
1

Fast Monte Carlo Algorithms for Matrix
Operations & Massive Data Set Analysis

Michael W. MahoneyMichael W. Mahoney

Yale University
Dept. of Mathematics

http://cs-www.cs.yale.edu/homes/mmahoney

Joint work withJoint work with: :
P. P. DrineasDrineas and R. and R. KaKannannnan

and also withand also with::
S. Muthukrishnan, M. Maggioni, R. Coifman, O. Alter, and F. Meyer

2

Randomized Linear Algebra Algorithms

Goal: To develop and analyze fast Monte Carlo algorithms for performing
useful computations on large matrices.
• Matrix Multiplication
• Computation of the Singular Value Decomposition
• Computation of the CUR Decomposition
• Testing Feasibility of Linear Programs

Such matrix computations generally require time which is superlinear
in the number of nonzero elements of the matrix, e.g., O(n3) in practice.

These and related algorithms useful in applications where data sets are
modeled by matrices and are extremely large.

3

Applications of these Algorithms

Matrices arise, e.g., since n objects (documents, genomes, images, web
pages), each with m features, may be represented by an m x n matrix A.

• Covariance Matrices
• Latent Semantic Indexing
• DNA Microarray Data
• Eigenfaces and Image Recognition
• Similarity Query
• Matrix Reconstruction

• Linear Programming Applications
• Approximation Algorithm Applications
• Statistical Learning Theory Applications

4

Review of Linear Algebra

5

Overview and Summary

• Pass-Efficient Model and Random Sampling
• Matrix Multiplication
• Singular Value Decomposition
• Lower Bounds
• CUR Decomposition
• Kernel-based data sets and KernelCUR
• Tensor-based data sets and TensorCUR
• Large scientific (e.g., chemical and biological) data

6

The Pass Efficient Model

Motivation: Amount of disk/tape space has increased enormously; RAM and
computing speeds have increased less rapidly.
• Can store large amounts of data.
• Cannot process these data with traditional algorithms.

In the Pass-Efficient Model:
• Data are assumed to be stored on disk/tape.
• Algorithm has access to the data via a pass (a pass is a sequential read of the
entire input from disk).
• An algorithm is allowed additional RAM space and additional computation time.

An algorithm is pass-efficient if it requires a small constant number of passes and
sublinear additional time and space to compute a description of the solution.

Note: If data are an m x n matrix A, then algorithms which require additional time
and space that is O(m+n) or O(1) are pass-efficient.

7

Approximating Matrix Multiplication

(See: Drineas & Kannan FOCS ’01 and Drineas, Kannan, & Mahoney TR ’04, SICOMP ’05)

Problem : Given an m-by-n matrix A and an n-by-p matrix B:

Approximate the product A·B,

OR

Approximate the sum of n rank-one matrices.

i-th column of A i-th row of B

Each term in the
summation is a
rank-one matrix

8

Matrix multiplication algorithm

• Sample s columns of A to form an m-by-s matrix C and the corresponding
s rows of B to form an s-by-p matrix R in s i.i.d. trials.

• Sample a column A(i) and a row B(i) with nonuniform probability {pi}.

• Include A(jt)/(spjt
)1/2 as a column of C, and B(jt)/(spjt

)1/2 as a row of R.

Note: C and R consist of rescaled copies of the sampled columns and rows.

9

Notes about the algorithm

• The matrix A is given in “sparse unordered representation”; non-zero
entries of A are presented as unordere triples (i, j, Aij).
• Can implement the sampling in two passes and O(n) (or O(1) if B=AT)
RAM space.
• Can implement the algorithm with O(sm+sp) RAM space and time.

• The expectation of CR is AB (element-wise) for any {pi}.
• If we sample with the nonuniform probabilities:

pi ≥ βi ||A(i)||2||B(i)||2/ Σi ||A(i)||2||B(i)||2
(with β = 1 now, but not later) then the variance is minimized.

10

Error bounds for the algorithm

For this sampling-based matrix multiplication algorithm (with β=1):

• Can prove tight concentration results via a martingale argument.

• If ||AB||F = Ω(||A||F ||B||F), (i.e., if there is “not much cancellation”) then this is
a relative error bound.

• (Slight β-dependent loss if β ≠ 1.)

• Vershynin improves the spectral norm bound for the case B = AT.

