
Geometric Tools for Identifying Structure in
Large Social and Information Networks

Michael W. Mahoney

Stanford University

(ICML 2010 and KDD 2010 Tutorial)

(For more info, see:
http:// cs.stanford.edu/people/mmahoney/

or Google on “Michael Mahoney”)

Lots of “networked data” out there!

• Technological and communication networks
– AS, power-grid, road networks

• Biological and genetic networks
– food-web, protein networks

• Social and information networks
– collaboration networks, friendships; co-citation, blog cross-
postings, advertiser-bidded phrase graphs ...

• Financial and economic networks
– encoding purchase information, financial transactions, etc.

• Language networks
– semantic networks ...

• Data-derived “similarity networks”
– recently popular in, e.g., “manifold” learning

• ...

Large Social and Information Networks

Sponsored (“paid”) Search
Text-based ads driven by user query

Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information

Micro-markets in sponsored search

10 million keywords

1.
4

M
ill

io
n

A
dv

er
tis

er
s

Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI of sports

gambling keywords?

Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?

How people think about networks
“Interaction graph” model of networks:
• Nodes represent “entities”
• Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric
• Strength: powerful framework for analyzing algorithmic complexity
• Drawback: geometry used for learning and statistical inference

How people think about networks

advertiser

q
u

er
y

Some evidence for
micro-markets in
sponsored search?

A schematic illustration …

… of hierarchical clusters?

Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...

What do these networks “look” like?

Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):
• extreme heterogeneity in local environments, e.g., as captured by
degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based
models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):
• local environments of nodes have structure, e.g., captures with
clustering coefficient, that is meaningfully “geometric”

• basis for small world models that start with global “geometry” and
add random edges to get small diameter and preserve local “geometry”

Popular approaches to data more generally

Use geometric data analysis tools:
• Low-rank methods - very popular and flexible
• Manifold methods - use other distances, e.g., diffusions or
nearest neighbors, to find “curved” low-dimensional spaces

These geometric data analysis tools:
• View data as a point cloud in Rn, i.e., each of the m data
points is a vector in Rn

• Based on SVD*, a basic vector space structural result
• Geometry gives a lot -- scalability, robustness, capacity
control, basis for inference, etc.

*perhaps implicitly in an infinite-dimensional non-linearly transformed
feature space (as with manifold and other Reproducing Kernel methods)

Can these approaches be combined?

These approaches are very different:
• network is a single data point---not a collection of feature vectors
drawn from a distribution, and not really a matrix
• can’t easily let m or n (number of data points or features) go to
infinity---so nearly every such theorem fails to apply

Can associate matrix with a graph and vice versa, but:
• often do more damage than good
• questions asked tend to be very different
• graphs are really combinatorial things*

*But graph geodesic distance is a metric, and metric embeddings give fast algorithms!

Modeling data as matrices and graphs

In computer science:
• data are typically discrete, e.g.,
graphs
• focus is on fast algorithms for the
given data set

Data

Comp.Sci. Statistics

In statistics*:
• data are typically continuous, e.g.
vectors
• focus is on inferring something about
the world
*very broadly-defined!

Algorithmic vs. Statistical Perspectives

Computer Scientists
• Data: are a record of everything that happened.
• Goal: process the data to find interesting patterns and associations.
• Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians
• Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
• Goal: is to extract information about the world from noisy data.
• Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000)

Perspectives are NOT incompatible

• Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

• Intractable optimization problems on graphs/networks yield to
approximation when assumptions made about network participants.

• In boosting, the computation parameter (i.e., the number of
iterations) also serves as a regularization parameter.

• Approximations algorithms can implicitly regularize large graph
problems (which can lead to geometric network analysis tools!).

What do the data “look like” (if you
squint at them)?

A “hot dog”? A “tree”? A “point”?

