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Lots of “networked data” out there!

• Technological and communication networks
– AS, power-grid, road networks

• Biological and genetic networks
– food-web, protein networks

• Social and information networks
– collaboration networks, friendships; co-citation, blog cross-
postings, advertiser-bidded phrase graphs ...

• Financial and economic networks
– encoding purchase information, financial transactions, etc.

• Language networks
– semantic networks ...

• Data-derived “similarity networks”
– recently popular in, e.g., “manifold” learning

• ...



Sponsored (“paid”) Search
Text-based ads driven by user query



Sponsored Search Problems

Keyword-advertiser graph:
– provide new ads
– maximize CTR, RPS, advertiser ROI

Motivating cluster-related problems:
• Marketplace depth broadening:

find new advertisers for a particular query/submarket

• Query recommender system:
suggest to advertisers new queries that have high probability of clicks

• Contextual query broadening:
broaden the user's query using other context information



Micro-markets in sponsored search

10 million keywords
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What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?



How people think about networks
“Interaction graph” model of networks:
• Nodes represent “entities”
• Edges represent “interaction” between pairs of entities

Graphs are combinatorial, not obviously-geometric
• Strength: powerful framework for analyzing algorithmic complexity
• Drawback: geometry used for learning and statistical inference



How people think about networks
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Some evidence for
micro-markets in
sponsored search?

A schematic illustration …

… of hierarchical clusters?



Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...



What do these networks “look” like?



Popular approaches to large network data

Heavy-tails and power laws (at large size-scales):
• extreme heterogeneity in local environments, e.g., as captured by
degree distribution, and relatively unstructured otherwise

• basis for preferential attachment models, optimization-based
models, power-law random graphs, etc.

Local clustering/structure (at small size-scales):
• local environments of nodes have structure, e.g., captures with
clustering coefficient, that is meaningfully “geometric”

• basis for small world models that start with global “geometry” and
add random edges to get small diameter and preserve local “geometry”



Popular approaches to data more generally

Use geometric data analysis tools:
• Low-rank methods - very popular and flexible
• Manifold methods - use other distances, e.g., diffusions or
nearest neighbors, to find “curved” low-dimensional spaces

These geometric data analysis tools:
• View data as a point cloud in Rn, i.e., each of the m data
points is a vector in Rn

• Based on SVD, a basic vector space structural result
• Geometry gives a lot --  scalability, robustness, capacity
control, basis for inference, etc.



Can these approaches be combined?

These approaches are very different:
• network is a single data point---not a collection of feature vectors
drawn from a distribution, and not really a matrix
• can’t easily let m or n (number of data points or features) go to
infinity---so nearly every such theorem fails to apply

Can associate matrix with a graph and vice versa, but:
• often do more damage than good
• questions asked tend to be very different
• graphs are really combinatorial things*

*But graph geodesic distance is a metric, and metric embeddings give fast algorithms!



Modeling data as matrices and graphs

In computer science:
• data are typically discrete, e.g.,
graphs
• focus is on fast algorithms for the
given data set

Data

Comp.Sci. Statistics

In statistics*:
• data are typically continuous, e.g.
vectors
• focus is on inferring something about
the world
*very broadly-defined!



What do the data “look like” (if you
squint at them)?

A “hot dog”? A “tree”? A “point”?

(or pancake that embeds well
in low dimensions)

(or tree-like hyperbolic
structure)

(or clique-like or
expander-like structure)



Squint at the data graph …

Say we want to find a “best fit” of the adjacency
matrix to:

What does the data “look like”? How big are α, β, γ?

α β

β γ

α≈ γ » β
low-dimensional

α» β » γ
core-periphery

α≈ β ≈ γ
expander or Kn

β» α ≈ γ
bipartite graph



What is an expander?



What is an expander?

Def: an expander is a “sparse” graph that does not
have any “good” partitions into two or more pieces.
• E.g., a not-extremely-sparse random graph

Who cares?
• Expanders are metric spaces that are least like “low-dimensional”
metric spaces

• Very important in TCS for algorithm design

• Large social and information are expanders ...