If B = AT, then the sampling probabilities are pi = ||A(i)||2/||A||F
2 and:

11

Fast - O(n) - SVD computations
(See: Frieze, Kannan & Vempala FOCS ‘98, Drineas, Frieze, Kannan, Vempala & Vinay SODA ‘99, Etc. and
Drineas, Kannan, & Mahoney TR ’04, SICOMP ’05)

Given: m x n matrix A

• Sample c columns from A and rescale to form the m x c matrix C.

• Compute the m x k matrix Hk of the k left singular vectors of C.

Structural Theorem: For any probabilities and number of columns:

||A-HkHk
TA||2,F

2 ≤ ||A-Ak||2,F
2 + 2√k||AAT-CCT||F

Algorithmic Theorem: If pi = |A(i)|2/||A||F
2 and c ≥ 4 η2k/ε2, then:

||A-HkHk
TA||2,F

2 ≤ ||A-Ak||2,F
2 + ε||A||F

2.

Proof: Matrix multiplication.

12

Lower Bounds
Question: How many queries does a sampling algorithm need to approximate a
given function accurately with high probability?

ZBY03 proves lower bounds for the low rank matrix approximation problem
and the matrix reconstruction problem.
• Any sampling algorithm that w.h.p. finds a good low rank approximation requires Ω(m+n) queries.
• Even if the algorithm is given the exact weight distribution over the columns of a matrix it will still
require Ω(k/ε4) queries.
• Finding a matrix D such that ||A-D||F ≤ ε ||A||F requires Ω(mn) queries and that finding a D
such that ||A-D||2 ≤ ε ||A||2 requires Ω(m+n) queries.

Applied to our results:
• The LinearTimeSVD algorithm is optimal w.r.t. ||•||F bounds; see also DFKVV99.
• The ConstantTimeSVD algorithm is optimal w.r.t. ||•||2 bounds up to poly factors; see also FKV98.
• The CUR algorithm is optimal for constant ε.

13

Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Original matrix After sampling columns

Compute the top k left singular vectors of the matrix C and store them
in the 512-by-k matrix Hk.

Example of randomized SVD
A C

14

Example of randomized SVD (cont’d)
Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

A

A and HkHk
TA are close.

HkHk
TA

15

A novel CUR matrix decomposition
1. A “sketch” consisting of a few rows/columns of the matrix is adequate for

efficient approximations.

2. Create an approximation to the original matrix of the following form:

O(1) columns
O(1) rows

Carefully
chosen U

3. Given a query vector x, instead of computing A · x, compute CUR · x to identify
its nearest neighbors.

16

The CUR decomposition

1. C consists of c = O(k/ε2) columns of A.

2. R consists of r = O(k/ε2) rows of A.

3. C (R) is created using importance sampling, e.g. columns (rows) are
picked in i.i.d. trials with respect to probabilities

Given a large m-by-n matrix A (stored on disk), compute a decomposition
CUR of A such that:

17

The CUR decomposition (cont’d)

Given a large m-by-n matrix A (stored on disk), compute a decomposition
CUR of A such that:

4. C, U, R can be stored in O(m+n) space, after making two passes
through the entire matrix A, using O(m+n) additional space and time.

5. The product CUR satisfies (with high probability)

18

Computing U
Intuition (which can be formalized):

The CUR algorithm essentially expresses every row of the matrix A as a
linear combination of a small subset of the rows of A.

• This small subset consists of the rows in R.

• Given a row of A – say A(i) – the algorithm computes a good fit for
the row A(i) using the rows in R as the basis, by approximately solving

Notice that only c = O(1) element of the i-th row are given as input.

However, a vector of coefficients u can still be approximated.

19

Error bounds for CUR

Assume Ak is the “best” rank k approximation to A (through SVD).
Then, if we pick O(k/ε2) rows and O(k/ε2) columns,

If we pick O(1/ε2) rows and O(1/ε2) columns,

20

Other (randomized) CUR decompositions

Computing U in constant (O(1) instead of O(m+n)) space and time:
• (Drineas, Kannan, & Mahoney TR ’04, SICOMP ’05)

• samples O(poly(k,ε)) rows and columns of A & needs an extra pass.

• significantly improves the error bounds of Frieze, Kannan, and Vempala, FOCS ’98.

