
Initial evaluation of OSVV

Classes of Graphs:

• GM (Guattery-Miller)
graph where
eigenvector methods
fail.

• PLAN - Expanders
with planted bisections
- where LR is known to
fail

• WING - finite
element mesh

• RND - Random
Geometric Graph

• Random geometric
graph with random
edges added



Connections with boosting
Iterative nature of “fast ARV” algorithms can be done
with cut-matching game
• Cut player - choose bisection (to make game last long)

• Matching player - choose matching to add to G, i.e., G’=G+M

• Game stop when G’ is an expander

Connections b/w game theory, online learning, & boosting
• Freund and Schapire (1996), Warmuth et al (2008)

Online algorithms: practice follows theory quite closely
• Question: can this be used as a model to understand statistical properties
implicit in approximation algorithms more generally?



Other applications of spectral and flow

Recall: graph partitioning was a “hydrogen atom”

• For studying spectral/flow/etc relaxations to combinatorial
problems

• Much of this “spectral” and “flow” structure inherited by
approximations to other optimization problem

Spectral: NCut, k-means, Transductive Learning,
Modularity relaxations, (esp, in ML), etc.

Flow: Lots of graph approximation algorithms, (in TCS)



Another application of similar ideas:
Finding dense sub-graphs

• Optimize f(S) with max-flow or parametric flow.

• Greedy approx algorithms optimize f(S) and d(S,T).

• Global/Local spectral algs approximate d(S,T) - more amenable to spectral algorithms.

Also, tradeoff dense versus isolated sub-graphs. (Lang and Andersen 2007).

Andersen and Chellapilla (2009), Andersen (2008), Charikar (2000), Kannan and Vinay (1999), GGR (1998), Goldberg (1984), etc.



What is the shape of a graph?
Can we generalize the following intuition to general graphs:

• A 2D grid or well-shaped mesh “looks like” a 2D plane*

• A random geometric graph “looks like” a 2D plane

• An expander “looks like” a clique or complete graph or a point.

The basic idea:

• If a graph embeds well in another metric space, then it “looks like”
that metric space**!

*A “planar graph” is typically a very different combinatorial thing.

**Gromov (1987); Linial, London, & Rabinovich (1985); ISOMAP, LLE, LE, … (2001)



What is the shape of a space?
A long history:

• Euclid (BC): Rn lengths, angles, dot products, etc
come from his Fifth Parallel Lines Postulate

• Bolyai, Lobachevsky etc. (1830s): formulate
consistent geometries with other fifth postulates

• Riemann (1850s): work on manifolds and curvature
more generally

• Einstein (1910s): applications to curvature properties
of physical spacetime

• Gromov (1980s): discrete curvature and hyperbolicity

• 1990s and 2000s: applications of network curvature
in routing, visualization, embedding, etc.



Hyperbolic Spaces

Lobachevsky and Bolyai constructed
hyperbolic space - (between a point and a line,
there are many “parallel” lines) - Euclid’s fifth
postulate is independent of the others!

A d-dimensional metric space which is
homogeneous and isotropic (looks the same at
every point and in every direction) is locally
identical to one of:
 Sphere
 Hyperbolic space
 Euclidean plane

The 3 maximally
symmetric
geometries



Models of the Hyperbolic Plane
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Distances in hyperbolic space

p

q

 Vectors are longer near
the boundary.
 Shortest path from p to q
bends toward the center,
where vectors are shorter.
 Geodesics are circular
arcs meeting the boundary
at right angles.

 If you draw circles of
hyperbolic radius 1,2,3,…
around the center of the
Poincare disk, each is ≈ e
times closer to the boundary
than the previous one.  Their
circumferences grow
exponentially!

1
2

3



Interpreting visualizations …

Negative curvature:Positive curvature:



How much space is there in a space?

Intuitively,
• positively-curved spaces have
less space than flat spaces.

• flat spaces have less space
than negatively-spaces.

Imagine starting with a flat piece of paper
and trying “cover” a sphere (you’ll need to
crumple it) or a saddle (you’ll need to cut it
to make room).