• ( ... at least more like pockets of local structure on global expander-
like scaffolding than vice versa, if you squint at them)



Overview

Popular algorithmic tools with a geometric flavor
• PCA, SVD; interpretations, kernel-based extensions; algorithmic and statistical
issues; and limitations

Graph algorithms and their geometric underpinnings
• Spectral, flow, multi-resolution algorithms; their implicit geometric basis; global
and scalable local methods; expander-like, tree-like, and hyperbolic structure

Novel insights on structure in large informatics graphs
• Successes and failures of existing models; empirical results, including
“experimental” methodologies for probing network structure, taking into account
algorithmic and statistical issues; implications and future directions
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The Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing σ1 ≥ σ2 ≥ … ≥ σρ, the singular values of A.

The formal definition:

Given any m x n matrix A, one can decompose it as:

SVD is the “the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra.”*

*Dianne O’Leary, MMDS 2006



Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k  left (right) singular vectors of A.

Σk: diagonal matrix containing the top k  singular values of A.

Important: Keeping top k singular vectors provides “best” rank-k
approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

Ak = argmin{ ||A-X||2,F : rank(X) ≤ k }.

Truncate the SVD at the top-k terms: Keep the “most
important” k-dim
subspace.
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singular vector

Singular values, intuition

σ1

σ2

Blue circles are m data points in a 2-D space.

The SVD of the m-by-2 matrix of the data
will return …

V(1): 1st (right) singular vector: direction of
maximal variance,

 σ1: how much of data variance is explained by
the first singular vector.

V(2): 2nd (right) singular vector: direction of
maximal variance, after removing projection
of the data along first singular vector.

σ2: measures how much of the data variance
is explained by the second singular vector.



Latent Semantic Indexing (LSI)

Replace A by Ak; apply
clustering/classification algorithms on Ak.

m
documents

n terms (words)

Aij = frequency of j-th
term in i-th document

Pros

- Less storage for small k.
O(km+kn) vs. O(mn)

- Improved performance.
Documents are represented in a “concept” space.

Cons

- Ak destroys sparsity.

- Interpretation is difficult.

- Choosing a good k is tough.

LSI: Ak for document-term “matrices”
(Berry, Dumais, and O'Brien ’92)

• Sometimes people interpret document corpus in terms of k topics when use this.

• Better to think of this as just selecting one model from a parameterized class of models!



LSI/SVD and heavy-tailed data
Theorem: (Mihail and Papadimitriou, 2002)

The largest eigenvalues of the adjacency matrix of a graph
with power-law distributed degrees are also power-law
distributed.

• I.e., heterogeneity (e.g., heavy-tails over degrees) plus noise (e.g., random
graph) implies heavy tail over eigenvalues.

• Intuitive Idea: 10 components may give 10% of mass/information, but to get
20%, you need 100, and to get 30% you need 1000, etc; i.e., no scale at which
you get most of the information

• No “latent” semantics without preprocessing.



Interpreting the SVD - be very careful

Reification

• assigning a “physical
reality” to large
singular directions

• invalid in general

Just because “If the
data are ‘nice’ then
SVD is appropriate”
does NOT imply
converse.

Mahoney and Drineas (PNAS, 2009)



Interpretation: Centrality

Centrality (of a vertex) - measures relative importance
of a vertices in a graph
• degree centrality - number of links incident upon a node

• betweenness centrality - high for vertices that occur on many shortest
paths

• closeness centrality - mean geodesic distance between a vertex and other
reachable nodes

• eigenvector centrality - connections to high-degree nodes are more
important, and so on iteratively (a “spectral ranking” measure)

Motivation and behavior on nice graphs is clear -- but
what do they actually compute on non-nice graphs?



Eigen-methods in ML and data analysis

Eigen-tools appear (explicitly or implicitly) in many
data analysis and machine learning tools:

• Latent semantic indexing

• PCA and MDS

• Manifold-based ML methods

• Diffusion-based methods

• k-means clustering

• Spectral partitioning and spectral ranking
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Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)

• Both sides contain a lot of nodes

Several standard formulations:
• Graph bisection (minimum cut with 50-50 balance)

• β-balanced bisection (minimum cut with 70-30 balance)

• cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion)

• cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!



