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) Statistical leverage

Def: Let A be n x d matrix, with n> d, i.e., a tall matrix.

 The statistical leverage scores are the diagonal elements of the
projection matrix onto the left singular vectors of A.

* The coherence of the rows of A is the largest score.

Basic idea: Statistical leverage measures:
« correlation b/w singular vectors of a matrix and the standard basis
« how much influence/leverage a row has on the the best LS fit

* where in the high-dimensional space the (singular value) information of
A is being sent, independent of what that information is

* the extent to which a data point is an outlier



:. Who cares?

Statistical Data Analysis and Machine Learning
* historical measure of "outlierness"” or error

* recently, "Nystrom method" and "matrix reconstruction” typically
assume that the coherence is uniform/flat

Numerical Linear Algebra

* key bottleneck to get high-quality numerical implementation of
randomized matrix algorithms

Theoretical Computer Science
* key structural nonuniformity to deal with in worst-case analysis

* best random sampling algorithms use them as importance sampling
distribution and best random projection algorithms uniformize them



Statistical leverage and DNA SNP data
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- Statistical leverage and term-document data
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Note: often the
most “interesting”
or "important” data
points have highest
leverage scores---
especially when use
L2-based models
for computational
(as opposed to
statistical) reasons.



Computing statistical leverage scores

Simple (deterministic) algorithm:
« Compute a basis Q for the left singular subspace, with QR or SVD.

« Compute the Euclidean norms of the rows of Q.

Running time is O(nd?), if n >> d, O(on-basis) time otherwise.

We want faster!
« o(nd?) or o(on-basis), with no assumptions on input matrix A.
* Faster in terms of flops of clock time for not-obscenely-large input.

« OK to live with e-error or to fail with overwhelmingly-small § probability



Randomized algorithms for matrices (1)

=

General structure:

* "Preprocess” the matrix -- compute nonuniform importance sampling
distribution, or perform a random projection/rotation to uniformize

 Draw a random sample of columns/rows, in the original or randomly
rotated basis

* "Postprocess” the sample with traditional deterministic NLA
algorithm, the solution to which provides the approximation

Two connections to randomization today:

- statistical leverage is the key bottleneck to getting good randomized
matrix algorithms (both in theory and in practice)

* the fast algorithm to approximate statistical leverage is a
randomized algorithm



) Randomized algorithms for matrices (2)

Maybe unfamiliar, but no need to be afraid:

* (unless you are afraid of flipping a fair coin heads 100 times in a row)

* Lots of work in TCS - but that tends to be very cavalier w.r.t.
metrics that NLA and Sci Comp tends to care about.

Two recent reviews:

* Randomized algorithms for matrices and data, M. W. Mahoney,
arXiv:1104.5557 - focuses on "what makes the algorithms work" and
interdisciplinary "bridging the gap"” issues

* Finding structure with randomness, Halko, Martinsson, and Tropp,
arXiv:0909.4061 - focuses on connecting with traditional "NLA and
scientific computing” issues



) Main Theorem

Theorem: Given an n x d matrix A, with n>>d, let P, be the
projection matrix onto the column space of A. Then, there isa
randomized algorithm that w.p. > 0.999:

 computes all of the n diagonal elements of P, (i.e., leverage
scores) to within relative (1+¢) error;

« computes all the large of f-diagonal elements of P, to within
additive error;

* runs in o(nd?)* time.

*Running time is basically O(n d log(n)/¢), i.e., same as DMMS
fast randomized algorithm for over-constrained least squares.



) A "classic” randomized algorithm (lof3)

Over-constrained least squares (nh x d matrix A,n >>d)

. . Z = min ||Ax — b
Solve: e | |2

* Solution: x,,; = A'h

Algorithm: .
*Forallie{l,..,n} compute Pi = EHU@)H%

« Randomly sample O(d log(d)/ ¢) rows/elements fro A/b, using
{p;} as importance sampling probabilities.

* Solve the induced subproblem: Topt = (SA)TSEJ



) A "classic" randomized algorithm (20f3)

Theorem: Let v = ||[UAULb||2/||b||2. Then:

© AT — b2 < (1 +€)2
o @op = Fopilla < Ve (KA = 1) [l 2

This ndive algorithm runs in O(nd?) time
e But it can be improved i

This algorithm is bottleneck for Low Rank Matrix
Approximation and many other matrix problems.



) A "classic” randomized algorithm (30f3)

Sufficient condition for relative-error approximation.

For the “prepr'ocessing” matrix X:

o2 (XUy) > 1/v/2; and
U2 X7 Xb[|3 < e27)/2.
« Important: this condition decouples the randomness

from the linear algebra.

« Random sampling algorithms with leverage score
probabilities and random projections satisfy it



) Two ways to speed up running time

Random Projection: uniformize leverage scores rapidly
* Apply a Structured Randomized Hadamard Transform to A and b

* Do uniform sampling to construct SHA and SHb

* Solve the induced subproblem

* T.e., call Main Algorithm on preprocessed problem

Random Sampling: approximate leverage scores rapidly
* Described below
* Rapidly approximate statistical leverage scores and call Main Algorithm

* Open problem for a long while



) Under-constrained least squares (1of2)

Basic setup: n x d matrix A,n « d, and n-vector b

e Solve: Z = min ||Az — bl||o
rc R4

* Solution: ., = A'h

Algorithm: .
+Forall j ¢ {1,..d}, compute Pj = alqu)ll%

» Randomly sample O(nh log(n)/ ¢) columns fro A, using {p;} as
importance sampling probabilities.

