Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

• Statistical Result
Spectral method implicitly regularizes, gets more meaningful communities

• Lower Bound Result
Spectral and SDP lower bounds for large partitions

• Structural Result

Small barely-connected “whiskers” responsible for minimum

• Modeling Result
Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts

Other clustering methods

145

Spectral

Metis+MQI

Lrao disconn

LRao conn

Newman

Graclus

12 objective functions
 Clustering objectives:

 Single-criterion:
 Modularity: m-E(m) (Volume minus correction)
 Modularity Ratio: m-E(m)
 Volume: ∑u d(u)=2m+c
 Edges cut: c

 Multi-criterion:
 Conductance: c/(2m+c) (SA to Volume)
 Expansion: c/n
 Density: 1-m/n2

 CutRatio: c/n(N-n)
 Normalized Cut: c/(2m+c) + c/2(M-m)+c
 Max ODF: max frac. of edges of a node pointing outside S
 Average-ODF: avg. frac. of edges of a node pointing outside
 Flake-ODF: frac. of nodes with mode than _ edges inside

146

S

n: nodes in S
m: edges in S
c: edges pointing
 outside S

Multi-criterion objectives

147

 Qualitatively similar
to conductance

 Observations:
 Conductance, Expansion,

NCut, Cut-ratio and
Avg-ODF are similar

 Max-ODF prefers
smaller clusters

 Flake-ODF prefers
larger clusters

 Internal density is bad
 Cut-ratio has high

variance

Single-criterion objectives

148

Observations:
 All measures are

monotonic (for rather
trivial reasons)

 Modularity
 prefers large clusters
 Ignores small clusters
 Because it basically

captures Volume!

Lower and upper bounds
 Lower bounds on conductance can be

computed from:
 Spectral embedding (independent

of balance)
 SDP-based methods (for

volume-balanced partitions)
 Algorithms find clusters close to

theoretical lower bounds

149

Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductanceExternal/internal conductance

Diameter of the clusterDiameter of the clusterConductance of bounding cutConductance of bounding cut

Local Spectral

Connected

Disconnected

Lower is good

Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Interpretation: “Whiskers” and the
“core” of large informatics graphs

• “Whiskers”

• maximal sub-graph detached
from network by removing a
single edge

• contains 40% of nodes and 20%
of edges

• “Core”

• the rest of the graph, i.e., the
2-edge-connected core

• Global minimum of NCPP is a whisker

• BUT, core itself has nested
whisker-core structure

NCP plot

Largest
whisker

Slope upward as
cut into core

What if the “whiskers” are removed?

LiveJournal Epinions

Then the lowest conductance sets - the “best” communities - are “2-whiskers.”

(So, the “core” peels apart like an onion.)

Size of best cluster versus network size

(Each dot is a different network -- so they are roughly independent.)

Interpretation:
A simple theorem on random graphs

Power-law random graph with β ε (2,3).

Structure of the G(w) model, with β ε (2,3).

• Sparsity (coupled with randomness)
is the issue, not heavy-tails.

• (Power laws with β ε (2,3) give us
the appropriate sparsity.)

Stochastic Kronecker Graphs

Deterministic version - can reproduce HT degrees, densification
power law, etc

Stochastic version - Ass 1≥α≥β≥γ≥0. Connected iff β+γ>1 or α=β=1,γ=0.
Giant component iff (α+β)(β+γ)>1 or (α+β)(β+γ)=1, α+β>β+γ

Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

α β

β γ

Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

0.99 0.55

0.55 0.15

0.99 0.17

0.17 0.82
K1 =

E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

0.2 0.2

0.2 0.2

(also, an expander)

Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

K1 =
E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

(also, an expander)

Implications: for Community Detection

• Linear (Low-rank) methods
If Gaussian, then low-rank space is good.

• Kernel (non-linear) methods
If low-dimensional manifold, then kernels are good

• Hierarchical methods
Top-down and bottom-up -- common in the social sciences

• Graph partitioning methods
Define “edge counting” metric -- conductance, expansion,

modularity, etc. -- in interaction graph, then optimize!

“It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”

(Good and large) network
communities, at least
when formalized i.t.o. this
bicriterion, don’t really
exist in these graphs!!