Why worry about both criteria?
• Some graphs (e.g., “space-like” graphs, finite element meshes, road networks,
random geometric graphs) cut quality and cut balance “work together”

• For other classes of graphs (e.g., informatics graphs, as we will see) there is
a “tradeoff,” i.e., better cuts lead to worse balance
• For still other graphs (e.g., expanders) there are no good cuts of any size



Why graph partitioning?

Graph partitioning algorithms:
• capture a qualitative notion of connectedness
• well-studied problem in traditionally/recently both in theory and
practice
• many machine learning and data analysis applications

Don’t care about exact solution to intractable problem:
• output of approximation algs is not something we “settle for”
•randomized/approximation algs often give “better” answers than
exact solution
• nearly-linear/poly-time computation captures “qualitative existence”



The “lay of the land”

Spectral methods* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas
*comes with strong worst-case guarantees



Spectral Methods

Fiedler (1973) and Donath & Hoffman (1973)

• use eigenvectors of discrete graph Laplacian

Popular in scientific computing, parallel computing, etc.
(1980s) and machine learning (2000s)

Algorithm:

1. Compute the exact/approximate eigenvector.

2. Perform “rounding”: choose the best of the n cuts
defined by that eigenvector.



An “embedding” view of spectral

Use Rayleigh quotient to
characterize λ1:

But since x ⊥ D1, this is
equivalent to:

Interpretation:
• Minimize “mixing” subject to
variance constraint

• Embed graph on a line and cut

• But duality not tight

Interpretation:
• Minimize “mixing” subject to
“mixing” in complete graph Kn

• Embed graph in (scaled) Kn

• Duality tighter (can also see
this in dual later)



Maximum flow problem
• Directed graph G=(V,E).

• Source s ε V, sink t ε V.

• Capacity c(e) ε Z+ for each edge e.

• Flow: function f: E -> N s.t.

• For all e: f(e) ≤ c(e)

• For all v, except s and t: flow into v = flow out of v

• Flow value: flow out of s

• Problem: find flow from s to t with maximum value

Important Variant: Multiple Sources and Multiple Sinks

s t
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An “embedding” view of flow
Theorem: (Bourgain)

Every n-point metric space embeds into L1 with distortion
O(log(n)).

Flow-based algorithm to get sparsest cuts.

(1) Solve LP to get distance d:VxV->R+.

(2) Obtain L1 embedding using Bourgain’s constructive
theorem

(3) Perform an appropriate “rounding.”

Thus, it boils down to an embedding and expanders are worst.



“Spectral” versus “flow”

Spectral:

• Compute an eigenvector

• “Quadratic” worst-case bounds

• Worst-case achieved -- on
“long stringy” graphs

• Embeds you on a line (or
complete graph)

Flow:

• Compute a LP

• O(log n) worst-case bounds

• Worst-case achieved -- on
expanders

• Embeds you in L1

Two methods -- complementary strengths and weaknesses

• What we compute will be determined at least as much by as
the approximation algorithm we use as by objective function.



Extensions of the basic ideas

Cut improvement algorithms

• Given an input cut, find a good one nearby or certify that none
exists

Local algorithms and locally-biased objectives

• Run in a time depending on the size of the output and/or are
biased toward input seed set of nodes

Combining spectral and flow

• to take advantage of their complementary strengths



Interplay between preexisting versus
generated versus implicit geometry

Preexisting geometry

• Start with geometry and add “stuff”

Generated geometry

• Generative model leads to structures
that are meaningfully-interpretable as
geometric

Implicitly-imposed geometry

• Approximation algorithms implicitly
embed the data in a metric/geometric
place and then round.

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)



What is the shape of a graph?

Can we generalize the following intuition to general graphs:

• A 2D grid or well-shaped mesh “looks like” a 2D plane

• A random geometric graph “looks like” a 2D plane

• An expander “looks like” a clique or complete graph or a point.

The basic idea:

• If a graph embeds well in another metric space, then it “looks like”
that metric space**!

**Gromov (1987); Linial, London, & Rabinovich (1985); ISOMAP, LLE, LE, … (2001)



Hyperbolic Spaces

Lobachevsky and Bolyai constructed
hyperbolic space - (between a point and a line,
there are many “parallel” lines) - Euclid’s fifth
postulate is independent of the others!

