Fast Monte Carlo Algorithms for Matrix Operations and Large Data Set Analysis

Michael W. Mahoney

Department of Mathematics
Yale University
michael.mahoney@yale.edu
http://www.cs.yale.edu/homes/mmahoney

 $\begin{array}{c} \textit{Joint work with:} \\ \textit{Petros Drineas and Ravi Kannan} \\ \textit{and with:} \end{array}$

S. Lafon, A. Lee, M. Maggioni, and R. Coifman

Overview and Summary

- Pass-Efficient Model and Random Sampling
- Matrix Multiplication
- Singular Value Decomposition
- CUR Decomposition
- Lower Bounds
- Kernel-based data sets and KernelCUR
- Tensor-based data sets and TensorCUR
- Large scientific (e.g., chemical and biological) data

Goal: To develop and analyze fast Monte Carlo algorithms for performing useful computations on large matrices.

- Matrix Multiplication
- Computation of the Singular Value Decomposition
- ullet Computation of the CUR Decomposition
- Testing Feasibility of Linear Programs

Such matrix computations generally require time which is *superlinear* in the number of nonzero elements of the matrix, e.g., n^3 in practice.

These and related algorithms useful in applications where data sets are modeled by matrices and are extremely large.

Applications of these Algorithms

Matrices arise, e.g., since n objects (documents, genomes, images, web pages), each with m features, may be represented by a matrix $A \in \mathbb{R}^{m \times n}$.

- Covariance Matrices
- Latent Semantic Indexing
- DNA Microarray Data
- Eigenfaces and Image Recognition
- Similarity Query
- Matrix Reconstruction
- Numerous Linear Programming Applications
- ullet Design of Approximation Algorithms for Classical CS NP-hard Optimization Problems

Linear Algebra Review

For $A \in \mathbb{R}^{m \times n}$ let $A^{(j)}$, $j=1,\ldots,n$, denote the j-th column of A and $A_{(i)}$, $i=1,\ldots,m$, denote the i-th row of A.

$$\begin{aligned} \|A\|_{2} &= \sup_{x \in \mathbb{R}^{n}, \ x \neq 0} \frac{|Ax|}{|x|} \\ \|A\|_{F} &= \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2} = \left(\operatorname{Tr}\left(A^{T}A\right)\right)^{1/2} \\ \|A\|_{2} &\leq \|A\|_{F} \leq \sqrt{n} \|A\|_{2} \end{aligned}$$

Theorem. [SVD] If $A \in \mathbb{R}^{m \times n}$, then there exist orthogonal matrices U and V and a matrix $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_{\rho})$, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\rho} \geq 0$, such that

$$A = U\Sigma V^T = U_r \Sigma_r V_r^T = \sum_{t=1}^r \sigma_t u^t v^{t^T}.$$

 $U=[u^1u^2\dots u^m]$, $V=[v^1v^2\dots v^n]$, and Σ constitute the Singular Value Decomposition (SVD) of A.

- σ_i are the singular values of A
- ullet u^i , v^i are the i-th left and the i-th right singular vectors

Linear Algebra Review, Cont.

Recall that:

$$\bullet \begin{cases}
Av^i = \sigma_i u^i \\
A^T u^i = \sigma_i v^i
\end{cases}$$

Theorem. Let $A_k = U_k \Sigma_k V_k^T = \sum_{t=1}^k \sigma_t u^t v^{t^T}$:

•
$$A_k = U_k U_k^T A = \left(\sum_{t=1}^k u^t u^{t^T}\right) A$$

•
$$A_k = AV_kV_k^T = A\left(\sum_{t=1}^k v^t v^{t^T}\right)$$

•
$$||A - A_k||_2 = \min_{D \in \mathbb{R}^{m \times n}: rank(D) \le k} ||A - D||_2$$

•
$$||A - A_k||_F^2 = \min_{D \in \mathbb{R}^{m \times n} : rank(D) \le k} ||A - D||_F^2$$

•
$$\max_{t:1 \le t \le n} |\sigma_t(A+E) - \sigma_t(A)| \le ||E||_2$$

•
$$\sum_{k=1}^{n} (\sigma_k(A+E) - \sigma_k(A))^2 \le ||E||_F^2$$

The Pass-Efficient Model

Amount of *disk space* has increased enormously; *RAM* and *computing speeds* have increased less rapidly.

