
k-means clustering, cont’d

Goal: We seek to split the input
points in 5 clusters.

Recall: The cluster centroid is the
“average” of all the points in the
cluster:

Note: The intuition underlying the
combinatorial objective is that there
are several “nice” clusters in a low-
dimensional space.



k-means: a matrix formulation

Let A be the m-by-n matrix representing m points in Rn. Then, we seek to

X is a special “cluster membership” matrix: Xij denotes if the i-th point
belongs to the j-th cluster.
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clusters • Columns of X are normalized to have unit length.

(We divide each column by the square root of the
number of points in the cluster.)

• Every row of X has at most one non-zero element.

(Each element belongs to at most one cluster.)

• X is an orthogonal matrix, i.e., XTX = I.



k-means: the SVD connection

If we only require that X is an orthogonal matrix and remove the condition
on the number of non-zero entries per row of X, then

is easy to minimize! The solution is X = Uk.

Using SVD to solve k-means

• We can get a 2-approximation algorithm for k-means.  (Drineas, Frieze, Kannan, Vempala, and Vinay ’99, ’04)

• We can get heuristic schemes to assign points to clusters.  (Zha, He, Ding, Simon, and Gu ’01)

• There exist PTAS (based on random projections) for k-means problem.  (Ostrovsky and Rabani ’00, ’02)

• Deeper connections between SVD and clustering.  (Kannan, Vempala, and Vetta ’00, ’04)



k-means and “kernelized” k-means

Regular k-means in R3 “Kernelized” k-means in
some transformed space



A few high-level observations
Eigenvectors are global entities--awkward to find local structure.
• Basically, due to the orthogonality requirement -- usually, the most significant thing
about the 17th eigenvector is that it is orthogonal to the first 16!

• Typically only the top few eigenvectors can be localized.

Eigenvectors identify linear structure
• Can associate matrix with any graph, but questions you ask are different -- e.g., what is
the matrix that is least like a “low-dimensional” matrix?

• That is why we kernelize -- to be linear somewhere else and exploit eigen-methods.

Eigen-tools and the SVD give “sweet spot” between descriptive
flexibility and algorithmic tractability
• E.g., analogue of SVD for tensors and other algebraic structures fails to hold -- so
researchers there fall back on the SVD too.

• Question: Are there other “sweet spots” when eigen-methods are too limited?



Unfortunately …

Relationship b/w small-scale and large-scale structure is not
reproduced (even qualitatively) by popular models

• Relationship governs diffusion of information; decentralized search;
routing; dynamic properties; applicability of common ML tools

Also: ∃ a BIG disconnect b/w common data analysis tools and
network properties

• low-dimensional & geometric tools (SVD, diffusion-based manifold
methods, ...) common in ML, but networks are more expander-like

• network is single data point---not really a bunch of feature vectors



Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions



Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)

• Both sides contain a lot of nodes

Several standard formulations:
• Graph bisection (minimum cut with 50-50 balance)

• β-balanced bisection (minimum cut with 70-30 balance)

• cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion)

• cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!



Why graph partitioning? (1 of 2*)

Graph partitioning algorithms:
• capture a qualitative notion of connectedness
• well-studied problem in traditionally/recently both in theory and
practice
• many machine learning and data analysis applications

Don’t care about exact solution to intractable problem:
• output of approximation algs is not something we “settle for”
•randomized/approximation algs often give “better” answers than
exact solution
• nearly-linear/poly-time computation captures “qualitative existence”

*(2 of 2) is later



Squint at the data graph …

Say we want to find a “best fit” of the adjacency
matrix to:

What does the data “look like”? How big are α, β, γ?

α β

β γ

α≈ γ » β
low-dimensional

α» β » γ
core-periphery

α≈ β ≈ γ
expander or Kn

β» α ≈ γ
bipartite graph



Why worry about both criteria?
• Some graphs (e.g., “space-like” graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “work together”

• For other classes of graphs (e.g., informatics graphs, as we will see) there is
a “tradeoff,” i.e., better cuts lead to worse balance
• For still other graphs (e.g., expanders) there are no good cuts of any size



The “lay of the land”

Spectral methods - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods - single-commodity or multi-
commodity version of max-flow-min-cut ideas



Spectral Methods

Fiedler (1973) and Donath & Hoffman (1973)

• use eigenvectors of discrete graph Laplacian

Popular in scientific computing, parallel computing, etc.
(1980s) and machine learnint (200s)

Algorithm:

1. Compute the exact/approximate eigenvector.

2. Perform “rounding”: choose the best of the n cuts
defined by that eigenvector.



Cheeger’s inequality

Theorem: If λ2(g) is second eigenvalue of Laplacian
and φ(G) is the conductance, then

Note: only need to get an approximate eigenvector.