A d-dimensional metric space which is
homogeneous and isotropic (looks the same at
every point and in every direction) is locally
identical to one of:
 Sphere
 Hyperbolic space
 Euclidean plane

The 3 maximally
symmetric
geometries



Comparison between different curvatures



δ-hyperbolic metric spaces

Things to note about δ-hyperbolicity:

• Graph property that is both local (by four points) and global (by
the distance) in the graph

• Polynomial time computable - naively in O(n4) time

• Metric space embeds into a tree iff δ = 0.

• Poincare half space in Rk is δ-hyperbolic with δ = log23

• Theory of δ-hyperbolic spaces generalize theory of Riemannian
manifold with negative sectional curvature to metric spaces



Expanders and hyperbolicity

Different concepts that really are
different (Benjamini 1998) :

• Constant-degree expanders - like sparsified
complete graphs

• Hyperbolic metric space - like a tree-like graph

But, degree heterogeneity enhances
hyperbolicity* (so real networks will often
have both properties).

*Question: Does anyone know a reference that makes these
connections precise?

Trees come in all
sizes and shapes:
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An awkward empirical fact
Can we cut “internet graphs” into two pieces that are “nice” and “well-balanced?

For many real-world social-and-information “power-law graphs,” there is an inverse
relationship between “cut quality” and “cut balance.”

Lang (NIPS 2006), Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Consequences of this empirical fact

Relationship b/w small-scale structure and large-
scale structure in social/information networks* is
not reproduced (even qualitatively) by popular models

• This relationship governs diffusion of information, routing and
decentralized search, dynamic properties, etc., etc., etc.

• This relationship also governs (implicitly) the applicability of
nearly every common data analysis tool in these apps

*Probably much more generally--social/information networks are just so messy and
counterintuitive that they provide very good methodological test cases.



Popular approaches to network analysis

Define simple statistics (clustering coefficient,
degree distribution, etc.) and fit simple models

• more complex statistics are too algorithmically complex or
statistically rich

• fitting simple stats often doesn’t capture what you wanted

Beyond very simple statistics:

• Density, diameter, routing, clustering, communities, …

• Popular models often fail egregiously at reproducing more
subtle properties (even when fit to simple statistics)



Failings of “traditional” network approaches

Three recent examples of failings of “small world” and
“heavy tailed” approaches:

• Algorithmic decentralized search - solving a (non-ML) problem:
can we find short paths?

• Diameter and density versus time - simple dynamic property

• Clustering and community structure - subtle/complex static
property (used in downstream analysis)

All three examples have to do with the coupling b/w
“local” structure and “global” structure --- solution
goes beyond simple statistics of traditional approaches.



Failing 1: Search in social graphs
Milgram (1960s)

• Small world experiments - study short paths in social networks

• Individuals from Midwest forward letter to people they know to get it
to an individual in Boston.

Watts and Strogatz (1998)

• “Small world” model, i.e., add random edges to an underlying local
geometry, reproduces local clustering and existence of short paths

Kleinberg (2000)

• But, even Erdos-Renyi Gnp random graphs have short paths …

• … so the existence of short paths is not so interesting

• Milgram’s experiment also demonstrated people found those paths



Failing 2: Time evolving graphs
Albert and Barabasi (1999)

• “Preferential attachment” model, i.e., at each time step add a
constant number of links according to a “rich-get-richer” rule

• Constant average degree, i.e., average node degree remains
constant

• Diameter increases roughly logarithmically in time

Leskovec, Kleinberg, and Faloutsos (2005)

• But, empirically, graphs densify over time (i.e., number of edges
grows superlinearly with number of nodes) and diameter shrinks
over time



Failing 3:
Clustering and community structure

Sociologists (1900s)

• A “community” is any group of two or more people that is useful

Girvan and Newman (2002,2004) and MANY others

• A “community” is a set of nodes “joined together in tightly-knit
groups between which there are only loose connections

• Modularity becomes a popular “edge counting” metric

Leskovec, Lang, Dasgupta, and Mahoney (2008)

• All work on community detection validated on networks with good
well-balanced partitions (i.e., low-dimensional and not expanders)

• But, empirically, larger clusters/communities are less-and-less
cluster-like than smaller clusters (i.e., networks are expander-like)



What do these networks “look” like?



