
Fast Approximation of MatrixFast Approximation of Matrix
Coherence and Statistical LeverageCoherence and Statistical Leverage

Michael W. Mahoney

Stanford University

( For more info, see:
http:// cs.stanford.edu/people/mmahoney/

or Google on “Michael Mahoney”)



Statistical leverage

Def: Let A be n x d matrix, with n >> d, i.e., a tall matrix.

• The statistical leverage scores are the diagonal elements of the
projection matrix onto the left singular vectors of A.

• The coherence of the rows of A is the largest score.

Basic idea: Statistical leverage measures:

• correlation b/w singular vectors of a matrix and the standard basis

• how much influence/leverage a row has on the the best LS fit

• where in the high-dimensional space the (singular value) information of
A is being sent, independent of what that information is

• the extent to which a data point is an outlier



Who cares?
Statistical Data Analysis and Machine Learning

• historical measure of “outlierness” or error

• recently, “Nystrom method” and “matrix reconstruction” typically
assume that the coherence is uniform/flat

Numerical Linear Algebra

• key bottleneck to get high-quality numerical implementation of
randomized matrix algorithms

Theoretical Computer Science

• key structural nonuniformity to deal with in worst-case analysis

• best random sampling algorithms use them as importance sampling
distribution and best random projection algorithms uniformize them



Statistical leverage and DNA SNP data



Statistical leverage and term-document data

Note: often the
most “interesting”
or “important” data
points have highest
leverage scores---
especially when use
L2-based models
for computational
(as opposed to
statistical) reasons.



Computing statistical leverage scores
Simple (deterministic) algorithm:

• Compute a basis Q for the left singular subspace, with QR or SVD.

• Compute the Euclidean norms of the rows of Q.

Running time is O(nd2), if n >> d, O(on-basis) time otherwise.

We want faster!

• o(nd2) or o(on-basis), with no assumptions on input matrix A.

• Faster in terms of flops of clock time for not-obscenely-large input.

• OK to live with ε-error or to fail with overwhelmingly-small δ probability



Randomized algorithms for matrices (1)
General structure:
• “Preprocess” the matrix -- compute nonuniform importance sampling
distribution, or perform a random projection/rotation to uniformize

• Draw a random sample of columns/rows, in the original or randomly
rotated basis

• “Postprocess” the sample with traditional deterministic NLA
algorithm, the solution to which provides the approximation

Two connections to randomization today:
• statistical leverage is the key bottleneck to getting good randomized
matrix algorithms (both in theory and in practice)

• the fast algorithm to approximate statistical leverage is a
randomized algorithm



Randomized algorithms for matrices (2)
Maybe unfamiliar, but no need to be afraid:
• (unless you are afraid of flipping a fair coin heads 100 times in a row)

• Lots of work in TCS - but that tends to be very cavalier w.r.t.
metrics that NLA and Sci Comp tends to care about.

Two recent reviews:
• Randomized algorithms for matrices and data, M. W. Mahoney,
arXiv:1104.5557 - focuses on “what makes the algorithms work” and
interdisciplinary “bridging the gap” issues

• Finding structure with randomness, Halko, Martinsson, and Tropp,
arXiv:0909.4061 – focuses on connecting with traditional “NLA and
scientific computing” issues



Main Theorem

Theorem: Given an n x d matrix A, with n >> d, let PA be the
projection matrix onto the column space of A.  Then , there is a
randomized algorithm that w.p. ≥ 0.999:

• computes all of the n diagonal elements of PA (i.e., leverage
scores) to within relative (1±ε) error;

• computes all the large off-diagonal elements of PA to within
additive error;

• runs in o(nd2)* time.

*Running time is basically O(n d log(n)/ε), i.e., same as DMMS
fast randomized algorithm for over-constrained least squares.



A “classic” randomized algorithm (1of3)
Over-constrained least squares (n x d matrix A,n >>d)

• Solve:

• Solution:

Algorithm:

• For all i ε {1,...,n}, compute

• Randomly sample O(d log(d)/ ε) rows/elements fro A/b, using
{pi} as importance sampling probabilities.

• Solve the induced subproblem:



A “classic” randomized algorithm (2of3)

Theorem: Let                                 .  Then:

•

•

This naïve algorithm runs in O(nd2) time

• But it can be improved !!!

This algorithm is bottleneck for Low Rank Matrix
Approximation and many other matrix problems.



A “classic” randomized algorithm (3of3)
Sufficient condition for relative-error approximation.

For the “preprocessing” matrix X:

• Important: this condition decouples the randomness
from the linear algebra.