Actually, there is a version for any test vector:



Spectral graph partitioning

Cluster based on the 2nd eigenvector:

Note: “Looks” like k-means when cuts are well-balanced.



How bad can spectral be?
Guattery and Miller (1998)

• exhibit n-node graph with spectral bisection cut O(n2/3) edges,
versus optimal of O(n1/3); takes advantage of spectral’s confusion
between long paths and deep cuts

Spielman and Teng (1996)

• Spectral partitioning “works” on bounded degree planar graphs
and well-shaped finite element meshes, i.e., nice geometries
where it was traditionally applied



An “embedding” view of spectral

Use Rayleigh quotient to
characterize λ1:

But since x ⊥ D1, this is
equivalent to:

Interpretation:
• Minimize “mixing” subject to
variance constraint

• Embed graph on a line and cut

• But duality not tight

Interpretation:
• Minimize “mixing” subject to
“mixing” in complete graph Kn

• Embed graph in Kn

• Duality tighter (can also see
this in dual later)



“Regularization” and spectral methods

• regularization properties: spectral embeddings stretch along
directions in which the random-walk mixes slowly

–Resulting hyperplane cuts have "good" conductance cuts, but may
not yield the optimal cuts

spectral embedding notional flow based
 embedding



Local improvement methods
Kernighan and Lin (1960s) and Fiduccia and Matheyses (1970s)

• multi-pass heuristic to avoid some local minimum, but not necessarily
find global optimum

Johnson et al (1990)

• Graphs up to 1000 nodes. Simulated Annealing good on random graphs,
and KL work well on geometric/spacelike graphs

Lang-Rao (1993), etc.

• FM worse than flow methods on medium-sized graphs since local
minimum problems lead to many small patches

1990s: Multi-resolution FM does better job of finding globally
coherent solutions -> Metis



Multiresolution methods

Chaco (1993)
• use multiresolution ides from
Linear Algebra to couple local
search with long range structure

Metis (1995)
• coarsening by contracting edges
(like Karger’s mincut algorithm)

• very fast, and better cuts than
Vanilla Spectral

Graclus, etc similar



Maximum flow problem
• Directed graph G=(V,E).

• Source s ε V, sink t ε V.

• Capacity c(e) ε Z+ for each edge e.

• Flow: function f: E -> N s.t.

• For all e: f(e) ≤ c(e)

• For all v, except s and t: flow into v = flow out of v

• Flow value: flow out of s

• Problem: find flow from s to t with maximum value

Important Variant: Multiple Sources and Multiple Sinks

s t
16

12
20

10 4 9 7

413
14



Solving maximum flow problems

Single commodity flow

• Linear Programming, Ford-Fulkerson, Edmonds-Karp, Many Push-
Relabel Algorithms

• MaxFlow = Min Cut

Multiple commodity flow problem

• Several different versions

• MaxFlow ≈ MinCut (up to log(k) factor for k-commodities (LR88))



Flow and graph partitioning

Single commodity flow:

• Do single commodity flow computation on all 2n cuts and return best

Multi-commodity flow:

• Route flow between “all pairs” - n(n-1)/2 at once and then cut edges
that are most congested

• log(n) gap leads to log(n) approximation guarantee

• can detect solution if bottleneck forces those edges to be more
congested than average

• for expander graphs, average edge congestion is lg(n) worst than
that forces by bottleneck (so achieve worst-case guarantee)



IP and LP view of flow

An Integer Program: A Linear Program:

Let:  x(e) = 0,1, for eεE,  depending on whether edge e is cut

        y(i) = 0,1, for i ε k (commodities), depending if commodity i disconnected

        Pi, i ε k, is set of paths si to ti



An “embedding” view of flow
Theorem: (Bourgain)

Every n-point metric space embeds into L1 with distortion
O(log(n)).