Comparison between different curvatures



Discrete vs. continuous

“Squint” at data with “coarse embedding”

• Line graph is “like” a line (random
geometric graph is like underlying
geometry).

• Expander is “like” a complete graph.
(Hard to visualize.)

•  Hyperbolic metric is “like” tree!

See: “Discrete Geometric Analysis,” T. Sunada (2007)



δ-hyperbolic metric spaces

Things to note about δ-hyperbolicity:

• Graph property that is both local (by four points) and global (by
the distance) in the graph

• Polynomial time computable - naively in O(n4) time

• Metric space embeds into a tree iff δ = 0.

• Poincare half space in Rk is δ-hyperbolic with δ = log23

• Theory of δ-hyperbolic spaces generalize theory of Riemannian
manifold with negative sectional curvature to metric spaces



δ-hyperbolic metric spaces, cont.

Theory of δ-hyperbolic spaces generalize
theory of Riemannian manifold with negative
sectional curvature to metric spaces.

• Measures deviation from tree-ness of a discrete space

• Equivalent definition in terms of δ-thin triangle
condition:



Expanders and hyperbolicity

Different concepts that really are
different (Benjamini 1998) :

• Constant-degree expanders - like sparsified
complete graphs

• Hyperbolic metric space - like a tree-like graph

But, degree heterogeneity enhances
hyperbolicity* (so real networks will often
have both properties).

*Question: Does anyone know a reference that makes these
connections precise?

Trees come in all
sizes and shapes:



Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions



An awkward empirical fact
Can we cut “internet graphs” into two pieces that are “nice” and “well-balanced”?

For many real-world social-and-information “power-law graphs,” there is an inverse
relationship between “cut quality” and “cut balance.”

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Consequences of this empirical fact

Relationship b/w small-scale structure and large-
scale structure in social/information networks* is
not reproduced (even qualitatively) by popular models

• This relationship governs diffusion of information, routing and
decentralized search, dynamic properties, etc., etc., etc.

• This relationship also governs (implicitly) the applicability of
nearly every common data analysis tool in these apps

*Probably much more generally--social/information networks are just so messy and
counterintuitive that they provide very good methodological test cases.



Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...



Popular approaches to network analysis

Define simple statistics (clustering coefficient,
degree distribution, etc.) and fit simple models

• more complex statistics are too algorithmically complex or
statistically rich

• fitting simple stats often doesn’t capture what you wanted

Beyond very simple statistics:

• Density, diameter, routing, clustering, communities, …

• Popular models often fail egregiously at reproducing more
subtle properties (even when fit to simple statistics)



Failings of “traditional” network approaches

Three recent examples of failings of “small world” and
“heavy tailed” approaches:

• Algorithmic decentralized search - solving a (non-ML) problem:
can we find short paths?

• Diameter and density versus time - simple dynamic property

• Clustering and community structure - subtle/complex static
property (used in downstream analysis)

All three examples have to do with the coupling b/w
“local” structure and “global” structure --- solution
goes beyond simple statistics of traditional approaches.



Failing 1: Search in social graphs
Milgram (1960s)

• Small world experiments - study short paths in social networks

• Individuals from Midwest forward letter to people they know to get it
to an individual in Boston.

Watts and Strogatz (1998)

• “Small world” model, i.e., add random edges to an underlying local
geometry, reproduces local clustering and existence of short paths

Kleinberg (2000)

• But, even Erdos-Renyi Gnp random graphs have short paths …

• … so the existence of short paths is not so interesting

• Milgram’s experiment also demonstrated people found those paths



Failing 2: Time evolving graphs
Albert and Barabasi (1999)

• “Preferential attachment” model, i.e., at each time step add a
constant number of links according to a “rich-get-richer” rule

• Constant average degree, i.e., average node degree remains
constant

• Diameter increases roughly logarithmically in time

Leskovec, Kleinberg, and Faloutsos (2005)

• But, empirically, graphs densify over time (i.e., number of edges
grows superlinearly with number of nodes) and diameter shrinks
over time



Failing 3:
Clustering and community structure

Sociologists (1900s)