+ Return: 7,,; = argmin,||ASSTx — b||o = AT (AS)TT(AS)TD



) Under-constrained least squares (20f2)

Theorem:

-w.h.p. ‘ -Tfr:.--pt o fﬂptHQ i: E‘ -T*GptHQ

Notes:

* Can speed up this O(nd?) algorithm by doing random projection
or by using fast leverage score algorithm below.

* Meng, Saunders, and Mahoney 2011 treat over-constrained and
under-constrained, rank deficiencies, etc, in more general and
uniform manner for numerical implementations.



) Back to approximating leverage scores

View the computation of leverage scores i.t.o an
under-constrained LS problem

Recall (Aisnxd, n» d):
rTA—e Al — a2l =¢AAT

. Imin
j:E Rﬂ

But:
. pi = lleiUall3 = leUaUT|3 = [l AAT|

Leverage scores are the norm of a min-length solution
of an under-constrained LS problem!



] The key idea

Pi = (AAT)(i)| %
~ |[(A(1A)") |3 where © is a fast SRHT
~ (A(QlA)“Qg)(i)H% where (25 is Rand Proj

Note: this expression is simpler than that for the full
under-constrained LS solution since we only need the
norm of the solution.



) Algorithm and theorem

Algorithm:

* (Qqis r; x n, with r;i=0(d log(n)/¢?), SRHT matrix)
« (Q, is ry x r,, with r,=0(log(n)/e?), RP matrix)

« Compute the n x log(n)/e2 matrix X = A(Q2; A)" Q,,
and return the Euclidean norm of each row of X.
Theorem:

* pi & [[ X122, up to multiplicative 1te, forall i.

* Runs is roughly O(nd log(n)/¢) time.



l Running time analysis
Running time:
* Random rotation: ;A takes O(nd log(r;)) time
* Pseudoinverse: (2;A)* takes O(r,d?) time

* Matrix multiplication: A(Q;A)* takes O(ndr;) > nd?
time - too much!

« Another projection: (Q;A)*Q, takes O(dryr,) time
* Matrix Multiplication: A(Q;A)*Q, takes O(ndr,) time
Overall, takes O(nd log(n)) time.



] An almost equivalent approach

1.
2.
3.

Preprocess A to QA with SRHT
Find R s.t. 2;A=QR

Compute norms of rows of AR1Q, (a "sketch” which
is an "approximately orthogonal” matrix)

Same quality-of-approximation and running-time bounds
Previous algorithm amounts to choosing a particular rotation

Using R as a preconditioner is how randomized algorithms
for overconstrained LS were implemented numerically



) Getting the large of f-diagonal elements

Let X = A(Q; A)* Q, or X=AR1Q, .

Also true that:
(X iy, X)) = Uy, Uyy) £ 0@ UG INU

So, can use hash function approaches to approximate
all off-diagonal elements with

<U(i), U(j)> 2 1/(?110g(nd))
to additive error of EHU@)HHU@)H



] Extensions to "fat” matrices (1 of 2)

Question: Can we approximate leverage scores relative
to best rank-k approximation to A? (Given an arbitrary
n x d matrix A and rank parameter k)?

« Tll-posed: Consider A = I, and k < n. (Subpace not
even unhique, so leverage scores not even well-defined.)

e Unstable: Consider

(Subspace unique, but unstable w.r.t.y -> 0.)



l Extensions to "fat" matrices (2 of 2)

Define: S as set of matrices near the best rank-k
approximation:

S=1{Xe¢e R™ 4 rankX = k;||A — X|| < (1 + €)||A — Agll}
(Results different if norm is spectral or Frobenius.)
Algorithm:

« Construct compact sketch of A with random
projection (several recent variants).

* Use left singular vectors of sketch to compute
scores for some matrix in S.



] Extensions to streaming environments

Data "streams” by, and can only keep a "small” sketch

But still can compute:
* Rows with large leverage scores and their scores
* Entropy and number of nonzero leverage scores

« Sample of rows according to leverage score probs

Use hash functions, linear sketching matrices, etc.
from streaming literature.



] Conclusions

Statistical leverage scores ...

» measure correlation of the dominant subspace with the
canonical basis

* have a natural statistical interpretation in terms of outliers
» define "bad" examples for Nystrom method, matrix completion.

* define the key non-uniformity structure for improved worst-
case randomized matrix algorithms, e.g., relative-error CUR
algorithms, and for making TCS randomized matrix useful for
NLA and scientific computing

* take O(nd?), i.e., O(orthonormal-basis), time o compute



] Conclusions

... can be computed to 1+¢ accuracy in o(nd?) time

* relates the leverage scores to an underdetermined LS
problem

* running time comparable to DMMS-style fast approximation
algorithms for over-determined LS problem

* also provides large of f-diagonal elements in same time

 better numerical understanding of fast randomized matrix
algorithms