Computing U and R for any C:
• (Drineas, Mahoney, and Muthukrishnan ‘05)

• For any subset of the columns, denoted C (e.g., chosen by the practitioner)

• Obtain bounds of the form: || A - CUR ||F ≤ (1 + ε) || A - CC+ A ||F
• Uses ideas from approximating L2 Regression problems by random sampling.

• Can combine with recent algorithms/heuristics for choosing columns.

21

Other (non-randomized) CUR decompositions

Stewart:
• Compute sparse low-rank approximations to sparse matrices.
• Develop the quasi-Gram-Schmidt (variant of QR) algorithm:

Input: m x n matrix A.
Output: m x k matrix C (k columns of A) and upper-triangular

k x k matrix SC (that orthogonalizes these columns).
• Apply this algorithm to A and AT: construct U to minimize ||A-CUR||F

2.

Goreinov, Tyrtyshnikov, and Zamarashkin:
• Scattering applications with large matrices with low-rank blocks.
• Relate to maximum volume concept in interpolation theory.
• They call the CUR decomposition the pseudoskeleton component of A.
• Provable error bounds for ||A-CUR||2.

22

Fast Computation with Kernels

Q. SVD has been used to identify/extract linear structure from data. What about
non-linear structures, like multi-linear structures or non-linear manifold structure?

A. Kernel-based learning algorithms.

Algorithms extracting linear
structure can be applied to
G without knowing φ !

Isomap, LLE, Laplacian Eigenmaps, SDE, are all Kernel PCA for special Gram matrices.

However, running, e.g., SVD to extract linear structure from the Gram matrix still
requires O(m3) time.

We can apply CUR decompositions to speed up such calculations.

inner productPSD matrix

23

Fast Computation with Kernels (cont’d)
Note: The CUR decomposition of an SPSD matrix is not SPSD.

• Even if R=CT, due to the form of U.

Goal: Obtain provable bounds for a CWk
+CT decomposition.

• C consists of a small number of representative data points.

• W consists of the induced subgraph defined by those points.

24

Fast Computation with Kernels (cont’d)

For an SPSD kernel matrix G = XXT, if we use the “optimal” U (=Wk
+), then:

If the sampling probabilities were: pi = ||G(i)||2/||G||F2

• they would provide a bias towards data points that are more
``important’’ - longer and/or more representative.

• the additional error would be ε||G||F and not ε Σi Gii
2= ε||X||F

2.

Our (provable) sampling probabilities ignore correlations:

pi = Gii
2/ Σi Gii

2 = ||X(i)||2/||X||F2

25

Fast Computation with Kernels (cont’d)

To construct landmarks, randomly
sample with the “right” probabilities:

for outliers,

uniform sampling.

To construct a coarse-grained
version of the data graph:

Construct landmarks,

Partition/Quantization,

Diffusion wavelets.

Kernel-based
diffusion

Adjacency matrix, t=0 Adjacency matrix, t=t*

26

CUR and gene microarray data

Exploit structural property of CUR (or kernel-CUR) in biological applications:

Common in Biological/Chemical/Medical applications of PCA:

• Explain the singular vectors, by mapping them to meaningful biological processes.

• This is a “challenging” task (think: reification)!

CUR is a low-rank decomposition in terms of the data that practitioners understand.

• Use it to explain the data and do dimensionality reduction, classification, clustering.

Gene microarray data: Mahoney, Drineas, and Alter (UT Austin) (sporulation and cell cycle data).

Find a “good” set of genes and arrays to
include in C and R?

Provable and/or heuristic strategies
are acceptable.

Optimal U

genes

Experimental conditions

27

Datasets modeled as tensors

Goal: Extract structure from a tensor dataset A (naively, a dataset
subscripted by multiple indices) using a small number of samples.

Mode 2

Mode 1

Mode 3 Q. What do we know about
tensor decompositions?

A. Not much, although tensors
arise in numerous applications.

m x n x p tensor A

28

Tensors in Applications

Tensors appear both in Math and CS.

• Represent high dimensional functions.

• Connections to complexity theory (i.e., matrix multiplication complexity).

• Statistical applications (i.e., Independent Component Analysis, higher order
statistics, etc.).

• Large data-set applications (e.g., Medical Imaging & Hyperspectral Imaging)

Problem: However, there does not exist a definition of tensor rank (and
associated tensor SVD) with the – nice – properties found in the matrix case.

Heuristic solution: “unfold” the tensor along a mode and apply Linear Algebra.