Flow-based algorithm to get sparsest cuts.

(1) Solve LP to get distance d:VxV->R+.

(2) Obtain L1 embedding using Bourgain’s constructive
theorem

(3) Perform an appropriate “rounding.”

Thus, it boils down to an embedding and expanders are worst.



Implementing these ideas

Spectral
• eigenvector code, e.g., Matlab, LAPACK, etc

• ≈ O(nonzeros) time to compute few eigenvectors

Metis
• nontrivial publicly-available and very usable code

• very fast in practice (tricky to analyze running time)

Flow
• Single-commodity: roughly O(n3/2) time

• Multi-commodity: roughly O(n2) time

LPs, SDPs, etc
good for theory
& understanding
basic ideas -- in
practice, one
typically depend
on high-quality
numerical code.



What is a good partitioning algorithm?
Theory says:
• Flow-based methods - since always give O(lg n) guarantee.

• Spectral methods may be ok on expanders, since quadratic of a
constant is a constant

Practice says:
• Spectral methods - fast, robust, denoise, so method of choice

• Don’t know or care about max-flow.

Graph partitioning highlights a deep theory-practice
disconnect (and also a deep algorithmic-statistical
disconnect) - they don’t even qualitatively agree.



Comparison of “spectral” versus “flow”

Spectral:

• Compute an eigenvector

• “Quadratic” worst-case bounds

• Worst-case achieved -- on
“long stringy” graphs

• Embeds you on a line (or
complete graph)

Flow:

• Compute a LP

• O(log n) worst-case bounds

• Worst-case achieved -- on
expanders

• Embeds you in L1

Two methods -- complementary strengths and weaknesses

• What we compute will be determined at least as much by as
the approximation algorithm we use as by objective function.



Extensions of the basic ideas

Cut improvement algorithms

• Given an input cut, find a good one nearby or certify that none
exists

Local algorithms and locally-biased objectives

• Run in a time depending on the size of the output and/or are
biased toward input seed set of nodes

Combining spectral and flow

• to take advantage of their complementary strengths

Apply ideas to other objective functions



Cut-improvement algorithms

Given a graph G=(V,E) and a cut T⊂V, find a “good” conductance cut
that is “near” T, or produce a certificate that none exists.

Prior work: flow-based improvement methods
• GGT89 - can find best subset S⊆T with minimum conductance in poly time

• LR04 - implement related method and show it’s good at improving cuts from Metis

• AL08 - single-commodity flows to get bounds of the above form

Uses of flow-based cut-improvement algorithms
• algorithmic primitive in fast versions of theoretically best partitioning algorithms

• identifying community structure in large social and information networks



Flow “improvement” algorithms
Andersen and Lang (2008)

• Modified quotient cost - cost relative to input set A penalizes
sets for including vertices outside of A

• Constructing and solving sequence of s-t min cut problems in
augmented graph



Flow “improvement” algorithms
Andersen and Lang (2008)

• Modified quotient cost - cost relative to input set A penalizes
sets for including vertices outside of A

• Constructing and solving sequence of s-t min cut problems in
augmented graph

Theorem: Let C be any set whose intersection with the
proposed set A s.t.

Then, the set S returned has quotient cost almost as small
as C:



Local clustering algorithms

Spielman and Teng (2008)

• local algorithm finds a solution containing or near a given vertex
without looking at the entire graph

• running time is “nearly linear” in the size of output cluster

• gets Cheeger-like quadratically-good approximation guarantees

• Based on Lovasz-Simonovitz (90,93) random walk



Local spectral methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated “local”  random walks to compute locally-biased cut

ACL06: approximate locally-biased PageRank vector computations

Chung08: approximate heat-kernel computation to get a vector



Spectral “improvement” algorithms and
optimization programs

Global Spectral and Flow

• Can write objective function and optimization

• Algorithm solves that objective function

Local and Improvement Methods

• More “operationally” defined using steps similar to global but
subject to constraints (locality constraints of modified objective

Can we write these as optimization programs?