Exptl Tools: Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, regularized communities!)

We are not interested in partitions per se, but in probing network structure.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.



Communities, Conductance, and NCPPs
Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

Just as conductance captures the “gestalt” notion of cluster/community quality,
the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!

Since algorithms often
have non-obvious size-
dependent behavior.



Community Score: Conductance
S

S’
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 How community like is a set of
nodes?

 Need a natural intuitive
measure:

 Conductance (normalized cut)
φ(S) ≈ # edges cut / # edges inside

 Small φ(S) corresponds to more
community-like sets of nodes



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

58



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Bad
community
φ=5/6 = 0.83

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

59



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

60



Community Score: Conductance

Score: φ(S) = # edges cut / # edges inside

Better
community

φ=5/6 = 0.83

Bad
community

φ=2/5 = 0.4

Best
community
φ=2/8 = 0.25

What is “best”
community of

5 nodes?

What is “best”
community of

5 nodes?

61



Widely-studied small social networks

Zachary’s karate club Newman’s Network Science



“Low-dimensional” graphs (and expanders)

d-dimensional meshes RoadNet-CA



NCPP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



What do large networks look like?
Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Large Social and Information Networks



Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)

67Community size
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)



More large networks

Cit-Hep-Th Web-Google

AtP-DBLP Gnutella



NCPP: LiveJournal (N=5M, E=43M)
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Community size

Better and
better

communities
Best communities get

worse and worse

 Best community
has ≈100 nodes

70



How do we know this plot it “correct”?
• Algorithmic Result

Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

• Statistical Result
Spectral method implicitly regularizes, gets more meaningful communities

• Lower Bound Result
Spectral and SDP lower bounds for large partitions

• Structural Result

Small barely-connected “whiskers” responsible for minimum

• Modeling Result
Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts



Other clustering methods
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Spectral

Metis+MQI

Lrao disconn

LRao conn

Newman

Graclus



12 objective functions
 Clustering objectives:

 Single-criterion:
 Modularity: m-E(m)   (Volume minus correction)
 Modularity Ratio: m-E(m)
 Volume: ∑u d(u)=2m+c
 Edges cut: c

 Multi-criterion:
 Conductance: c/(2m+c)   (SA to Volume)
 Expansion: c/n
 Density: 1-m/n2

 CutRatio: c/n(N-n)
 Normalized Cut: c/(2m+c) + c/2(M-m)+c
 Max ODF: max frac. of edges of a node pointing outside S
 Average-ODF: avg. frac. of edges of a node pointing outside
 Flake-ODF: frac. of nodes with mode than _ edges inside

73

S

n: nodes in S
m: edges in S
c: edges pointing
     outside S



Multi-criterion objectives

74

 Qualitatively similar
to conductance

 Observations:
 Conductance, Expansion,

NCut, Cut-ratio and
Avg-ODF are similar

 Max-ODF prefers
smaller clusters

 Flake-ODF prefers
larger clusters

 Internal density is bad
 Cut-ratio has high

variance



Single-criterion objectives
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Observations:
 All measures are

monotonic (for rather
trivial reasons)

 Modularity
 prefers large clusters
 Ignores small clusters
 Because it basically

captures Volume!



Lower and upper bounds
 Lower bounds on conductance can be

computed from:
 Spectral embedding  (independent

of balance)
 SDP-based methods (for

volume-balanced partitions)
 Algorithms find clusters close to

theoretical lower bounds

76



“Whiskers” and the “core”

• “Whiskers”

• maximal sub-graph detached
from network by removing a
single edge

• contains 40% of nodes and 20%
of edges

• “Core”

• the rest of the graph, i.e., the
2-edge-connected core

• Global minimum of NCPP is a whisker

• BUT, core itself has nested
whisker-core structure

NCP plot

Largest
whisker

Slope upward as
cut into core



What if the “whiskers” are removed?

LiveJournal Epinions

Then the lowest conductance sets - the “best” communities - are “2-whiskers.”