Comparison with “Ground truth” (1 of 2)

Networks with “ground truth” communities:

• LiveJournal12:
• users create and explicitly join on-line groups

• CA-DBLP:
• publication venues can be viewed as communities

• AmazonAllProd:
• each item belongs to one or more hierarchically organized
categories, as defined by Amazon

• AtM-IMDB:
• countries of production and languages may be viewed as
communities (thus every movie belongs to exactly one
community and actors belongs to all communities to which
movies in which they appeared belong)

Comparison with “Ground truth” (2 of 2)

LiveJournal CA-DBLP

AmazonAllProd AtM-IMDB

Miscellaneous thoughts ...

Sociological work on community size (Dunbar and Allen)
• 150 individuals is maximum community size
• Military companies, on-line communities, divisions of corporations all ≤ 150

Common bond vs. common identity theory
• Common bond - people are attached to individual community members
• Common identity - people are attached to the group as a whole

What edges “mean” and community identification
• social networks - reasons an individual adds a link to a friend very diverse
• citation networks - links are more “expensive” and semantically uniform.

Implications: high level

What is simplest explanation for empirical facts?
• Extremely sparse Erdos-Renyi reproduces qualitative NCP (i.e.,
deep cuts at small size scales and no deep cuts at large size
scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for
analogous reason

• Iterative forest-fire model gives mechanism to put local
geometry on sparse quasi-random scaffolding to get qualitative
property of relatively gradual increase of NCP

Data are local-structure on global-noise, not small noise on global structure!

Implications: high level, cont.

Remember the Stochastic Kronecker theorem:
• Connected, if b+c>1: 0.55+0.15 > 1. No!
• Giant component, if (a+b)_(b+c)>1: (0.99+0.55)_(0.55+0.15) > 1. Yes!

Real graphs are in a region of parameter space analogous
to extremely sparse Gnp.
• Large vs small cuts, degree variability, eigenvector localization, etc.

1/n
Gnp log(n)/n

real-networks theory & models
≈3

PLRG
≈2

p

β

Data are local-structure on global-noise, not small noise on global structure!

Degree heterogeneity and hyperbolicity

Social and information networks are expander-like at
large size scales, but:

• Degree heterogeneity enhances hyperbolicity

Lots of evidence:
• Scale free and internet graphs are more hyperbolic than other models, MC simulation -
Jonckheere and Lohsoonthorne (2007)

• Mapping network nodes to spaces of negative curvature leads to scale-free structure -
Krioukov et al (2008)

• Measurements of Internet are Gromov negatively curved - Baryshnikov (2002)

• Curvature of co-links interpreted as thematic layers in WWW - Eckmann and Moses (2002)

Question: Has anyone made this observation precise?

Hyperbolic Application 1:
Internet Routing

Geographic routing protocols:
• A node knows (1) its location (physical or virtual
coordinates), (2) its neighbors and their location,
and (3) destination’s location

• Forward packets to make progress to destination.

A LARGE area - lots of other work.

Euclidean versus Hyperbolic embeddings:
• Use virtual coordinates (Rao et al 2004, Fonseca et al 2005)

• Hyperbolic embeddings of same dimension do better (Shavitt and Tankel (2004,2008)

• Q: Which graphs have greedy embedding in the plane? (Papadimitriou and Rataczyk
2004)

• A: Every finite graph has greedy embedding in the hyperbolic plane. (R.Kleinberg 2005)

S

D
A

Closest
point to D

Hyperbolic Application 2:
Decentralized Search in Social Graphs

Milgram (1960s)

• Small world experiments - study short paths in social networks

Watts and Strogatz (1998)

• Model that reproduce local clustering and existence of short paths

Kleinberg (2000)

• Model s.t. decentralized search can find short paths efficiently

• Careful coupling of “local” geometric structure and “global” structure.

Boguna, Krioukov, and Claffy (2008)

• Model with degree heterogeneity for efficient decentralized search

• Analogous local-global coupling imply embedding in hyperbolic space

Hyperbolic Application 3:
Internet and Web Visualization

Munzner and Burchard (1995); Lamping, Rao, and Pirolli (1995); Munzner (1998)

“There is no good way of embedding an exponentially growing tree in Euclidean space that allows us to
simultaneously see both the entire structure and a closeup of a particular region. The solution is to use
hyperbolic … geometry …” Munzner and Burchard (1995)

Like the “fish-eye”
camera lens, but
avoids some ad-
hoc decisions.

“Routing” versus “diffusion” metrics

Consider two classes of “distances” between nodes:

• “Diffusion-type” distance - related to (spectral methods and)
diffusion or commute times

• “Geodesic-type” distance - related to (flow-based methods and)
routing or shortest paths

Question 1: Which is better? More useful? (As a
function of the type of graph)?