We can *store* large amounts of data but we **cannot** *process* these data with traditional algorithms.

In the Pass-Efficient Model:

- Data are assumed to be stored on disk.
- The only access the algorithm has to the data is with a pass, where a pass is a sequential read of the entire input from disk where only a constant amount of processing time is permitted per bit read.
- An algorithm is allowed additional RAM space and additional computation time.

An algorithm is *pass-efficient* if it requires a small constant number of passes and sublinear additional time and space to compute a *description* of the solution.

If data are $A \in \mathbb{R}^{m \times n}$, then algorithms which require additional time and space that is O(m+n) or O(1) are pass-efficient.

Approximating Matrix Multiplication

For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, AB may be written as the sum of n rank-one matrices:

$$AB = \sum_{t=1}^{n} A^{(t)} B_{(t)}.$$

$$\begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} = \sum_{t=1}^{n} \begin{pmatrix} & \\ & \\ & A^{(t)} \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}.$$

BasicMatrixMultiplication (BMMA) Algorithm Summary.

- Given $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $c \in \mathbb{Z}^+$, and $\{p_i\}_{i=1}^n$.
- ullet Randomly sample c columns of A according to $\{p_i\}_{i=1}^n$ and rescale each column by $1/\sqrt{cp_{i_t}}$ to form $C\in\mathbb{R}^{m imes c}$.
- Sample the corresponding c rows of B and rescale each row by $1/\sqrt{cp_{i_t}}$ to form $R \in \mathbb{R}^{c \times p}$.
- Return P = CR.

$$P = CR = \sum_{t=1}^{c} C^{(t)} R_{(t)} = \sum_{t=1}^{c} \frac{1}{cp_{i_t}} A^{(i_t)} B_{(i_t)}$$

Implementation of the BMMA

- Recall, $A: \mathbb{R}^n \to \mathbb{R}^m$ and $B: \mathbb{R}^p \to \mathbb{R}^n$.
- \bullet Uniform sampling: O(1) space and time to sample and O(m+p) space and time to construct C and R
- Nonuniform sampling: for nice probabilities one pass and O(n) (or O(1) if $B=A^T$) space and time to construct probabilities and a second pass and O(m+p) space and time to construct C and R.

Def: A set of sampling probabilities $\{p_i\}_{i=1}^n$ are *nearly* optimal probabilities if \exists a positive constant $\beta \leq 1$:

$$p_k \ge \frac{\beta |A^{(k)}| |B_{(k)}|}{\sum_{k'=1}^{n} |A^{(k')}| |B_{(k')}|}$$

Note: If $\beta=1$ then $\mathbf{E}\left[\left\|AB-CR\right\|_F^2\right]$ is minimized.

Lemma. [DKM]

$$\mathbf{E} [(CR)_{ij}] = (AB)_{ij}$$

$$\mathbf{Var} [(CR)_{ij}] = \frac{1}{c} \sum_{k=1}^{n} \frac{A_{ik}^{2} B_{kj}^{2}}{p_{k}} - \frac{1}{c} (AB)_{ij}^{2}$$

$$\mathbf{E} [\|AB - CR\|_{F}^{2}] = \sum_{i=1}^{m} \sum_{j=1}^{p} \mathbf{Var} [(CR)_{ij}].$$

Theorem. [DKM] If $\{p_i\}_{i=1}^n$ are nearly optimal probabilities then

$$\mathbf{E}\left[\left\|AB - CR\right\|_{F}\right] \leq \frac{1}{\sqrt{\beta c}} \left\|A\right\|_{F} \left\|B\right\|_{F}.$$

Let $\delta \in (0,1)$ and $\eta = 1 + \sqrt{(8/\beta) \log(1/\delta)}$; then with probability at least $1 - \delta$:

$$||AB - CR||_F \le \frac{\eta}{\sqrt{\beta c}} ||A||_F ||B||_F.$$

Proof. Expectation straightforward; whp uses Doob martingales and Hoeffding-Azuma inequality.