• Random sampling algorithms with leverage score
probabilities and random projections satisfy it



Two ways to speed up running time

Random Projection: uniformize leverage scores rapidly
• Apply a Structured Randomized Hadamard Transform to A and b

• Do uniform sampling to construct SHA and SHb

• Solve the induced subproblem

• I.e., call Main Algorithm on preprocessed problem

Random Sampling: approximate leverage scores rapidly
• Described below

• Rapidly approximate statistical leverage scores and call Main Algorithm

• Open problem for a long while



Under-constrained least squares (1of2)
Basic setup: n x d matrix A,n « d, and n-vector b

• Solve:

• Solution:

Algorithm:

• For all j ε {1,...,d}, compute

• Randomly sample O(n log(n)/ ε) columns fro A, using {pj} as
importance sampling probabilities.

• Return:



Under-constrained least squares (2of2)
Theorem:

• w.h.p.

Notes:

• Can speed up this O(nd2) algorithm by doing random projection
or by using fast leverage score algorithm below.

• Meng, Saunders, and Mahoney 2011 treat over-constrained and
under-constrained, rank deficiencies, etc, in more general and
uniform manner for numerical implementations.



Back to approximating leverage scores
View the computation of leverage scores i.t.o an
under-constrained LS problem

Recall (A is n x d, n » d):

•

But:

•

Leverage scores are the norm of a min-length solution
of an under-constrained LS problem!



The key idea

Note: this expression is simpler than that for the full
under-constrained LS solution since we only need the
norm of the solution.



Algorithm and theorem
Algorithm:

• (Ω1 is r1 x n, with r1=O(d log(n)/ε2), SRHT matrix)

• (Ω2 is r1 x r2, with r2=O(log(n)/ε2), RP matrix)

• Compute the n x log(n)/ε2 matrix X = A(Ω1 A)+ Ω2,
and return the Euclidean norm of each row of X.

Theorem:

• pi ≈ ||X(i)||2
2, up to multiplicative 1±ε, forall i.

• Runs is roughly O(nd log(n)/ε) time.



Running time analysis
Running time:

• Random rotation: Ω1A takes O(nd log(r1)) time

• Pseudoinverse: (Ω1A)+ takes O(r1d2) time

• Matrix multiplication: A(Ω1A)+ takes O(ndr1) ≥ nd2

time - too much!

• Another projection: (Ω1A)+Ω2 takes O(dr1r2) time

• Matrix Multiplication: A(Ω1A)+Ω2 takes O(ndr2) time

Overall, takes O(nd log(n)) time.



An almost equivalent approach
1. Preprocess A to Ω1A with SRHT

2. Find R s.t. Ω1A=QR

3. Compute norms of rows of AR-1Ω2 (a “sketch” which
is an “approximately orthogonal” matrix)

• Same quality-of-approximation and running-time bounds

•  Previous algorithm amounts to choosing a particular rotation

•  Using R-1 as a preconditioner is how randomized algorithms
for overconstrained LS were implemented numerically



Getting the large off-diagonal elements
Let X = A(Ω1 A)+ Ω2 or X=AR-1Ω2 .

Also true that:

So, can use hash function approaches to approximate
all off-diagonal elements with

to additive error of                              .



Extensions to “fat” matrices (1 of 2)

Question: Can we approximate leverage scores relative
to best rank-k approximation to A? (Given an arbitrary
n x d matrix A and rank parameter k)?

• Ill-posed: Consider A = In and k < n. (Subpace not
even unique, so leverage scores not even well-defined.)

• Unstable: Consider

 (Subspace unique, but unstable w.r.t. γ -> 0.)



Extensions to “fat” matrices (2 of 2)
Define: S as set of matrices near the best rank-k
approximation:

(Results  different if norm is spectral or Frobenius.)

Algorithm:

• Construct compact sketch of A with random
projection (several recent variants).

• Use left singular vectors of sketch to compute
scores for some matrix in S.



Extensions to streaming environments

Data “streams” by, and can only keep a “small” sketch

But still can compute:

• Rows with large leverage scores and their scores

• Entropy and number of nonzero leverage scores

• Sample of rows according to leverage score probs

Use hash functions, linear sketching matrices, etc.
from streaming literature.



Conclusions

Statistical leverage scores ...

• measure correlation of the dominant subspace with the
canonical basis

• have a natural statistical interpretation in terms of outliers

• define “bad” examples for Nystrom method, matrix completion.

• define the key non-uniformity structure for improved worst-
case randomized matrix algorithms, e.g., relative-error CUR
algorithms, and for making TCS randomized matrix useful for
NLA and scientific computing

• take O(nd2), i.e., O(orthonormal-basis), time to compute



Conclusions

... can be computed to 1±ε accuracy in o(nd2) time

• relates the leverage scores to an underdetermined LS
problem

• running time comparable to DMMS-style fast approximation
algorithms for over-determined LS problem

• also provides large off-diagonal elements in same time

• better numerical understanding of fast randomized matrix
algorithms