(So, the “core” peels apart like an onion.)



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

0.99 0.55

0.55 0.15

0.99 0.17

0.17 0.82
K1 =

E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

0.2 0.2

0.2 0.2

(also, an expander)



Small versus Large Networks
Leskovec, et al. (arXiv 2009); Mahdian-Xu 2007

 Small and large networks are very different:

K1 =
E.g., fit these networks to Stochastic Kronecker Graph with “base” K=[a b; b c]:

α β

β γ

(also, an expander)



Interpretation:
A simple theorem on random graphs

Power-law random graph with β ε (2,3).

Structure of the G(w) model, with β ε (2,3).

• Sparsity (coupled with randomness)
is the issue, not heavy-tails.

• (Power laws with β ε (2,3) give us
the appropriate sparsity.)



Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductanceExternal/internal conductance

Diameter of the clusterDiameter of the clusterConductance of  bounding cutConductance of  bounding cut

Local Spectral

Connected

Disconnected

Lower is good



Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:



Implications: high level

What is simplest explanation for empirical facts?
• Extremely sparse Erdos-Renyi reproduces qualitative NCP (i.e.,
deep cuts at small size scales and no deep cuts at large size
scales) since:

sparsity + randomness = measure fails to concentrate

• Power law random graphs also reproduces qualitative NCP for
analogous reason

• Iterative forest-fire model gives mechanism to put local
geometry on sparse quasi-random scaffolding to get qualitative
property of relatively gradual increase of NCP

Data are local-structure on global-noise, not small noise on global structure!



Degree heterogeneity and hyperbolicity

Social and information networks are expander-like at
large size scales, but:

• Degree heterogeneity enhances hyperbolicity

Lots of evidence:
• Scale free and internet graphs are more hyperbolic than other models, MC simulation -
Jonckheere and Lohsoonthorne (2007)

• Mapping network nodes to spaces of negative curvature leads to scale-free structure -
Krioukov et al (2008)

• Measurements of Internet are Gromov negatively curved - Baryshnikov (2002)

• Curvature of co-links interpreted as thematic layers in WWW - Eckmann and Moses (2002)

Question: Has anyone made this observation precise?



Hyperbolic Application:
Clustering and Community Structure

Hyperbolic properties at
large size scales:

• (Degree-weighted) expansion at
large size-scales

• Degree heterogeneity

Local pockets of structure
on hyperbolic scaffolding.

• (Traditionally-conceptualized)
communities get worse and worse
as they get larger and larger

α β

β γ

0.99 0.55

0.55 0.15=



Implications: for Community Detection

• Linear (Low-rank) methods
If Gaussian, then low-rank space is good.

• Kernel (non-linear) methods
If low-dimensional manifold, then kernels are good

• Hierarchical methods
Top-down and botton-up -- common in the social sciences

• Graph partitioning methods
Define “edge counting” metric -- conductance, expansion,

modularity, etc. -- in interaction graph, then optimize!

“It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”

(Good and large) network
communities, at least
when formalized i.t.o. this
bicriterion, don’t really
exist in these graphs!!



Comparison with “Ground truth” (1 of 2)

Networks with “ground truth” communities:

• LiveJournal12:
• users create and explicitly join on-line groups

• CA-DBLP:
• publication venues can be viewed as communities

• AmazonAllProd:
• each item belongs to one or more hierarchically organized
categories, as defined by Amazon

• AtM-IMDB:
• countries of production and languages may be viewed as
communities (thus every movie belongs to exactly one
community and actors belongs to all communities to which
movies in which they appeared belong)



Comparison with “Ground truth” (2 of 2)

LiveJournal CA-DBLP

AmazonAllProd AtM-IMDB



Implications: for Data Analysis and ML

Principled and scalable algorithmic exploratory analysis tools:

• spectral vs. flow vs. combinations; local vs. global vs. improvement; etc.

Doing inference directly on data graphs, and machine learning in
complex data environments:

• don’t do inference on feature vectors with hyperplanes in a vector space

• need methods to do it in high-variability, only approximately low-
dimensional, tree-like or expander-like environments.

Implicit regularization via approximate computation:

• spectral vs. flow vs. combinations; local vs. global vs. improvement; etc.