Corollary. [DKM] If $B=A^T$ and $\{p_i\}_{i=1}^n$ are nearly optimal probabilities, i.e., $p_k\geq \frac{\beta\left|A^{(k)}\right|^2}{\|A\|_F^2}$, then

$$\mathbf{E}\left[\left\|AA^{T} - CC^{T}\right\|_{F}\right] \leq \frac{1}{\sqrt{\beta c}} \left\|A\right\|_{F}^{2}$$

and with probability at least $1 - \delta$:

$$\left\|AA^T - CC^T\right\|_F \le \frac{\eta}{\sqrt{\beta c}} \left\|A\right\|_F^2.$$

$$\left(\begin{array}{ccc} & & & \\ & & A & & \\ & & & \\ & & & \\ \end{array} \right) = \left(\begin{array}{ccc} & & \\ & & \\ & & \\ \end{array} \right) \left(\begin{array}{ccc} & & \\ & & \\ \end{array} \right)$$

Approximating the SVD of a Matrix

Goal: Given a matrix $A \in \mathbb{R}^{m \times n}$ we wish to approximate its top k singular values and the corresponding singular vectors in a constant number of passes through the data and additional space and time that is either O(m+n) or O(1), independent of m and n.

LINEARTIMESVD Algorithm Summary. (DFKVV99)

- ullet Given $A \in \mathbb{R}^{m \times n}$, $c, k \in \mathbb{Z}^+$, and $\left\{p_i\right\}_{i=1}^n$.
- Randomly sample c columns of A according to $\{p_i\}_{i=1}^n$ and rescale each column by $1/\sqrt{cp_{i_t}}$ to form $C \in \mathbb{R}^{m \times c}$.
- Compute $C^TC \in \mathbb{R}^{c \times c}$ (recall $CC^T \approx AA^T$) and its SVD; the singular vectors of C^TC are right singular vectors of C.
- Compute $H_k(=U_C)$, the top k left singular vectors of C and approximations to the left singular vectors of A.

Note: Sampling probabilities p_k must be chosen carefully; assume they are nearly optimal.

The LinearTimeSVD Algorithm, Cont.

Theorem. [DFKVV99,DKM] Construct H_k with the LINEARTIMESVD algorithm by sampling c columns of A with nearly optimal probabilities and let $\eta = 1 + \sqrt{(8/\beta) \log(1/\delta)}$. Let $\epsilon > 0$. If $c = \Omega(k\eta^2/\epsilon^4)$, then

$$||A - H_k H_k^T A||_F \le ||A - A_k||_F + \epsilon ||A||_F$$

in expectation and with high probability. In addition, if $c = \Omega(\eta^2/\epsilon^4)$, then

$$||A - H_k H_k^T A||_2 \le ||A - A_k||_2 + \epsilon ||A||_F$$

in expectation and with high probability.

Proof. Combine $\|\cdot\|_F^2$ and $\|\cdot\|_2^2$ results with bound on $\|AA^T - CC^T\|_F$ from approximate matrix multiplication algorithm. \square

Lower Bounds

- How many queries does a sampling algorithm need to approximate a given function accurately with high probability?
- ZBY03 proves lower bounds for the low rank matrix approximation problem and the matrix reconstruction problem.
 - Any sampling algorithm that with high probability finds a good low rank approximation requires $\Omega(m+n)$ queries.
 - Even if the algorithm is given the exact weight distribution over the columns of a matrix it will still require $\Omega(k/\epsilon^4)$ queries.
 - Finding a matrix D such that $\|A-D\|_F \leq \epsilon \|A\|_F$ requires $\Omega(mn)$ queries and that finding a D such that $\|A-D\|_2 \leq \epsilon \|A\|_F$ requires $\Omega(m+n)$ queries.
- Applied to our results:
 - The LINEARTIMESVD algorithm is optimal with respect to $||\cdot||_F$ bounds; see also DFKVV99.
 - The ConstantTimeSVD algorithm is optimal with respect to $||\cdot||_F$ bounds up to polynomial factors; see also FKV98.
 - The CUR algorithm is optimal for constant ϵ .

Example of randomized SVD

Compute the top k left singular vectors of the matrix C and store them in the 512-by-k matrix H_k .