(or pancake that embeds well
in low dimensions)

(or tree-like hyperbolic
structure)

(or clique-like or
expander-like structure)

Goal of the tutorial

Cover algorithmic and statistical work on identifying and
exploiting “geometric” structure in large “networks”

• Address underlying theory, bridging the theory-practice gap,
empirical observations, and future directions

Themes to keep in mind:

• Even infinite-dimensional Euclidean structure is too limiting
 (in adversarial environments, you never “flesh out” the low-dimensional space)

• Scalability and robustness are central
(tools that do well on small data often do worse on large data)

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

Overview (more detail, 1 of 4)

Popular algorithmic tools with a geometric flavor

• PCA and SVD, including computational/algorithmic and
statistical/geometric issues

• Domain-specific interpretation of spectral concepts, e.g.,
localization, homophily, centrality

• Kernel-based extensions currently popular in machine learning

• Difficulties and limitations of popular tools

Overview (more detail, 2 of 4)

Graph algorithms and their geometric underpinnings

• Spectral, flow, multi-resolution algorithms for graph
partitioning, including theoretical basis and implementation issues

• Geometric and statistical perspectives, including “worst case”
examples for each and behavior on “typical” classes of graphs

• Recent “local” methods and “cut improvement” methods;
methods that “interpolate” between spectral and flow

• Tools for identifying “tree-like” or “hyperbolic” structure, and
intuitions associated with this structure

Overview (more detail, 3 of 4)

Novel insights on structure in large informatics graphs

• Small-world and heavy-tailed models to capture local clustering
and/or large-scale heterogeneity

• Issues of “pre-existing” versus “generated” geometry

• Empirical successes and failings of popular models, including
densification, diameters, clustering, and community structure

• “Experimental” methodologies for “probing” network structure

Overview (more detail, 4 of 4)

Novel insights, (cont.)

• Empirical results on “local” geometric structure, “global” metric
structure, and the coupling between these

• Implicit regularization by worst-case approximation algorithms

• Implications for clustering, routing, information diffusion,
visualization, and the design of machine learning tools

• Implications for dynamics evolution of graphs, dynamics on
graphs, and machine learning and data analysis on networks

Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions

The Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing σ1 ≥ σ2 ≥ … ≥ σρ, the singular values of A.

The formal definition:

Given any m x n matrix A, one can decompose it as:

SVD is the “the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra.”*

*Dianne O’Leary, MMDS 2006

SVD: A fundamental structural result

SVD: a fundamental structural result of vector spaces (with both
algorithmic and statistical consequences)

U: orthogonal basis for
the column space

V: orthogonal basis for
the row space

Σ: gives orthogonalized
“stretch” factors*

*i.e., in the basis of U
and V, A is diagonal.

Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left (right) singular vectors of A.

Σk: diagonal matrix containing the top k singular values of A.

Important: Keeping top k singular vectors provides “best” rank-k
approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

Ak = argmin{ ||A-X||2,F : rank(X) ≤ k }.

Truncate the SVD at the top-k terms: Keep the “most
important” k-dim
subspace.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

Singular vectors, intuition

Let the blue circles represent m
data points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix
of the data will return …

1st (right)
singular vector

1st (right) singular vector:

direction of maximal variance,

2nd (right)
singular vector

2nd (right) singular vector:

direction of maximal variance, after
removing the projection of the data
along the first singular vector.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right)
singular vector

2nd (right)
singular vector

Singular values, intuition

σ1: measures how much of the data variance
is explained by the first singular vector.

σ2: measures how much of the data variance
is explained by the second singular vector.

σ1

σ2

A first use of the SVD in data analysis

feature 1

fe
at

ur
e

2

Object x

Object d

(d,x)

Matrix rows: points (vectors) in a Euclidean space,
e.g., given 2 objects (x & d), each described with
respect to two features, we get a 2-by-2 matrix.

Common assumption: Two objects are “close” if angle
between their corresponding vectors is “small.”

Common hope: k « m,n directions are important --
e.g., Ak captures most of the “information” and/or is
“discriminative” for classification, etc tasks.

Common to model the data as points in a vector space -- this
gives a matrix, with m rows (one for each object) and n columns
(one for each feature).

Latent Semantic Indexing (LSI)

Replace A by Ak; apply
clustering/classification algorithms on Ak.

m
documents

n terms (words)

Aij = frequency of j-th
term in i-th document

Pros

- Less storage for small k.
O(km+kn) vs. O(mn)

- Improved performance.
Documents are represented in a “concept” space.

Cons

- Ak destroys sparsity.