Recall spectral graph partitioning
• Relaxation of:

The basic optimization
problem:

• Solvable via the eigenvalue
problem:

• Sweep cut of second eigenvector
yields:

Also recall Mihail’s sweep cut for a general test vector:



Geometric correlation and
generalized PageRank vectors

Given a cut T, define the
vector:

Can use this to define a geometric
notion of correlation between cuts:

• PageRank: a spectral ranking method (regularized version of second eigenvector of LG)

• Personalized: s is nonuniform; & generalized: teleportation parameter α can be negative.



Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:

• Find a cut well-correlated with the
seed vector s.

• If s is a single node, this relax:

Interpretation:
• Embedding a combination of scaled
complete graph Kn and complete
graphs T and T (KT and KT) - where
the latter encourage cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)



Main results (1 of 2)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter α, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.

Mahoney, Orecchia, and Vishnoi (2010)



Main results (2 of 2)

Theorem: If x* is optimal solution to LocalSpect(G,s,κ),
one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*.

Theorem: Let s be seed vector and κ correlation
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ)
if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.



Other “Local” Spectral and Flow and
“Improvement” Methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated”local”  random walks to compute locally-biased cut

ACL06/Chung08 : locally-biased PageRank vector/heat-kernel vector

Flow improvement methods - Given a graph G and a partition, find a
“nearby” cut that is of similar quality:

GGT89: find min conductance subset of a “small” partition

LR04,AL08: find “good” “nearby” cuts using flow-based methods

Optimization ansatz ties these two together (but is not strongly local
in the sense that computations depend on the size of the output).



Illustration on small graphs
• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)



Illustration with general seeds
• Seed vector doesn’t need to correspond to cuts.

• It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n].



Comparison with Flow-Improve
AL08 (implicitly) measure how much more of C in T than expected:

Spectral and flow correlation measures are related:

Notes (aside from that this is eigenvector computation):

• Spectral better (in theory) if φ(C) large, e.g., G an expander

• Spectral better if input cut volume << volume of cut we bound



Comparison with local spectral algorithms

Optimization ansatz

• is local in the sense that seed vector is local

• is not local in sense that computations depend on the size of output

PageRank, HeatKernel, Truncated Random Walks - can all be viewed
as regularized versions of computing second eigenvector (see below)

Previous algorithms introduce structured approximations to
approximate PageRank, HeatKernel, Diffusions

• Question: Can these be formalized as optimization problems?



Combining spectral and flow

Arora, Rao, Vazirani (2004)

• Can we improve O(log(n)) from L1 embedding?

• Relax to L2 - No. (Not convex, so can’t optimize efficiently.)

• Relax to L22, space of squared L2 metrics - No. (Can optimize,
but “gap” is O(n). Note: not even a metric, since triangle
inequality violated, but “average” squared distance is small.)

Relax to Metrics∩L22 - Yes!!

• Can write as SDP.

• Get O(sqrt(log(n))) approximation with a O(n4.5) algorithm



Combining spectral and flow, cont.
Arora, Hazan, and Kale (AHK, 2004)
• multi-commodity flow implementation of expander flow framework to
achieve an O(sqrt(log n)) approximation in roughly O(n2) time

Arora and Kale (AK, 2007)
•similar ideas to give an O(log n) approximation more generally

Khandekar, Rao, and Vazirani (KRV, 2006)
•polylogarithmic single commodity max-flow computations iteratively to
embed an expander flow, O(log2 n) approximation in roughly O(n3/2) time.

Orecchia, Schulman, Vazirani, and Vishnoi (OSVV, 2008)
• related algorithm also performs only polylogarithmic single commodity
max-flow computations to achieve an O(log n) approximation.



OSVV “spectral-flow” partitioning

1A 1A

1S

SPECTRAL STEP

1A 1A

FLOW IMPROVEMENT STEP 11 += MGG

SPECTRAL STEP FLOW IMPROVEMENT STEP

2A

2A

2S

2A

2A

OPTIMAL CUT FOUND

OSVVSPECTRAL

GOOD CASE

BAD CASE: LONG PATHS

• 2nd eigenvector

• Spectral cut

• Optimal cut

Orecchia, Schulman, Vazirani, and Vishnoi (2008) - variant of Arora, Rao, Vazirani (2004); also Lang, Mahoney, Orecchis (2009)


