Initial evaluation of OSVV

Classes of Graphs:

* GM (Guattery-Miller)
graph where
eigenvector methods

fail.

* PLAN - Expanders
with planted bisections
- where LR is known to
fail

« WING - finite
element mesh

* RND - Random
Geometric Graph

* Random geomeftric
graph with random
edges added
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) Connections with boosting

Iterative nature of "fast ARV" algorithms can be done
with cut-matching game

« Cut player - choose bisection (fo make game last long)
 Matching player - choose matching to add o G, i.e., 6'=6+M

« Game stop when G' is an expander

Connections b/w game theory, online learning, & boosting
* Freund and Schapire (1996), Warmuth et al (2008)

Online algorithms: practice follows theory quite closely

* Question: can this be used as a model to understand statistical properties
implicit in approximation algorithms more generally?



) Other applications of spectral and flow

Recall: graph partitioning was a "hydrogen atom”

« For studying spectral/flow/etc relaxations to combinatorial
problems

* Much of this "spectral” and "flow" structure inherited by
approximations to other optimization problem

Spectral: NCut, k-means, Transductive Learning,
Modularity relaxations, (esp, in ML), etc.

Flow: Lots of graph approximation algorithms, (in TCS)



. Another application of similar ideas:
) Finding dense sub-graphs

Andersen and Chellapilla (2009), Andersen (2008), Charikar (2000), Kannan and Vinay (1999), GGR (1998), Goldberg (1984), etc.

Definition: Given G = (V. E'), an undirected graph, define the density f(.5) of

S CV to be 553
E
) = =220

Given G = (V| F), a directed bipartite graph, deﬁne the denszty d(S T) of
induced subgraph (5,7) to be ¥R ey e

|E(S,T)|

VISIVITI

* Optimize f(S) with max-flow or parametric flow.

d(S,T) =

* Greedy approx algorithms optimize f(S) and d(S,T).

* Global/Local spectral algs approximate d(S,T) - more amenable to spectral algorithms.

Also, tradeoff dense versus isolated sub-graphs. (Lang and Andersen 2007).



EIITTS
| N,

] What is the shape of a graph?

Can we generalize the following intuition to general graphs:
* A 2D grid or well-shaped mesh "“looks like" a 2D plane*
* A random geometric graph "looks like" a 2D plane

« An expander “looks like" a clique or complete graph or a point.

The basic idea:

* If a graph embeds well in another metric space, then it “looks like"
that metric space**!

*A "planar graph” is typically a very different combinatorial thing.
**Gromov (1987); Linial, London, & Rabinovich (1985); ISOMAP, LLE, LE, ... (2001)



) What is the shape of a space?

A /ong hiSTOI"y: 130°

* Euclid (BC): R lengths, angles, dot products, etc
come from his Fifth Parallel Lines Postulate

* Bolyai, Lobachevsky etc. (1830s): formulate
consistent geometries with other fifth postulates

 Riemann (1850s): work on manifolds and curvature
more generally

« Einstein (1910s): applications to curvature properties
of physical spacetime

« Gromov (1980s): discrete curvature and hyperbolicity

« 1990s and 2000s: applications of network curvature ., <
in routing, visualization, embedding, etc.



Hyperbolic Spaces
:. YP P

Lobachevsky and Bolyai constructed
hyperbolic space - (between a point and a line,
there are many “parallel” lines) - Euclid's fifth
postulate is independent of the others!

A d-dimensional metric space which is
homogeneous and isotropic (looks the same at
every point and in every direction) is locally
identical to one of:

- Sphere ) "
. Hyperbolic space . The3 qunmally
- Euclidean plane P symmetric 2

geometries



Models of the Hyperbolic Plane
k. "

UPPER HALF PLANE POINCARE DISK
MODEL MODEL

= Points are {z:Im(z)>0} = Points are {z: |z|<1}.

= Length of a path z(t) is = Length of a path z(t) is

b

I
O



. Distances in hyperbolic space

= Vectors are longer near

the boundary.

= Shortest path from p to ¢
bends toward the center,
where vectors are shorter.

m Geodesics are circular
arcs meeting the boundary

at right angles.

p

od

= If you draw circles of
hyperbolic radius 1,2,3,...
around the center of the
Poincare disk, each is # e
times closer to the boundary
than the previous one. Their
circumferences grow
exponentially!



‘ Interpreting visualizations ...

Positive curvature: Negative curvature:

cylindrical projection

1800

interrupted projection

EUCLIDEAN HYPERBOLIC



) How much space is there in a space?

Intuitively,

* positively-curved spaces have

less space than flat spaces.

055

ORANGE FLATTEMED ORAMGE PEEL

« flat spaces have less space
than negatively- spaces

SPHERICAL - = 3

L ) </ _ ~ _EL_IC L_IDEAN

Nl

T,

HYF"EFEBDLIC

Imagine starting with a flat piece of paper
and trying "cover” a sphere (you'll need to
crumple it) or a saddle (you'll need to cut it
to make room).



‘ Comparison between different curvatures

Property |Euchd. |Spherical Hyperbolic
Curvature 0 1 —1

Parallel lines |1 ( 00

Trangles are  |normal |thick thin

Shape of trian- /\ I

gles x’/\ G ol /—\

Sum of angles | > T <

Circle length |[20R |2wsin R 2m sinh A

Disc area 2rR* /227 (1 — cos R) |27 (cosh R— 1)




See: "Discrete Geometric Analysis,” T. Sunada (2007)

) Discrete vs. continuous

A striking example of analogy

"Squint” at data with "coarse embedding” Regular tree and Poincare disc

* Line graph is "like" a line (random
geometric graph is like underlying
geometry).

IS
S

« Expander is “like" a complete graph. SR ——
(Har'd TO Visual ize.) a regular tree X Eﬁc ;n'{t diS(f D ivi.th

. . e Wl automorphism group of X isometry group of H
¢ Hyper.bOIIC me-rr.lc IS llke" Tr‘ee' a finite regular graph a closed Riemann surface with

constant negative curvature
2 discrete Laplacian on X Laplacian A on D
x'/K paths without geodesics
" o backtracking
a spherical functions on X spherical functions on H
” Thara’s zeta function Selberg’s zeta function

for a finite regular graph for a closed Riemann surface



0-hyperbolic metric spaces

Definition: [Gromov, 1987] A graph is §-hyperbolic iff: For every 4 vertices u, v,
w, and z, the larger 2 of the 3 distance sums, d(u, v)+d(w, z) and d(u, w)+d(v, z)
and d(u, z) + d(v,w), differ by at most 20.

Things to note about 6-hyperbolicity:

* Graph property that is both Jocal (by four points) and global (by
the distance) in the graph

* Polynomial time computable - naively in O(n*) time
* Metric space embeds into a tree iff 8 = 0.
* Poincare half space in R* is 8-hyperbolic with 8 = log,3

* Theory of 3-hyperbolic spaces generalize theory of Riemannian
manifold with negative sectional curvature to metric spaces



) 0-hyperbolic metric spaces, cont.

Theory of 6-hyperbolic spaces generalize
theory of Riemannian manifold with negative
sectional curvature to metric spaces.

* Measures deviation from tree-ness of a discrete space

* Equivalent definition in terms of 6-thin triangle
condition:




l Expanders and hyperbolicity

Trees come in all
Different concepts that really are sizes and shapes:
different (Benjamini 1998) :

« Constant-degree expanders - like sparsified
complete graphs

* Hyperbolic metric space - like a tree-like graph

——r—t—o—o
But, degree heterogeneity enhances o
hyperbolicity* (so real networks will often >f
have both properties). N—s

*Question: Does anyone know a reference that makes these
connections precise?



) Overview

Novel insights on structure in large informatics graphs

* Successes and failures of existing models; empirical results, including
"experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions



An awkward empirical fact

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

Can we cut “internet graphs” into fwo pieces that are "nice” and "well-balanced"?

Cuts in a Social Graph (1.9 million nodes from the Yahoo IM Graph)
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For many real-world social-and-information "power-law graphs,” there is an inverse
relationship between "cut quality” and “cut balance.”



] Consequences of this empirical fact

Relationship b/w small-scale structure and large-
scale structure in social/information networks™ is
not reproduced (even qualitatively) by popular models

« This relationship governs diffusion of information, routing and
decentralized search, dynamic properties, etc., etc., etc.

* This relationship also governs (implicitly) the applicability of
nearly every common data analysis tool in these apps

*Probably much more generally--social/information networks are just so messy and
counterintuitive that they provide very good methodological test cases.



:. Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?

Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.q., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?

Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?

Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?

Information retrieval, machine learning, ...



) Popular approaches to network analysis

| Define simple statistics (clustering coefficient,
.. degree distribution, etc.) and fit simple models

o 0 < more complex statistics are too algorithmically complex or
o( statistically rich
)
- fitting simple stats often doesn't capture what you wanted
Beyond very simple statistics:
%‘; * Density, diameter, routing, clustering, communities, ...
e * R Popular models often fail egregiously at reproducing more

subtle properties (even when fit to simple statistics)



) Failings of "traditional” network approaches

Three recent examples of failings of "small world” and
"heavy tailed” approaches:

« Algorithmic decentralized search - solving a (non-ML) problem:
can we find short paths?

 Diameter and density versus time - simple dynamic property

* Clustering and community structure - subtle/complex static
property (used in downstream analysis)

All three examples have to do with the coupling b/w
“local” structure and “global” structure --- solution
goes beyond simple statistics of traditional approaches.



) Failing 1: Search in social graphs
Milgram (1960s)

« Small world experiments - study short paths in social networks

* Individuals from Midwest forward letter to people they know to get it
to an individual in Boston.

Watts and Strogatz (1998)

* "Small world” model, i.e., add random edges to an underlying local
geomeftry, reproduces local clustering and existence of short paths

Kleinberg (2000)

» But, even Erdos-Renyi G,, random graphs have short paths ...
« ... so the existence of short paths is not so interesting

* Milgram's experiment also demonstrated people found those paths



. Failing 2: Time evolving graphs

“E

Albert and Barabasi (1999)

* "Preferential attachment” model, i.e., at each time step add a
constant number of links according to a “rich-get-richer” rule

« Constant average degree, i.e., average node degree remains
constant

« Diameter increases roughly logarithmically in time

Leskovec, Kleinberg, and Faloutsos (2005)

« But, empirically, graphs densify over time (i.e., number of edges
grows superlinearly with number of nodes) and diameter shrinks
over time



. Failing 3:
l Clustering and community structure

Sociologists (1900s)

* A "community"” is any group of fwo or more people that is useful

Girvan and Newman (2002,2004) and MANY others

A "community"” is a set of nodes "joined together in tightly-knit
“ groups between which there are only loose connections

* Modularity becomes a popular "edge counting” metric

~ Leskovec, Lang, Dasgupta, and Mahoney (2008)

 All work on community detection validated on networks with good
well-balanced partitions (i.e., low-dimensional and not expanders)

« But, empirically, larger clusters/communities are less-and-less
cluster-like than smaller clusters (i.e., networks are expander-like)



. Interplay between preexisting versus
j generated versus implicit geometry

Preexisting geometry
« Start with geometry and add "stuff”

Generated geometry

* Generative model leads to structures
that are meaningfully-interpretable as
geometric

Implicitly-imposed geometry

 Approximation algorithms implicitly
embed the data in a metric/geometric
place and then round.




= What do these networks

?

look" like

1))




. Approximation algorithms as
) experimental probes?

Usual modus operandi for approximation algorithms for general problems:
« define an objective, the numerical value of which is intractable o compute
« develop approximation algorithm that returns approximation to that number

« graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g.
matrix, regression, eigenvector algorithms; duality algorithms, etc):

- often can approximate the vector achieving the exact solution

* randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

« maybe compare different approximation algorithms for the same problem.



. Exptl Tools: Probing Large Networks
) with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths"” with "deep cuts”
Multi-commodity flow - (log(n) approx) - difficulty with expanders
SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQT - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, reqularized communities!)

We are not interested in partitions per se, but in probing network structure.



wge Analogy: What does a protein look like?

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.

background medium Experimental Procedure:
Scﬁgg:? * Generate a bunch of output data by using
e the unseen object to filter a known input
N clutter , target SignaL
receiver 1 *  Reconstruct the unseen object given the

'

-+ probing fields output signal and what we know about the

m— artifactual properties of the input signal.

transmitter



) Experimenting with data with CS tools

* Networks as non-engineered phenomena to be studied as a
natural/physical scientist would. (Jon Kleinberg 2006)

« The emergence of cyberspace and the WWW is like the discovery
of a new continent. (Jim Gray 1998)

« Want Kepler's Laws of Motion for the Web. (Mike Steuerwalt 1998)

To study data "scientifically,” you need
* "Experimental” data (and hopefully lots of it)
« "Experimental” tools (that do the job well)

Use approximation algorithms (and their implicit
statistical properties) as experimental tools!




) Why graph partitioning? (2 of 2)

Graph partitioning algorithms:

- tools to "experimentally probe” network structure

- "scalable” and "robust” way to explore extremely non-
Euclidean structures in data

- primitive for machine learning and data analysis applications,
e.g., image partitioning, semi-supervised learning, etc

For data more generally:

* "hydrogen atom” for theory/practice disconnect
* "hydrogen atom” for algorithmic vs statistical perspectives
* "hydrogen atom” for reqgularization implicit in graph
algorithms (where you can't "cheat” by data preprocessing




) Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ¢ of a set S of nodes is:

_ Liesigs i A(S) =
AS) = min{ A(S), A(S)} (%)

The Network Community Profile (NCP) Plot of the graph is:

Since algorithms often
(k)= min ¢(S) have non-obvious size-

SCV.|S|=k ependent behavior.
Just as conductance captures the "gestalt” notion of clusgér/community quality,

the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!



E Community Score: Conductance

S

s How community like is a set of
nodes?

S!

= Need a natural intuitive
measure:

Conductance (normalized cut)

- corresponds to more
community-like sets of nodes




n Community Score: Conductance

a A
What is “best”
community of

5 nodes?

®(S) = # edges cut / # edges inside



n Community Score: Conductance

a N\
What is “best”

community of $»=5/6 = 0.83
5 nodes?

®(S) = # edges cut / # edges inside



n Community Score: Conductance

a N\
What is “best”

community of $»=5/6 = 0.83
5 nodes?

$=2/5 = 0.4
®(S) = # edges cut / # edges inside



. Community Score: Conductance

a N\
What is “best”

community of $»=5/6 = 0.83

5 nodes?

$=2/8 = 0.25

$p=2/5 = 0.4
®(S) = # edges cut / # edges inside



Widely-studied small social networks

¢ (conductance)
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) “Low-dimensional” graphs (and expanders)

¢ (conductance)
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) Lots of Generative Models

* Preferential attachment - add edges to high-degree nodes
(Albert and Barabasi 99, etc.)

« Copying model - add edges to neighbors of a seed node

(Kumar et al. 00, etc.)

* Hierarchical methods - add edges based on distance in hierarchy

(Ravasz and Barabasi 02, etc.)

* Geometric PA and Small worlds - add edges to geometric scaffolding
(Flaxman et al. 04; Watts and Strogatz 98; etc.)

* Random/configuration models - add edges randomly
(Molloy and Reed 98; Chung and Lu 06; etc.)



NCPP for common generative models
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) What do large networks look like?

Downward sloping NCPP
small social networks (validation)
"low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)
Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etfc.
Large social/information networks are very very different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Typical example of our findings

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

General relativity collaboration network
(4,158 nodes, 13,422 edges)
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) Large Social and Information Networks

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)
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Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.



More large networks

¢ (conductance)

¢ (conductance)

10°

16~

10

T 1]

T

T \\IH\‘

L 1t

\

\\‘\II‘\II‘IiI‘\II

0

s TouE ) S [0 L il 4
n (number of nodes in the cluster)

Cit-Hep-Th

TTT

T

T IHIH‘

T HHHI|

L 111l

0

10" 10%2 10® 10* 10° 10°
n (number of nodes in the cluster)

AtP-DBLP

¢ (conductance)

@ (conductance)

100 T I 1 T T 1::

107" & E

el |

10 = f‘wii 3

10% & d <

10'4 7\ | \| 1 1 l| 1 | \| | | I‘ | | \‘ | |l7
6 48 16~ 40 W ¢ @

n (number of nodes in the cluster)
Web-Google

10° L O B R =

10" W

10'2 | L | | | o ‘ | | ‘ 1 1 1 ‘ 1 L1
6% 48' 40 d0* d6& 10’

n (number of nodes in the cluster)

Gnutella



! NCPP: LiveJournal (N=5M, E=43M)
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l How do we know this plot it "correct”?

* Algorithmic Result
Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

« Statistical Result

Spectral method implicitly regularizes, gets more meaningful communities

» Lower Bound Result

Spectral and SDP lower bounds for large partitions

e Structural Result

Small barely-connected "whiskers” responsible for minimum

« Modeling Result
Very sparse Erdos-Renyi (or PLRG wth p ¢ (2,3)) gets imbalanced deep cuts