Question 2: Given that a process goes from A to B
with one of those processes, how does the path
compare with the other process?

Routing versus diffusions, cont*.

Low Dimensional Graphs
• Diffusions are discriminative and useful

• Flows and geodesics are too sensitive

Expander-like Graphs
• Diffusions not discriminitive or useful

• Multicommodity flow and geodesics useful?

Hyperbolic Graphs
• Diffusion path and routing path are the same.

*Question: Does anyone know of a formalization of this intuition?

Hyperbolic Application 4:
Clustering and Community Structure

Hyperbolic properties at
large size scales:

• (Degree-weighted) expansion at
large size-scales

• Degree heterogeneity

Local pockets of structure
on hyperbolic scaffolding.

• (Traditionally-conceptualized)
communities get worse and worse
as they get larger and larger

α β

β γ

0.99 0.55

0.55 0.15=

Implications for Data Analysis and ML

Principled and scalable algorithmic exploratory analysis tools:

• spectral vs. flow vs. combinations; local vs. global vs. improvement; etc.

Doing inference directly on data graphs, and machine learning in
complex data environments:

• don’t do inference on feature vectors with hyperplanes in a vector space

• need methods to do it in high-variability, only approximately low-
dimensional, tree-like or expander-like environments.

Implicit regularization via approximate computation:

• spectral vs. flow vs. combinations; local vs. global vs. improvement; etc.

Data Application 1:
Approximate eigenvector computation

Many uses of Linear Algebra in ML and Data
Analysis involve approximate computations
• Power Method, Truncated Power Method, HeatKernel, Truncated
Random Walk, PageRank, Truncated PageRank, Diffusion Kernels,
TrustRank, etc.

• Often they come with a “generative story,” e.g., random web surfer,
teleportation preferences, drunk walkers, etc.

What are these procedures actually computing?
• E.g., what optimization problem is 3 steps of Power Method solving?

• Important to know if we really want to “scale up”

Implicit Regularization
Regularization: A general method for computing “smoother” or
“nicer” or “more regular” solutions - useful for inference, etc.

Recall: Regularization is usually implemented by adding
“regularization penalty” and optimizing the new objective.

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc.
often implicitly perform regularization.

Question: Can approximate computation* implicitly lead to more
regular solutions? If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation. But, can it be done with graph algorithms?

Two versions of spectral partitioning

VP: SDP:

R-SDP:R-VP:

Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

• Heat Kernel:

• PageRank:

• q-step Lazy Random Walk:

Ques: Do these “approximation procedures” exactly
optimizing some regularized objective?

A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).

Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

gives Truncated Lazy Random Walk, with λ ~ η

These “approximation procedures” compute regularized
versions of the Fiedler vector!

Large-scale applications

A lot of work on large-scale data already implicitly
uses these ideas:

• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on
query-click for automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully “whittling
down” neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-
like implicit regularization models are most consistent with data

Question: Can we formalize this to understand when it
succeeds and when it fails?

Data Application 2: Classification in ML

Supervised binary classification
• Observe (X,Y) ε (X,Y) = (Rn , {-1,+1}) sampled from unknown distribution P

• Construct classifier α:X->Y (drawn from some family Λ, e.g., hyper-planes) after
seeing k samples from unknown P

Question: How big must k be to get good prediction, i.e., low error?
• Risk: R(α) = probability that α misclassifies a random data point

• Empirical Risk: Remp(α) = risk on observed data

Ways to bound | R(α) - Remp(α) | over all α ε Λ

• VC dimension: distribution-independent; typical method

• Annealed entropy: distribution-dependent; but can get much finer bounds

Unfortunately …
Sample complexity of dstbn-free learning typically depends on
the ambient dimension to which the data to be classified belongs

• E.g., Ω(d) for learning half-spaces in Rd.

Very unsatisfactory for formally high-dimensional data

• approximately low-dimensional environments (e.g., close to manifolds,
empirical signatures of low-dimensionality, etc.)

• high-variability environments (e.g., heavy-tailed data, sparse data, pre-
asymptotic sampling regime, etc.)

Ques: Can distribution-dependent tools give improved learning
bounds for data with more realistic sparsity and noise?

Annealed entropy

“Toward” learning on informatics graphs

Dimension-independent sample complexity bounds for

• High-variability environments

• probability that a feature is nonzero decays as power law

• magnitude of feature values decays as a power law

• Approximately low-dimensional environments

• when have bounds on the covering number in a metric space

• when use diffusion-based spectral kernels

Bound Hann to get exact or gap-tolerant classification

Note: “toward” since we still learning in a vector space, not directly on the graph

Eigenvector localization …

When do eigenvectors localize?
• High degree nodes.