Lessons learned …

... on local and global clustering properties of messy data:
• Often good clusters “near” particular nodes, but no good meaningful global
clusters.

... on approximate computation and implicit regularization:
• Approximation algorithms (Truncated Power Method, Approx PageRank, etc.)
are very useful; but what do they actually compute?

... on learning and inference in high-variability data:
• Assumptions underlying common methods, e.g., VC dimension bounds,
eigenvector delocalization, etc. often manifestly violated.



New ML and LA (1 of 3):
Local spectral optimization methods

Local spectral methods - provably-good local version of global spectral

ST04: truncated “local”  random walks to compute locally-biased cut

ACL06: approximate locally-biased PageRank vector computations

Chung08: approximate heat-kernel computation to get a vector

Q: Can we write these procedures as optimization programs?



Recall spectral graph partitioning
• Relaxation of:

The basic optimization
problem:

• Solvable via the eigenvalue
problem:

• Sweep cut of second eigenvector
yields:

Also recall Mihail’s sweep cut for a general test vector:



Geometric correlation and
generalized PageRank vectors

Given a cut T, define the
vector:

Can use this to define a geometric
notion of correlation between cuts:

• PageRank: a spectral ranking method (regularized version of second eigenvector of LG)

• Personalized: s is nonuniform; & generalized: teleportation parameter α can be negative.



Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:

• Find a cut well-correlated with the
seed vector s.

• If s is a single node, this relax:

Interpretation:
• Embedding a combination of scaled
complete graph Kn and complete
graphs T and T (KT and KT) - where
the latter encourage cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)



Main results (1 of 2)

Theorem: If x* is an optimal solution to LocalSpectral,
it is a GPPR vector for parameter α, and it can be
computed as the solution to a set of linear equations.

Proof:

(1) Relax non-convex problem to convex SDP

(2) Strong duality holds for this SDP

(3) Solution to SDP is rank one (from comp. slack.)

(4) Rank one solution is GPPR vector.

Mahoney, Orecchia, and Vishnoi (2010)



Main results (2 of 2)

Theorem: If x* is optimal solution to LocalSpect(G,s,κ),
one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*.

Theorem: Let s be seed vector and κ correlation
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ)
if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.



Illustration on small graphs
• Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

• Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)



Illustration with general seeds
• Seed vector doesn’t need to correspond to cuts.

• It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n].



New ML and LA (2 of 3):
Approximate eigenvector computation

Many uses of Linear Algebra in ML and Data
Analysis involve approximate computations
• Power Method, Truncated Power Method, HeatKernel, Truncated
Random Walk, PageRank, Truncated PageRank, Diffusion Kernels,
TrustRank, etc.

•  Often they come with a “generative story,” e.g., random web surfer,
teleportation preferences, drunk walkers, etc.

What are these procedures actually computing?
• E.g., what optimization problem is 3 steps of Power Method solving?

• Important to know if we really want to “scale up”



Implicit Regularization
Regularization: A general method for computing “smoother” or
“nicer” or “more regular” solutions - useful for inference, etc.

Recall: Regularization is usually implemented  by adding
“regularization penalty” and optimizing the new objective.

Empirical Observation: Heuristics, e.g., binning, early-stopping, etc.
often implicitly perform regularization.

Question: Can approximate computation* implicitly lead to more
regular solutions?  If so, can we exploit this algorithmically?

*Here, consider approximate eigenvector computation.  But, can it be done with graph algorithms?



Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

• Heat Kernel:

• PageRank:

• q-step Lazy Random Walk:

Ques: Do these “approximation procedures” exactly
optimizing some regularized objective?



Two versions of spectral partitioning

VP: SDP:

R-SDP:R-VP:



A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).



Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

gives Truncated Lazy Random Walk, with λ ~ η

Answer: These “approximation procedures” compute
regularized versions of the Fiedler vector!



Large-scale applications

A lot of work on large-scale data already implicitly
uses variants of these ideas:
• Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for
automatic keyword generation

• Najork, Gallapudi, and Panigraphy (2009): carefully “whittling down”
neighborhood graph makes SALSA faster and better

• Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit
regularization models are most consistent with data

Question: Can we formalize this to understand when it
succeeds and when it fails, for either matrix and/or
graph approximation algorithms?