Example of randomized SVD (cont'd)

A and $H_kH_k^TA$ are close.

A novel CUR matrix decomposition

- 1. A "sketch" consisting of a few rows/columns of the matrix is adequate for efficient approximations.
- 2. Create an approximation to the original matrix of the following form:

3. Given a query vector x, instead of computing $A \cdot x$, compute CUR $\cdot x$ to identify its nearest neighbors.

$$\max_{x:|x|=1} ||Ax - CURx|| = ||A - CUR||_2 \le \epsilon ||A||_F$$

The CUR decomposition

Given a large m-by-n matrix A (stored on disk), compute a decomposition CUR of A such that:

$$\begin{pmatrix} & & \\ & A & \\ & & \\$$

- 1. C consists of $c = O(k/\epsilon^2)$ columns of A.
- 2. R consists of $r = O(k/\epsilon^2)$ rows of A.
- 3. C(R) is created using importance sampling, e.g. columns (rows) are picked in i.i.d. trials with respect to probabilities

$$p_i = |A^{(i)}|^2 / \sum_i |A^{(i)}|^2$$

The CUR decomposition (cont'd)

Given a large m-by-n matrix A (stored on disk), compute a decomposition CUR of A such that:

- 4. C, U, R can be stored in O(m+n) space, after making two passes through the entire matrix A, using O(m+n) additional space and time.
- 5. The product CUR satisfies (with high probability)

$$||A - CUR||_F \le ||A - A_k||_F + \epsilon ||A||_F$$
$$||A - CUR||_2 \le \epsilon ||A||_F$$

Computing U

Intuition:

The CUR algorithm essentially expresses every row of the matrix A as a linear combination of a small subset of the rows of A.

- This small subset consists of the rows in R.
- Given a row of A say $A_{(i)}$ the algorithm computes a good fit for the row $A_{(i)}$ using the rows in R as the basis, by approximately solving

$$\min_{u} \left\| \left(\begin{array}{ccc} A_{(i)} & \end{array} \right) - \left(\begin{array}{ccc} u \end{array} \right) \cdot \left(\begin{array}{ccc} R & \end{array} \right) \right\|_{2}$$

Notice that only c = O(1) element of the i-th row are given as input.

However, a vector of coefficients u can still be computed.

Computing U (cont'd)

Given c elements of $A_{(i)}$ the algorithm computes a good fit for the row $A_{(i)}$ using the rows in R as the basis, by approximately solving:

$$\min_{u} \left\| \left(egin{array}{ccc} ilde{A}_{(i)} & \left) - \left(egin{array}{ccc} u \end{array}
ight) \cdot \left(egin{array}{ccc} ilde{R} \end{array}
ight)
ight\|_{2}$$

However, our CUR decomposition approximates the vectors u instead of exactly computing them.

Open problem: Is it possible to improve our error bounds using the optimal coefficients?

Error bounds for CUR

Assume A_k is the "best" rank k approximation to A (through SVD). Then, if we pick $O(k/\epsilon^2)$ rows and $O(k/\epsilon^2)$ columns,

$$||A - CUR||_F^2 \le ||A - A_k||_F^2 + \varepsilon ||A||_F^2$$

If we pick $O(1/\epsilon^2)$ rows and $O(1/\epsilon^2)$ columns,

$$||A - CUR||_{2}^{2} \leq ||A - A_{k}||_{2}^{2} + \varepsilon ||A||_{F}^{2}$$

$$\leq \left(\frac{1}{k+1} + \varepsilon\right) ||A||_{F}^{2}$$

$$\leq 2\varepsilon ||A||_{F}^{2}$$

Other CUR decompositions (1)

Computing U in constant time (instead of O(m+n))

Our CUR decomposition computes a provably efficient U in linear time.

In recent work (DM '04), we demonstrate how to compute a provably efficient U in constant time - the Constant TimeCUR decomposition.

Our Constant Time CUR decomposition:

- samples $O(\text{poly}(k,\epsilon))$ rows and columns of A,
- needs an extra pass through the matrix A,
- significantly improves the error bounds of Frieze, Kannan, and Vempala, FOCS '98, JACM '04,
- is useful for designing approximation algorithms,
- but has a more complicated analysis.