• A “community” is any group of two or more people that is useful

Girvan and Newman (2002,2004) and MANY others

• A “community” is a set of nodes “joined together in tightly-knit
groups between which there are only loose connections

• Modularity becomes a popular “edge counting” metric

Leskovec, Lang, Dasgupta, and Mahoney (2008)

• All work on community detection validated on networks with good
well-balanced partitions (i.e., low-dimensional and not expanders)

• But, empirically, larger clusters/communities are less-and-less
cluster-like than smaller clusters (i.e., networks are expander-like)



Interplay between preexisting versus
generated versus implicit geometry

Preexisting geometry

• Start with geometry and add “stuff”

Generated geometry

• Generative model leads to structures
that are meaningfully-interpretable as
geometric

Implicitly-imposed geometry

• Approximation algorithms implicitly
embed the data in a metric/geometric
place and then round.

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)



What do these networks “look” like?



Approximation algorithms as
experimental probes?

Usual modus operandi for approximation algorithms for general problems:

• define an objective, the numerical value of which is intractable to compute

• develop approximation algorithm that returns approximation to that number

• graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g.
matrix, regression, eigenvector algorithms; duality algorithms, etc):

• often can approximate the vector achieving the exact solution

• randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

• maybe compare different approximation algorithms for the same problem.



Exptl Tools: Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.



Experimenting with data with CS tools
• Networks as non-engineered phenomena to be studied as a
natural/physical scientist would.  (Jon Kleinberg 2006)

• The emergence of cyberspace and the WWW is like the discovery
of a new continent.  (Jim Gray 1998)

• Want Kepler’s Laws of Motion for the Web. (Mike Steuerwalt 1998)

To study data “scientifically,” you need

• “Experimental” data (and hopefully lots of it)

• “Experimental” tools (that do the job well)

Use approximation algorithms (and their implicit
statistical properties) as experimental tools!



Why graph partitioning? (2 of 2)

Graph partitioning algorithms:
• tools to “experimentally probe” network structure
• “scalable” and “robust” way to explore extremely non-
Euclidean structures in data
• primitive for machine learning and data analysis applications,
e.g., image partitioning, semi-supervised learning, etc

For data more generally:
• “hydrogen atom” for theory/practice disconnect
• “hydrogen atom” for algorithmic vs statistical perspectives
• “hydrogen atom” for regularization implicit in graph
algorithms (where you can’t “cheat” by data preprocessing)



Communities, Conductance, and NCPPs
Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

Just as conductance captures the “gestalt” notion of cluster/community quality,
the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Since algorithms often
have non-obvious size-
dependent behavior.



Community Score: Conductance
S

S’

130

 How community like is a set of
nodes?

 Need a natural intuitive
measure:

 Conductance (normalized cut)
φ(S) ≈ # edges cut / # edges inside

 Small φ(S) corresponds to more
community-like sets of nodes



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Bad
community
φ=5/6 = 0.83

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

133



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

Best
community
φ=2/8 = 0.25

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?
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Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



Lots of Generative Models

• Preferential attachment - add edges to high-degree nodes
(Albert and Barabasi 99, etc.)

• Copying model - add edges to neighbors of a seed node
(Kumar et al. 00, etc.)

• Hierarchical methods - add edges based on distance in hierarchy
(Ravasz and Barabasi 02, etc.)

• Geometric PA and Small worlds - add edges to geometric scaffolding
(Flaxman et al. 04; Watts and Strogatz 98; etc.)

• Random/configuration models - add edges randomly
(Molloy and Reed 98; Chung and Lu 06; etc.)



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



What do large networks look like?
Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella



NCPP: LiveJournal (N=5M, E=43M)
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Community size

Better and
better

communities
Best communities get

worse and worse

 Best community
has ≈100 nodes
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How do we know this plot it “correct”?
• Algorithmic Result

Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

• Statistical Result
Spectral method implicitly regularizes, gets more meaningful communities

• Lower Bound Result
Spectral and SDP lower bounds for large partitions

• Structural Result

Small barely-connected “whiskers” responsible for minimum

• Modeling Result
Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts


