Fast Monte Carlo Algorithms for
Matrix Operations and Large
Data Set Analysis

Michael W. Mahoney

Department of Mathematics
Yale University
michael.mahoney@yale.edu
http://www.cs.yale.edu/homes/mmahoney

Joint work with:
Petros Drineas and Ravi Kannan

and with:
S. Lafon, A. Lee, M. Maggioni, and R. Coifman

Overview and Summary

Pass-Efficient Model and Random Sampling
Matrix Multiplication

Singular Value Decomposition

CUR Decomposition

Lower Bounds

Kernel-based data sets and Kernel CUR
Tensor-based data sets and TensorCUR

Large scientific (e.g., chemical and biological) data

Goal: To develop and analyze fast Monte Carlo
algorithms for performing useful computations on large
matrices.

e Matrix Multiplication
e Computation of the Singular Value Decomposition
e Computation of the CU R Decomposition

e Testing Feasibility of Linear Programs

Such matrix computations generally require time which
is superlinear in the number of nonzero elements of
the matrix, e.g., n° in practice.

These and related algorithms useful in applications
where data sets are modeled by matrices and are
extremely large.

Applications of these Algorithms

Matrices arise, e.g., since n objects (documents,
genomes, images, web pages), each with m features,
may be represented by a matrix A € R™*".

e Covariance Matrices

e Latent Semantic Indexing

e DNA Microarray Data

e Eigenfaces and Image Recognition

e Similarity Query

e Matrix Reconstruction

e Numerous Linear Programming Applications

e Design of Approximation Algorithms for Classical
CS N P-hard Optimization Problems

Linear Algebra Review

For A € R™*" let AW, 7 =1,...,n, denote the j-th column
of Aand Ay, @ = 1,...,m, denote the i-th row of A.

A
1A]l, = sup,egn, o0 Top

m n 1/2 1/2
Al = (Zi:l Zj:l A?j) — ('I‘r (ATA)) /
[All; < [|AllF < Vv lAll,

Theorem. [SVD] If A € R™*", then there exist
orthogonal matrices U and V and a matrix X =
diag(o1,...,0,), 01 > 02> ... > 0, > 0, such that

A=UsVT =0,V =Y outet
t=1

U= [u"w?...u™m], V = [v'v?...v"], and & constitute the
Singular Value Decomposition (SVD) of A.

e 0; are the singular values of A

e u' v’ are the i-th left and the i-th right singular vectors

Linear Algebra Review, Cont.

Recall that:
. Av® = o;u’
ATy = o0

 { M=o
4l = iy o3

Theorem. Let Ay = UpSiViE = S8 oputo

t1,

o A =UrUlA= (Zle ututT) A

o A= AV,VT = A (zf:

o ||A— Ai||, =min

t 1
11}'0)

DeRmxn.rank(D)<k |A — D],

2 : 2
o [|[A—Akllr= UL B cgmxn. rank(D) <k |A—D|%

() maXt:1§t§n|at(A+E) - Ut(A)| S ||EH2

¢ Yiii(ok(A+ E) —ar(A)* < |IE|l7

The Pass-Efficient Model

Amount of disk space has increased enormously; RAM and
computing speeds have increased less rapidly.

We can store large amounts of data but we cannot process these
data with traditional algorithms.

In the Pass-Efficient Model:

e Data are assumed to be stored on disk.

e The only access the algorithm has to the data is
with a pass, where a pass is a sequential read of the
entire input from disk where only a constant amount
of processing time is permitted per bit read.

e An algorithm is allowed additional RAM space and
additional computation time.

An algorithm is pass-efficient if it requires a small constant number
of passes and sublinear additional time and space to compute a
description of the solution.

If data are A € R™*", then algorithms which require additional
time and space that is O(m 4+ n) or O(1) are pass-efficient.

Approximating Matrix Multiplication

For A € R™*™ and B € R"*P, AB may be written as
the sum of n rank-one matrices:

n

AB =) AWBy.
t=1
A B = t:Zl A0 | (B

BASICMATRIXMULTIPLICATION (BMMA) Algorithm
Summary.

e Given A € R™", B € R"*?, c € Z*, and {pi}_,.

e Randomly sample ¢ columns of A according to {p;}._; and
rescale each column by 1/, /¢p;, to form C € R™*<.

e Sample the corresponding ¢ rows of B and rescale each row
by 1/,/¢pi; to form R € R*P.

e Return P = CR.

P=CR=Y¢,CWRy =3¢ LAWB,,

t=1 cp;,

12

Implementation of the BMMA

e Recall, A: R®" - R™ and B : RP — R".

e Uniform sampling: O(1) space and time to sample
and O(m + p) space and time to construct C and
R

e Nonuniform sampling: for nice probabilities one
pass and O(n) (or O(1) if B = A1) space and time
to construct probabilities and a second pass and
O(m + p) space and time to construct C' and R.

Def: A set of sampling probabilities {p;}.__, are nearly
optimal probabilities if 3 a positive constant 5 < 1:

o> AW \k/\Buﬂ)\
> =1 [AE] | B

Note: If 3 =1 then E [HAB — CR||%} is minimized.

17

Lemma. [DKM]

E[(CR)i] = (AB);
Var[(CR);] = - zn: AiZBkj ~ LBy
C 1 k C

p

E|||AB-CRI}| = >3 Var[(CR)y].

i=1 j=1

Theorem. [DKM] If {p;},_, are nearly optimal
probabilities then

1

E[||AB - CR||,] < Ally 1Bl g
[Irl < Z= 1 4lle 1Bl

Let§ € (0,1) andn=1++/(8/8)1log(1/4); then with
probability at least 1 — §:

U
|AB ~CRIlp < = Allp 1Bl

Proof. Expectation straightforward; whp uses Doob
martingales and Hoeffding-Azuma inequality. O

18

Corollary. [DKM] If B = AT and {p;};_, are nearly
o

optimal probabilities, i.e., pr >

T _coT oare
e By A

and with probability at least 1 — 9:

|44 00| < =114l

19

Approximating the SVD of a Matrix

Goal: Given a matrix A € R™*"™ we wish to
approximate its top k singular values and the
corresponding singular vectors in a constant number of
passes through the data and additional space and time
that is either O(m 4+ n) or O(1), independent of m
and n.

LINEARTIMESVD Algorithm Summary. (DFKVV99)

e Given A € R™ " ¢,k € Z", and {p;};_,.

e Randomly sample ¢ columns of A according to {p;},_, and
rescale each column by 1/,/¢p;, to form C' € R™*¢.

e Compute CTC € R*¢ (recall CCT ~ AAT) and its SVD;
the singular vectors of CT'C' are right singular vectors of C.

e Compute Hi(= Uc), the top k left singular vectors of C
and approximations to the left singular vectors of A.

Note: Sampling probabilities pr must be chosen
carefully; assume they are nearly optimal.

29

The LinearTimeSVD Algorithm, Cont.

Theorem. [DFKVV99,DKM] Construct Hj with
the LINEARTIMESVD algorithm by sampling c
columns of A with nearly optimal probabilities and let
n=1++/(8/8)log(1/8). Lete > 0. Ifc = Q(kn?/e?),
then

|A— HeHy Al < A= Akllp + €l Al

In expectation and with high probability. In addition,
if c = Q(n?/e*), then

|A = HyHy Al|, < [[A— Agll, + €[Allp

in expectation and with high probability.

Proof. Combine ||-|[% and ||-||2 results with
bound on ||AAT — CCT||,. from approximate matrix
multiplication algorithm. O

33

Lower Bounds

How many queries does a sampling algorithm need to
approximate a given function accurately with high probability?

/BY03 proves lower bounds for the low rank matrix

approximation problem and the matrix reconstruction problem.

— Any sampling algorithm that with high probability finds a
good low rank approximation requires 2(m + n) queries.

— Even if the algorithm is given the exact weight distribution
over the columns of a matrix it will still require Q(k/e*)
queries.

— Finding a matrix D such that ||A — D|| < €||A]|
requires 2(mmn) queries and that finding a D such that
|A — DJ||, < €||A]| » requires €2(m + m) queries.

Applied to our results:

— The LINEARTIMESVD algorithm is optimal with respect
to ||-|| » bounds; see also DFKVV99.

— The CONSTANTTIMESVD algorithm is optimal with
respect to ||-|| bounds up to polynomial factors; see
also FKV98.

— The CUR algorithm is optimal for constant e.

55

b Example of randomized SVD
A

C

100

400 450 500 I il
20 80 140

Original matrix After sampling columns

Compute the top k left singular vectors of the matrix C and store them
in the 512-by-k matrix H,.

xample of randomized SVD (cont'd)

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

A and HH, A are close.

) A novel CUR matrix decomposition

1. A "sketch” consisting of a few rows/columns of the matrix is adequate for
efficient approximations.

2. Create an approximation o the original matrix of the following form:

Carefully

/chOSenU
A =] e (U)(0)

O(1) rows
O(1) columns

3. Given a query vector x, instead of computing A - x, compute CUR - x to identify
its nearest neighbors.

max ||Az — CURz| = ||A — CUR||5 < ¢||A||p

x|z|=1

) The CUR decomposition

Given a large m-by-n matrix A (stored on disk), compute a
decomposition CUR of A such that:

A = C (U)(R)
m X n m X C CXT X n

1. C consists of ¢ = O(k/€2) columns of A.
2. R consists of r = O(k/€2) rows of A.

3. C(R) is created using importance sampling, e.g. columns (rows)
are picked in i.i.d. trials with respect to probabilities

p; = |AW12/ 7, |AW)2

) The CUR decomposition (cont'd)

Given a large m-by-n matrix A (stored on disk), compute a decomposition
CUR of A such that:

4. C,U,R can be stored in O(m+n) space, after making two passes
through the entire matrix A, using O(m+n) additional space and fime.

5. The product CUR satisfies (with high probability)
|A—CUR|[[p < |A = Agllr + €l Allp

|A — CUR|[2 < €[|Allp

) Computing U

Intuition:

The CUR algorithm essentially expresses every row of the matrix A as a
linear combination of a small subset of the rows of A.

This small subset consists of the rows in R.

Given a row of A - say A, - the algorithm computes a good fit for
the row A using the rows in R as the basis, by approximately solving

S R I

1xn 1xr rXn

MiNgy

Notice that only c = O(1) element of the i-th row are given as input.

However, a vector of coefficients v can still be computed.

) Computing U (cont'd)

Given c elements of A, the algorithm computes a good fit for the row
Ay using the rows in R as the basis, by approximately solving:

(Ap)-(=)'(R)

1 xc 1xr rXc

MiNngy

2

However, our CUR decomposition approximates the vectors vinstead of
exactly computing them.

Open problem: TIs it possible to improve our error bounds using the
optimal coefficients?

) Error bounds for CUR

Assume A, is the "best" rank k approximation tfo A (through SVD).
Then, if we pick O(k/€?) rows and O(k/e?) columns,

|A— CUR|% < ||A— Agl|% +€||Al%
If we pick O(1/€2) rows and O(1/€2) columns,

|A - CURJ3

VA

|4 — Axll3 + €| Al %

(g +=) 1413

2
2¢||All 7

VA

I

) Other CUR decompositions (1)

Computing U in constant time (instead of O(m+n))

Our CUR decomposition computes a provably efficient U in linear time.

In recent work (DM '04), we demonstrate how to compute a provably
efficient U in constant time - the Constant TimeCUR decomposition.

Our Constant TimeCUR decomposition:
- samples O(poly(k,e)) rows and columns of A,
* needs an extra pass through the matrix A,

- significantly improves the error bounds of Frieze, Kannan, and
Vempala, FOCS '98, JACM '04,

+ is useful for designing approximation algorithms,

» but has a more complicated analysis.