Other CUR decompositions (2)

Solving for the optimal U

Given c elements of the i-th row of A, the algorithm computes the "best fit" for the i-th row using the rows in R as the basis, by solving:

$$\min_{u} \left\| \begin{pmatrix} \tilde{A}_{(i)} \end{pmatrix} - \begin{pmatrix} u \end{pmatrix} \cdot \begin{pmatrix} \tilde{R} \end{pmatrix} \right\|_{2} \longrightarrow u = \tilde{R}^{+} \tilde{A}_{(i)}$$

$$1 \times c \qquad 1 \times r \qquad r \times c$$

Using the above strategy, we can also compute a CUR decomposition, with a different U in the middle.

(This decomposition has been experimentally proposed in the context of fast kernel computation.)

Open problem: What is the improvement?

Other CUR decompositions (3)

An alternative perspective:

$$\begin{pmatrix} & & \\ & A & & \\ & & \\ & & \end{pmatrix} \approx \begin{pmatrix} & & \\ & C & \\ & &$$

Q. Can we find the "best" set of columns and rows to include in C and R?

Randomized or quasi-randomized or deterministic strategies are acceptable.

Results by S. A. Goreinov, E. E. Tyrtyrshnikov, and N.L. Zamarashkin imply (rather weak) error bounds if we choose the columns and rows of A that define a parallelpiped of maximal volume.

Fast Computation of Kernels

- Q. SVD has been used to identify/extract linear structure from data. What about non-linear structures, like multi-linear structures or non-linear manifold structure?
- A. Kernel-based learning algorithms.

Data
$$\Psi = \{\Psi_{(1)}, \dots, \Psi_{(m)}\} \in R^{m \times n}$$

Mapping $\phi : \Psi \to \Phi$ (feature space)
Gram Matrix $G_{ij} = G\left(\Psi_{(i)}, \Psi_{(j)}\right) = \left\langle \phi\left(\Psi_{(i)}\right), \phi\left(\Psi_{(j)}\right) \right\rangle$
PSD matrix inner product

Algorithms extracting linear structure can be applied to G without knowing ϕ !

Isomap, LLE, Laplacian Eigenmaps, SDE, are all Kernel PCA for special Gram matrices.

However, running, e.g., SVD to extract linear structure from the Gram matrix still requires $O(m^3)$ time.

We can apply CUR-type decompositions to speed up such calculations.

Fast Computation of Kernels (cont'd)

A potential issue is that the CUR decomposition of the Gram matrix is not a positive semidefinite matrix.

However, if we compute the "optimal" U matrix, then the CUR approximation to the optimal matrix is PSD.

For the special case of PSD matrix $G = XX^T$ for some matrix X, we can prove that using the "optimal" U guarantees:

$$\|G - CUC^T\|_F^2 \le \|G - G_k\|_F^2 + \epsilon \|X\|_F^4$$

$$\|X\|_F^4 \text{ vs. } \|G\|_F^2 = \|XX^T\|_F^2$$

What we can (almost) do with kernels

Adjacency matrix, t=0

Kernel-based diffusion Adjacency matrix, t=t*

To construct a coarse-grained version of the data graph:

- > Construct landmarks,
- > Partition/Quantization,
- > Diffusion wavelets.

To construct landmarks, randomly sample with the "right" probabilities:

- $p_i = |A^{(i)}|^2 / ||A||_F^2$
- $ightharpoonup p_i \sim 1/|A^{(i)}|$ for outliers,
- uniform sampling.

Datasets modeled as tensors

Our goal:

Extract structure from a tensor dataset A using a small number of samples.

 $m \times n \times p$ tensor A

Q. What do we know about tensor decompositions?

A. Not much, although tensors arise in numerous applications.

Tensors appear both in Math and CS.

- Represent high dimensional functions
- Connections to complexity theory (i.e., matrix multiplication complexity)
- Data Set applications (i.e., Independent Component Analysis, higher order statistics, etc.)

Also, many practical applications, e.g., Medical Imaging, Hyperspectral Imaging, video, Psychology, Chemometrics, etc.

However, there does not exist a definition of tensor rank (and associated tensor SVD) with the - nice - properties found in the matrix case.