29

The TensorCUR algorithm (3-modes)

Choose the preferred mode α (time)

Pick a few representative snapshots:

Express all the other snapshots in terms of the representative snapshots.

n environmental
conditions

m genes

p time/frequency slices

n environmental
conditions

m genes

2 samples
randomly sample

30

The TensorCUR algorithm (cont’d)

Let R denote the tensor of the sampled snapshots.

Express the remaining images as linear combinations
of the sampled snapshots.

n environmental
conditions

m genes

2 samples

n environmental
conditions

m genes

p time steps

First, pick a constant number of “fibers” of the tensor A
(the red dotted lines).

Express the remaining snapshots as linear combination
of the sampled snapshots.

sampled
snapshots

sampled
fibers

31

The TensorCUR algorithm (cont’d)

Theorem:

Best rank ka
approximation to A[a]

Unfold R along the α dimension
and pre-multiply by CU

How to proceed:

Can recurse on each sub-tensor in R,

or do SVD, exact or approximate,

or do kernel-based diffusion analysis,

or do wavelet-based methods.

TensorCUR:

Framework for dealing with very large
tensor-based data sets,

to extract a “sketch” in a principled
and optimal manner,

which can be coupled with more
traditional methods of data analysis.

32

33

34

Coupling sampling with finer methods

Apply random sampling methodology and kernel-based Laplacian methods to
large physical and chemical and biological data sets.

Common application areas of large data set analysis:
• telecommunications,
• finance,
• web-based modeling, and
• astronomy.

Scientific data sets are quite different:
• with respect to their size,
• with respect to their noise properties, and
• with respect to the available field-specific intuition.

35

Data sets being considered

Sequence and mutational data from G-protein coupled receptors
• to identify mutants with enhanced stability properties,

Genomic microarray data
• to understand large-scale genomic and cellular behavior,

Hyperspectral colon cancer data
• for improved detection of anomalous behavior, and

Time-resolved fMRI data
• to better represent large, complex visual brain-imaging data, and

Simulational data
• to more efficiently conduct large scale computations.

36

Sampling the hyperspectral data
Sample slabs depending on total absorbtion:

Sample fibers uniformly (since intensity depends on stain).

37

Look at the exact 65-th slab.

38

The 65-th slab approximately reconstructed

This slab was
reconstructed
by approximate
least-squares
fit to the basis
from slabs 41
and 50, using
1000 (of 250K)
pixels/fibers.

39

Tissue Classification - Exact Data

40

Tissue Classification - Ns=12 & Nf=1000

41

Overview and Summary

• Pass-Efficient Model and Random Sampling
• Matrix Multiplication
• Singular Value Decomposition
• Lower Bounds
• CUR Decomposition
• Kernel-based data sets and KernelCUR
• Tensor-based data sets and TensorCUR
• Large scientific (e.g., chemical and biological) data

	Fast Monte Carlo Algorithms for Matrix Operations & Massive Data Set Analysis
	Randomized Linear Algebra Algorithms
	Applications of these Algorithms
	Review of Linear Algebra
	Overview and Summary
	The Pass Efficient Model
	Approximating Matrix Multiplication
	Matrix multiplication algorithm
	Notes about the algorithm
	Error bounds for the algorithm
	Fast - O(n) - SVD computations
	Lower Bounds
	Example of randomized SVD
	Example of randomized SVD (cont’d)	
	A novel CUR matrix decomposition
	The CUR decomposition
	The CUR decomposition (cont’d)
	Computing U
	Error bounds for CUR
	Other (randomized) CUR decompositions
	Other (non-randomized) CUR decompositions
	Fast Computation with Kernels
	Fast Computation with Kernels (cont’d)
	Fast Computation with Kernels (cont’d)
	Fast Computation with Kernels (cont’d)
	CUR and gene microarray data
	Datasets modeled as tensors
	Tensors in Applications
	The TensorCUR algorithm (3-modes)
	The TensorCUR algorithm (cont’d)
	The TensorCUR algorithm (cont’d)
	Coupling sampling with finer methods
	Data sets being considered
	Sampling the hyperspectral data
	Look at the exact 65-th slab.
	The 65-th slab approximately reconstructed
	Tissue Classification - Exact Data
	Tissue Classification - Ns=12 & Nf=1000
	Overview and Summary