) Other CUR decompositions (2)

Solving for the optimal U

Given c elements of the i-th row of A, the algorithm computes the
"best fit" for the i-th row using the rows in R as the basis, by solving:

(4w)-(w)'(R)

1xe 1xr rXc

~ ~

Using the above strategy, we can also compute a CUR decomposition, with a
different U in the middle.

(This decomposition has been experimentally proposed in the context of fast kernel computation.)

Open problem: What is the improvement?

10

) Other CUR decompositions (3)

An alternative perspective:

Q. Can we find the "best" set of
() () columns and rows to include in C and R?
C U R

Randomized or quasi-randomized or
deterministic strategies are acceptable.

Optimal U

Results by S. A. Goreinov, E. E. Tyrtyrshnikov, and N.L. Zamarashkin imply
(rather weak) error bounds if we choose the columns and rows of A that
define a parallelpiped of maximal volume.

11

) Fast Computation of Kernels

Q. SVD has been used to identify/extract linear structure from data. What about
non-linear structures, like multi-linear structures or non-linear manifold structure?

A. Kernel-based learning algorithms.

~
Data W = {W(qy,..., WV, } € R™*" Algorithms extracting linear
Mapping ¢ : W — & (feature space) < structure can be applied to
Gram Matrix Gy; = G (W), V() = (¢ (V)¢ (Y(»)) & without knowing ¢
PSD matrix inner product

Isomap, LLE, Laplacian Eigenmaps, SDE, are all Kernel PCA for special Gram matrices.

However, running, e.g., SVD to extract linear structure from the Gram matrix still
requires O(m3) time.

We can apply CUR-type decompositions to speed up such calculations.

12

) Fast Computation of Kernels (cont'd)

A potential issue is that the CUR decomposition of the Gram matrix is not a positive
semidefinite matrix.

However, if we compute the "optimal” U matrix, then the CUR approximation to the
optimal matrix is PSD.

For the special case of PSD matrix 6 = XX for some matrix X, we can prove that
using the "optimal” U guarantees:

|G — CUCT||Z < ||G — Gill% + €| X||%

IXN% vs. IGlIE = IXXT|Z

13

) What we can (almost) do with kernels

Adjacency matrix, =0 Adjacency matrix, t=t*
Kernel-based
diffusion
To construct a coarse-grained To construct landmarks, randomly
version of the data graph: sample with the "right" probabilities:
» Construct landmarks, > pi=]AD2/|AllZ
> Partition/Quantization, > i~ 1/[AD] for outliers,
> Diffusion wavelets. > uniform sampling.

14

) Datasets modeled as tensors

Our goal:

Extract structure from a tensor dataset A using a small number of samples.

\
\
\ Mode 3
\\ Q. What do we know about
tensor decompositions?
AC,5p) A. Not much, although tensors
arise in numerous applications.

Mode 1

»

Mode 2

m X n X p tensor A

15

) Tensors

Tensors appear both in Math and CS.

* Represent high dimensional functions
» Connections to complexity theory (i.e., matrix multiplication complexity)

- Data Set applications (i.e., Independent Component Analysis, higher order
statistics, etc.)

Also, many practical applications, e.g., Medical Imaging, Hyperspectral
Imaging, video, Psychology, Chemometrics, etc.

However, there does not exist a definition of tensor rank (and associated
tensor SVD) with the - nice - properties found in the matrix case.

16

) Tensor rank

A definition of tensor rank

Given a tensor
A c R XNnpX...ng

find the minimum number of rank one
tensors into it can be decomposed.

» agrees with matrices for d=2

> related to computing bilinear

forms and algebraic complexity =~ BUT
theory.

A=Z§:1u3®ug®...®ué

/

outer product

» computing it is NP-hard

> only weak bounds are known

> tensor rank depends on the

underlying ring of scalars

» successive rank one approxi-
imations are no good

17

) Tensor o-rank

The a-rank of a tensor

Given
A e R™ XNpX...Nng

create the "unfolded" matrix
A[a] — RnO‘XNO‘

No = Hi;éoz U

and compute its rank, called the a-rank.

A “unfold"

Pros:

- Easily computable,

Cons.

- different a-ranks are different,

- information is lost.