Tensor rank

A definition of tensor rank

Given a tensor

$$A \in \mathcal{R}^{n_1 \times n_2 \times \dots n_d}$$

find the minimum number of rank one tensors into it can be decomposed.

$$A = \sum_{i=1}^{r} u_1^i \otimes u_2^i \otimes \ldots \otimes u_d^i$$
outer product

- > agrees with matrices for d=2
- > related to computing bilinear forms and algebraic complexity theory.

BUT

- > computing it is NP-hard
- > only weak bounds are known
- > tensor rank depends on the underlying ring of scalars
- > successive rank one approximations are no good

Tensor α -rank

The α -rank of a tensor

Given

$$A \in \mathcal{R}^{n_1 \times n_2 \times \dots n_d}$$

create the "unfolded" matrix

$$A_{[\alpha]} \in R^{n_{\alpha} \times N_{\alpha}}$$

$$N_{\alpha} = \prod_{i \neq \alpha} n_i$$

and compute its rank, called the α -rank.

$$A \xrightarrow{\text{"unfold"}} n$$

Pros:

· Easily computable,

Cons:

- different α -ranks are different,
- information is lost.

$$A_{[\alpha]}$$

$$n^{d-1}$$

Tensors in real applications

3 classes of tensors in data applications

- 1. All modes are comparable (e.g., tensor faces, chemometrics)
- 2. A priori dominant mode (e.g., coarse scales, microarrays vs. time, images vs. frequency)
- 3. All other combinations

Drineas and Mahoney '04, TensorSVD paper deals with (1).

Drineas and Mahoney '04, TensorCUR paper deals with (2).

We will focus on (2), where there is a preferred mode.

The TensorCUR algorithm (3-modes)

- \triangleright Choose the preferred mode α (time)
- ightharpoonup Pick a few representative snapshots: $p_t = \frac{\|A(:,:,t)\|_F^2}{\sum_{t=1}^m \|A(:,:,t)\|_F^2}$
- > Express all the other snapshots in terms of the representative snapshots.

The TensorCUR algorithm (cont'd)

- > Let R denote the tensor of the sampled snapshots.
- > Express the remaining images as linear combinations of the sampled snapshots.

- > First, pick a constant number of "fibers" of the tensor A (the red dotted lines).
- > Express the remaining snapshots as linear combination of the sampled snapshots.

$$\min_{u} \sum_{i,j} \left(A(i,j,s) - \sum_{s \in R} u_s A(i,j,s)\right)^2$$
 sampled sampled fibers snapshots

The TensorCUR algorithm (cont'd)

$$\begin{array}{c|c} \hline \textbf{Theorem:} & \|A-CU\times_{\alpha}R\|_F^2 \leq \left\|A_{[\alpha]}-\left(A_{[\alpha]}\right)_{k_{\alpha}}\right\|_F^2 + \epsilon \|A\|_F^2 \\ & \sqrt{} & \sqrt{} \\ & \text{Unfold R along the α dimension} \\ & \text{and pre-multiply by CU} & \text{Best rank k_a} \\ & \text{approximation to $A_{[a]}$} \\ \end{array}$$

How to proceed:

- > Can recurse on each sub-tensor in R,
- or do SVD, exact or approximate,
- > or do kernel-based diffusion analysis,
- > or do wavelet-based methods.

TensorCUR:

- > Framework for dealing with very large tensor-based data sets,
- > to extract a "sketch" in a principled and optimal manner,
- > which can be coupled with more traditional methods of data analysis.

Apply random sampling methodology and kernel-based diffusion maps techniques to large physical and chemical and biological data sets.

Common application areas of large data set analysis:

- telecommunications,
- finance,
- web-based modeling, and
- astronomy.

Scientific data sets are quite different:

- with respect to their size,
- with respect to their noise properties, and
- with respect to the available field-specific intuition.

Data sets being considered:

- sequence and mutational data from G-protein coupled receptors
 - to identify mutants with enhanced stability properties,
- genomic microarray data
 - to understand large-scale genomic and cellular behavior,
- hyperspectral colon cancer data
 - to better represent large, complex visual data for improved detection of anomalous behavior, and
- simulational data
 - to more efficiently conduct large scale computations.