• Articulation/boundary points.

• Points that “stick out” a lot.

• Sparse random graphs

This is seen in many data sets when eigen-methods are chosen for
algorithmic, and not statistical, reasons.

Exact learning with a heavy-tail model

….. inlier
0 0 X X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0
X 0 X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 X X X X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0 outlier
X 0 0 X X 0 X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0 0 0
…..

Mahoney and Narayanan (2009,2010)

Gap-tolerant classification

Def: A gap-tolerant classifier consists of
an oriented hyper-plane and a margin of
thickness Δ around it. Points outside the
margin are labeled ±1; points inside the
margin are simply declared “correct.”

so can get dimension-independent bounds!

Only the expectation of the norm needs to be
bounded! Particular elements can behave poorly!

Mahoney and Narayanan (2009,2010) 2Δ

Large-margin classification with very
“outlying” data points

Apps to dimension-independent large-margin learning:
• with spectral kernels, e.g. Diffusion Maps kernel underlying manifold-
based methods, on arbitrary graphs

• with heavy-tailed data, e.g., when the magnitude of the elements of the
feature vector decay in a heavy-tailed manner

Technical notes:
• new proof bounding VC-dim of gap-tolerant classifiers in Hilbert space
generalizes to Banach spaces - useful if dot products & kernels too limiting

• Ques: Can we control aggregate effect of “outliers” in other data models?

• Ques: Can we learn if measure never concentrates?

Mahoney and Narayanan (2009,2010)

Data application 2, more generally …

Machine learning in environments more general
than Rn or RKHS?

• On expander-like or hyperbolic structures (locally/globally)

• On other classes of metric spaces, while exploiting
metric/geometric structure for learning?

• How do ideas like margin, etc. generalize?

Learn directly on graph (non-vector/matrix) data

• i.e., don’t filter through vector space, but perform
capacity control, etc directly on graph

• don’t assume m,n,p -> Infty in a nice way

Conclusions (1 of 4):
General Observations

Network data are often very/extremely large:
• Premium on fast/scalable algorithms
• (Good - lots of algorithms; Bad - they often return meaningless answers.)

Network data are often very/extremely sparse:
• Premium on statistical regularization
• (Good - lots of regularization methods; Bad - they work on vectors, not
graphs.)
• BTW, this implies “landmark point methods” often inappropriate

Networks have complex, nonlinear, adversarial structure
• Structures don’t exist in small (e.g.,thousands of nodes) networks
• Need tools to explore things we can’t visualize
• Big difference between “analyst appls” and “next-user-interaction apps”

Conclusions (2 of 4):
General Observations

• Algorithmic primitives to “probe” networks locally and globally

• Infer properties of original network from statistical and
regularization properties of ensembles of approximate solutions

• Real informatics graphs -- very different than small commonly-
studied graphs and existing generative models

• Tools promising for coupling local properties (often low-
dimensional) and global properties (often expander-like)

• Tools promising to study pre-existing geometry versus
generated geometry - recall geometry ≈ inference

• Validation is difficult - if you have a clean validation and/or a
pretty picture, you’re looking at unrealistic network data!

Conclusion (3 of 4) : “Structure” and
“randomness” in large informatics graphs

High-level observations to formalize:
• There do not exist a “small” number of linear components that capture
“most” of the variance/information in the data.
• There do not exist “nice” manifolds that describe the data well.
• There is “locally linear” structure or geometry on small size scales that
does not propagate to global/large size scales.
• At large size scales, the “true” geometry is more “hyperbolic” or “tree-
like” or “expander-like”.

Important: even if you do not care about communities,
conductance, hyperbolicity, etc., these empirical facts
place very severe constraints on the types of models
and types of analysis tools that are appropriate.

Conclusion (4 of 4):
Geometric Network Analysis Tools?

• Approximation algorithms have geometry hidden somewhere
Spectral methods, LP methods, tree methods, metric embeddings

• Local Spectral Methods
Identify geometry at multiple nodes at multiple size scales
No need to assume local geometries are on a global manifold

• Approximate Computation as Implicit Regularization
Approximate solutions are better than exact solutions
Especially relevant for extremely sparse/noisy networks
Use this to regularize and do inference directly on network?

• Methodological test case
Good “hydrogen atom” for development of algorithmic and
statistical tools for probing graph data more generally