New ML and LA (3 of 3):
Classification in high-variability environments

Supervised binary classification
• Observe (X,Y) ε (X,Y) = ( Rn , {-1,+1} ) sampled from unknown distribution P

• Construct classifier α:X->Y (drawn from some family Λ, e.g., hyper-planes) after
seeing k samples from unknown P

Question: How big must k be to get good prediction, i.e., low error?
• Risk: R(α) = probability that α misclassifies a random data point

• Empirical Risk:  Remp(α) = risk on observed data

Ways to bound | R(α) - Remp(α) | over all α ε Λ

• VC dimension: distribution-independent; typical method

• Annealed entropy: distribution-dependent; but can get much finer bounds



Unfortunately …
Sample complexity of dstbn-free learning typically depends on
the ambient dimension to which the data to be classified belongs

• E.g., Ω(d) for learning half-spaces in Rd.

Very unsatisfactory for formally high-dimensional data

• approximately low-dimensional environments (e.g., close to manifolds,
empirical signatures of low-dimensionality, etc.)

• high-variability environments (e.g., heavy-tailed data, sparse data, pre-
asymptotic sampling regime, etc.)

Ques: Can distribution-dependent tools give improved learning
bounds for data with more realistic sparsity and noise?



Annealed entropy



“Toward” learning on informatics graphs

Dimension-independent sample complexity bounds for

• High-variability environments

• probability that a feature is nonzero decays as power law

• magnitude of feature values decays as a power law

• Approximately low-dimensional environments

• when have bounds on the covering number in a metric space

• when use diffusion-based spectral kernels

Bound Hann to get exact or gap-tolerant classification

Note: “toward” since we still learning in a vector space, not directly on the graph



Eigenvector localization …

When do eigenvectors localize?
• High degree nodes.

• Articulation/boundary points.

• Points that “stick out” a lot.

• Sparse random graphs

This is seen in many data sets when eigen-methods are chosen for
algorithmic, and not statistical, reasons.



Exact learning with a heavy-tail model

…..                                                                            inlier
0 0 X X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0
X 0 X 0 X 0 X 0 X 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 X X X X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0        outlier
X 0 0 X X 0 X X 0 0 0 X 0 X 0 0 0 0 0 0 0 0 0 0
…..

Mahoney and Narayanan (2009,2010)



Gap-tolerant classification

Def: A gap-tolerant classifier consists of
an oriented hyper-plane and a margin of
thickness Δ around it.  Points outside the
margin are labeled ±1; points inside the
margin are simply declared “correct.”

so can get dimension-independent bounds!

Only the expectation of the norm needs to be
bounded!  Particular elements can behave poorly!

Mahoney and Narayanan (2009,2010) 2Δ



Large-margin classification with very
“outlying” data points

Apps to dimension-independent large-margin learning:
• with spectral kernels, e.g. Diffusion Maps kernel underlying manifold-
based methods, on arbitrary graphs

• with heavy-tailed data, e.g., when the magnitude of the elements of the
feature vector decay in a heavy-tailed manner

Technical notes:
• new proof bounding VC-dim of gap-tolerant classifiers in Hilbert space
generalizes to Banach spaces - useful if dot products & kernels too limiting

• Ques: Can we control aggregate effect of “outliers” in other data models?

• Ques: Can we learn if measure never concentrates?

Mahoney and Narayanan (2009,2010)



Conclusions (1 of 2)

• Geometric tools for experimentally “probing” large
social and information graphs: geometry ≈ inference

• Tools for coupling local properties (often low-
dimensional) and global properties (expander-like)

•  Real informatics graphs -- very different than small
commonly-studied graphs and existing generative
models

• New directions for machine learning, sparse
modeling, data analysis etc.



Conclusions (2 of 2)

• Validation is difficult - if you have a clean validation
and/or a pretty picture, you’re looking at unrealistic
network data!

• Important: even if you do not care about
communities, conductance, hyperbolicity, etc., these
empirical facts place very severe constraints on the
types of models and types of analysis tools that are
appropriate.