18

) Tensors in real applications

3 classes of tensors in data applications
1. All modes are comparable (e.g., tensor faces, chemometrics)

2. A priori dominant mode (e.g., coarse scales, microarrays vs. time,
images vs. frequency)

3. All other combinations

Drineas and Mahoney ‘04, TensorSVD paper deals with (1).
Drineas and Mahoney ‘04, TensorCUR paper deals with (2).

We will focus on (2), where there is a preferred mode.

19

) The TensorCUR algorithm (3-modes)

» Choose the preferred mode a (time)

) , AG, D12
> Pick a few representative snapshots: Pt = Z?L IIA(Z,!’,f)H%

> Express all the other snapshots in terms of the representative snapshots.

\
\
\ \ »\) time steps

2 samples
randomly sample
A1<i<p
m genes m genes R
n environmental n environmental
conditions conditions

20

\

) The TensorCUR algorithm (cont'd)

> Let R denote the tensor of the sampled snapshots. oo >\2 samples
A, Lt
> Express the remaining images as linear combinations
of the sampled snapshots.
m genes -
n environmental
conditions
> First, pick a constant number of “fibers" of the tensor A \
(the red dotted lines). \ \ .
SR \ p time steps
» Express the remaining snapshots as linear combination TS e,
of the sampled snapshots. oS
| . 2 AG,m) S
MiNg, Zz,] (A(Za Js 8) - ZsERuSA(Za Js S))
sampled sampled m genes .
fibers snapshots n environmental
conditions

21

) The TensorCUR algorithm (cont'd)

2

Theorem: ||A—CU xq R||% < HA[Q] — (A[a]>kozHF + €| A%

Unfold R along the o dimension

and pre-multiply by CU

How to proceed:

> Can recurse on each sub-tensor in R,
> or do SVD, exact or approximate,
> or do kernel-based diffusion analysis,

> or do wavelet-based methods.

Best rank k,
approximation to A[a]

TensorCUR:

» Framework for dealing with very large
tensor-based data sefts,

> to extract a "sketch” in a principled
and optimal manner,

> which can be coupled with more
traditional methods of data analysis.

22

Epidermis—|_ [l

Dermis——

Hypodermis -

-1 -1 -1 0 20 40 60 0 20 40 60 0 20 40 60
0 200 40 60 0 20 40 60 0 20 40 60

ink orange turquoise
pink orange turquoise 2 P 2 ¢ 2 auer

-1 -1 -1 0 20 40 60 0 20 40 60 0 20 40 60

Apply random sampling methodology and kernel-
based diffusion maps techniques to large physical and
chemical and biological data sets.

Common application areas of large data set analysis:
e telecommunications,

e finance,

e web-based modeling, and

e astronomy.
Scientific data sets are quite different:

e with respect to their size,
e with respect to their noise properties, and

e with respect to the available field-specific intuition.

Data sets being considered:

e sequence and mutational data from G-protein
coupled receptors

— to identify mutants with enhanced stability
properties,
e genomic microarray data
— to understand large-scale genomic and cellular
behavior,
e hyperspectral colon cancer data
— to better represent large, complex visual data for
improved detection of anomalous behavior, and
e simulational data

— to more efficiently conduct large scale
computations.

	data3.pdf
	Example of randomized SVD
	Example of randomized SVD (cont¡¯d)
	A novel CUR matrix decomposition
	The CUR decomposition
	The CUR decomposition (cont¡¯d)
	Computing U
	Computing U (cont¡¯d)
	Error bounds for CUR
	Other CUR decompositions (1)
	Other CUR decompositions (2)
	Other CUR decompositions (3)
	Fast Computation of Kernels
	Fast Computation of Kernels (cont¡¯d)
	What we can (almost) do with kernels
	Datasets modeled as tensors
	Tensors
	Tensor rank
	Tensor ?-rank
	Tensors in real applications
	The TensorCUR algorithm (3-modes)
	The TensorCUR algorithm (cont¡¯d)
	The TensorCUR algorithm (cont¡¯d)
	
	