- Interpretation is difficult.

- Choosing a good k is tough.

LSI: Ak for document-term “matrices”
(Berry, Dumais, and O'Brien ’92)

• Sometimes people interpret document corpus in terms of k topics when use this.

• Better to think of this as just selecting one model from a parameterized class of models!

LSI/SVD and heavy-tailed data
Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a
graph with power-law distributed degrees are also
power-law distributed.

• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g.,
random graph) implies heavy tail over eigenvalues.

• Idea: 10 components may give 10% of mass/information, but to get
20%, you need 100, and to get 30% you need 1000, etc; i.e., no scale at
which you get most of the information

• No “latent” semantics without preprocessing.

Singular-stuff and eigen-stuff
If A is any m x n matrix:

A = U Σ VT (the SVD - general eigen-systems can be non-robust and hard to work with)

A is diagonal in orthogonal U and V basis; and Σ nonnegative

If A is any m x m square matrix:
A = U Λ UT (the eigen-decomposition - of course, A also has an SVD)

A is diagonal in orthogonal U basis; but Λ is not nonnegative

If A is any m x m SPSD (i.e., correlation) matrix:
A = U Σ UT (SVD = eigen-decomposition)

A is diagonal in orthogonal U basis; and Σ nonnegative

In data analysis, structural properties of SVD are used most
often via square (e.g., adjacency) or SPSD (e.g., kernel or
Laplacian) matrices

Algorithmic Issues with the SVD

A big area with a lot of subtleties:
• “Exact” computation of the full SVD* takes O(min{mn2 , m2n})
time.
• The top k left/right singular vectors/values can be computed
faster using iterative Lanczos/Arnoldi methods.
• Specialized numerical methods for very large sparse
matrices.
• A lot of work in TCS, NLA, etc on randomized algorithms and
ε-approximation algorithms (for ε ≈ 0.1 or ε ≈ 10-16).

*Given the full SVD, you can do “everything.” But you “never” need the full
SVD. Just compute what you need!

PCA and MDS
Principal Components Analysis (PCA)
• Given {Xi}i=1,…,n with Xi ε RD,

Find k-dimensional subspace P and embedding Yi=PXi

s.t. Variance(Y) is maximized or Error(Y) is minimized

• Do SVD on covariance matrix C =XXT

Multidimensional Scaling (MDS)
• Given {Xi}i=1,…,n with Xi ε RD,

Find k-dimensional subspace P and embedding Yi=PXi

s.t. Dist(Yi-Yj) ≈ Dist(Xi-Xj), i.e., dot products (or distances) preserved

• Do SVD on Gram matrix G = XT X

SVD is the structural basis behind PCA, MDS, Factor Analysis, etc.

Statistical Aspects of the SVD

Can always compute best rank-k SVD approximation
• in “nice” Gaussian settings, corresponding statistical interpretation

• more generally, model selection in a place with nice geometry

Least-squares regression and PCA
• optimal (in terms of mean squared error) linear compression scheme for
compressing and reconstructing any high-dimensional vectors

• if the data were generated from Guassian distributions, then it is the
“right thing to do”

• several related ways to formalize these ideas

Geometric Aspects of the SVD

Can always compute best rank-k SVD approximation
• in “nice” Gaussian settings, corresponding statistical interpretation

• more generally, model selection in a place with nice geometry

Least-squares regression and PCA
• embed the data in a line or low-dimensional hyperplane

• reconstruct clusters when data consist of “separated” Gaussians

• geometry permits Nystrom-based and other out-of-sample schemes
and “robustness” due to constraints imposed by low-dimensional space

• several related ways to formalize these ideas

These are a very strong properties

Contrast these properties with tensors*

• Computing the rank of a tensor (qua tensor) is intractable, and best
rank k approximation may not even exist

• Many other strong hardness results (Lim 2006)

• Researchers “fall back” on matrices along each mode

That matrices are so nice is the exception, not the rule,
among algebraic structures---vector spaces are very
structured places, with associated benefits and limitations.

*Tensors are another algebraic structure used to model data: Think of them as Aijk, i.e., matrices
with an additional subscript, where multiplication is linear along each “direction”

Kernel Methods

Many algorithms access data only
through elements of Correlation
or Gram matrix.
• Can use another SPSD matrix and to
encode nearness information.

