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) Networks and networked data

Lots of "networked"” datall

* technological networks
- AS, power-grid, road networks

* biological networks
- food-web, protein networks

- social networks
- collaboration networks, friendships

- information networks

- co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

* language networks
- semantic networks...

Interaction graph model of

networks:

* Nodes represent “entities”

- Edges represent “interaction”
between pairs of entities



:. Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?

Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...

(e.q., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?

Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?

Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?

Information retrieval, machine learning, ...



Micro-markets in sponsored search

1.4 Million Advertisers

Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.

Ques: Is this even possible?

What is the CTR and
advertiser ROl of sports

gambling keywords? Movies Media

Gambling \ MS.port‘
-  videos
Sports |
Gambling

10 million keywords



= What do these networks

?

look" like
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) Clustering and Community Finding

* Linear (Low-rank) methods

If Gaussian, then low-rank space is good.

« Kernel (non-linear) methods

If low-dimensional manifold, then kernels are good

» Hierarchical methods

Top-down and botton-up -- common in the social sciences

« Graph partitioning methods

Define “"edge counting” metric -- conductance, expansion,
modularity, etc. -- in interaction graph, then optimize!

"It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”



. Approximation algorithms as
) experimental probes?

The usual modus operandi for approximation algorithms for general problems:
« define an objective, the numerical value of which is intractable o compute
« develop approximation algorithm that returns approximation to that number

« graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc):

« often can approximate the vector achieving the exact solution

* randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

« maybe compare different approximation algorithms for the same problem.



. Probing Large Networks with
) Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths"” with "deep cuts”
Multi-commodity flow - (log(n) approx) - difficulty with expanders
SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQT - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically, reqularized communities!)

We are not interested in partitions per se, but in probing network structure.



wge Analogy: What does a protein look like?

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.

background medium Experimental Procedure:
Scﬁgg:? * Generate a bunch of output data by using
e the unseen object to filter a known input
N clutter , target SignaL
receiver 1 *  Reconstruct the unseen object given the

'

-+ probing fields output signal and what we know about the

m— artifactual properties of the input signal.

transmitter



) Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ¢ of a set S of nodes is:

D ics.jes Aij
min{ A(S), A(S)}

¢(5) =

The Network Community Profile (NCP) Plot of the graph is:

D(k) = '
)= gl )

Just as conductance captures the "gestalt” notion of cluster/community quality,
the NCP plot measures cluster/community quality as a function of size.

NCP is intractable to compute --> use approximation algorithms!



Widely-studied small social networks
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) “Low-dimensional” graphs (and expanders)

¢ (conductance)
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NCPP for common generative models
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) What do large networks look like?

Downward sloping NCPP
small social networks (validation)
"low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)
Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etfc.
Large social/information networks are very very different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Typical example of our findings

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)

General relativity collaboration network
(4,158 nodes, 13,422 edges)

1 [ II|I||I| [ TTTTI [ T TTTTII | |II|IE

o T .
3 01 .
= - V| f -
5 1 Green ]
£ _ Blue )
£0.01 = -
O — —]
O - 3
0001 i l II|I||I| l Itﬁﬁfj | IIIIIII‘ | |II|I;

1 10 100 1000 10000

Community size 15



) Large Social and Information Networks

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008)
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Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.



l How do we know this plot it "correct”?

» Lower Bound Result

Spectral and SDP lower bounds for large partitions

« Modeling Result
Very sparse Erdos-Renyi (or PLRG wth g ¢ (2,3)) gets imbalanced deep cuts

e Structural Result

Small barely-connected "whiskers” responsible for minimum

* Algorithmic Result
Ensemble of sets returned by different algorithms are very different
Spectral vs. flow vs. bag-of-whiskers heuristic

Spectral method implicitly regularizes, gets more meaningful communities
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) Regularized and non-reqularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:




, OSVV "spectral-flow" partitioning

Orecchia, Schulman, Vazirani, and Vishnoi (2008) - variant of Arora, Rao, Vazirani (2004)
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Initial evaluation of OSVV

Classes of Graphs:

* GM (Guattery-Miller)
graph where
eigenvector methods

fail.

* PLAN - Expanders
with planted bisections
- where LR is known to
fail

« WING - finite
element mesh

* RND - Random
Geometric Graph

* Random geomeftric
graph with random
edges added

| LG PLANA LAt wING [uxn-af alad o adond | oadbad | i
O S O T o T N P T I T o B o O D O O S S o Tt I N O O A
253 V10T, LD DOLGE GO0 TS L0257 [ 0L0ET 00T odn [O70T| L.ous
CYSY YW -1.00, 108 L LG L7 LG |07 G027 [ 0L0ET [0 081 v Lo | UL L
RSTIS DLOLG [O.R00| 0,785 00027 [ o0sT | o013 oot [ 0,725 | 1.0460
L1t D16 | L T2 | 170 G027 [ 0057 (00125 OLWn [ L7 L. L L
SO LONY LA (SO TO D26 (03T L1 D 3as| omsk | Lol G
METIS (L0200 [ALTHS | OLEID CLI) | OGO LS AL LS00 G bms [ s 2 | L2
SIPCTTTR AL U200 (IS0 | OERE LIS | 0L 0aG [ 40 CGh ]| Loy [ L7

Fig. 2. The bost score {ound by maltiple tries (see caption of Fipure 3) of cach alpo-
rithin. First and 2nd-place {or cach praph are hipghlichted in red and hlue respectivels.
Scores are piven to 3 deciinal digits, OSVV parameters ave deseribed as OSVY —spindf s

| Al LUG LS | rLas ) owaNeg [ eND- L ol o] ) i | At
CXSWA-LOMLLO0L 10 FLEE | G670 G [ #1066 | TG DRLE TH5 1 13135 | HLEn
CXHNA -1 ) BEELL SO BT A | 25020 | BR0S | 01 L G [ 48504 | BR0LT
CYSNWA-LL0 10 A25.0G (20750308000 2000 ) GOLS | 116G LLLAY [ 850 | L2
METISN 1049 [GRL5 [ GG | 11 L] 1on.0 | L1077 18908 | 2830 | 527,08
LIt 1872 | GRS [ GRT.D |85 | BEED (A0 G | TLTHE. 2| 17
HIPLECITLOMW 2000 (GG 2| 580.T 48875 GEEO | 0302 G415 TG | Thed
METIS LR NI NI S Ch(all RS IR A U W R S VA U U U

SPPECTTRAL Tl 4.4 o l.0 gAY 1.1 5.1 444 d

Fig. 3. Tatal run tince in seconds {or OSVY — goanif s {10 tries]. AIETISR {10000
fries]. LI {10 tries). SPECEFLOW {Eigensolver — L0 flow roundines). AMETIS (1
trv). SPECTRAL {Eigensolver 4+ 3 swoeep roundings).



) Conclusions

Approximation Algorithms as Experimental
Probes of Informatics Graphs

» Powerful tools to ask precise questions of large graphs

* Use statistical and regularization properties of ensembles
of "approximate solution graphs” to infer properties of
original network

« Community structure in real informatics graphs -- very
different than small commonly-studied graphs and existing
generative models