• Many learning bounds generalize

• E.g., K(xi,xj) = f(||xi-xj||), Gaussian r.b.f.,
polynomial kernels, etc - good but limited
• Data-dependent kernels - operationally define a kernel on graph constructed
from point cloud data; typically viewed as implicitly defining a manifold

Kernels and linear methods

Kernel methods are basically linear methods in some
other feature space that is non-linearly related to the
original representation of the data:

• Good news: still linear (classify with hyperplanes, have capacity
control since hyperplanes are structured objects, etc.)

• Bad news: still linear (so still boiling down to SVD); determining
features is an art; very hard to deal with very non-linear metrics

Kernel methods basically give you a lot more
statistical (or descriptive) flexibility without too
much additional computational cost.

Data-dependent kernels, cont.
ISOMAP:
• Compute geodesics on adjacency graph

• MetricMDS gives k eigenvectors for embedding

LLE:
• Compute edge weights from local least-squares
approximation

• Compute global embedding vectors as bottom
k+1 eigenvectors of a matrix

Laplacian eigenmaps:
• Assign edge weights Wij = exp(-β||xi-xj||2

2)

• Compute embedding vectors as bottom k+1
eigenvectors of Laplacian

Kernels and Manifolds and Diffusions

Laplacian Eigenmaps:
• Defined on graphs, but close connections to “analysis on manifolds”

Laplacian in Rd:

Manifold Laplacian
• measure change along tangent space of manifold

Connections with
diffusions (and
Markov chains):

What is a manifold?

A topological manifold is a topological space which locally looks
Euclidean in a certain (weak) sense

A Riemannian manifold is a differentiable manifold in which the
tangent space is Rn. (Tangent space has inner product that varies
smoothly and that gives lengths, angles, areas, gradients, etc.)

Barring “pathological” curvature or density behavior, i.e., permitting
a huge amount of descriptive flexibility, think of a ML manifolds as
a “curved” low-dimensional space.

Kernels and learning a manifold

Practice and Theory:

• Choose kernel, and see if eigen-methods give good visualization,
clustering, etc.

• Thm: If the hypothesized manifold and sampling density are
“nice,” then Lgraph will converge to Lmanifold.

Manifold learning is not of classification, clustering,
regression; but of the hypothesized manifold

• Empirically (or theoretically) useful when two large clusters

• Basically, “exploratory” data modeling, using one class of models

Interpreting the SVD - be very careful

Reification

• assigning a “physical
reality” to large
singular directions

• invalid in general

Just because “If the
data are ‘nice’ then
SVD is appropriate”
does NOT imply
converse.

Mahoney and Drineas (PNAS, 2009)

Interpretation: Centrality

Centrality (of a vertex) - measures relative importance
of a vertices in a graph
• degree centrality - number of links incident upon a node

• betweenness centrality - high for vertices that occur on many shortest
paths

• closeness centrality - mean geodesic distance between a vertex and other
reachable nodes

• eigenvector centrality - connections to high-degree nodes are more
important, and so on iteratively (a “spectral ranking” measure)

Motivation and behavior on nice graphs is clear -- but
what do they actually compute on non-nice graphs?

Eigen-methods in ML and data analysis

Eigen-tools appear (explicitly or implicitly*) in
many data analysis and machine learning tools:

• Latent semantic indexing

• Manifold-based ML methods

• Diffusion-based methods

• k-means clustering

• Spectral partitioning and spectral ranking

*What are the limitations imposed when these methods are implicitly used? Can we
get around those limitations with complementary methods?

k-means clustering

A standard objective function that measures cluster quality.

(Often denotes an iterative algorithm that attempts to optimize the k-means
objective function.)

k-means objective

Input: set of m points in Rn, positive integer k

Output: a partition of the m points to k clusters

Partition the m points to k clusters in order to minimize the sum of the squared
Euclidean distances from each point to its cluster centroid.

(Drineas, Frieze, Kannan, Vempala, and Vinay ’99; Boutsidis, Mahoney, and Drineas ‘09)

k-means clustering

