Community Structure in Large Social and Information Networks

Michael W. Mahoney

Yahoo Research

(For more info, see: http://www.cs.yale.edu/homes/mmahoney)

Joint work with: Jure Leskovec, Kevin Lang and Anirban Dasgupta
Lots and lots of large data!

- DNA micro-array data and DNA SNP data
- High energy physics experimental data
- Hyper-spectral medical and astronomical image data
- Term-document data
- Medical literature analysis data
- Collaboration and citation networks
- Internet networks and web graph data
- Advertiser-bidded phrase data
- Static and dynamic social network data
Networks in the wide world

- technological networks
 - AS, power-grid, road networks
- biological networks
 - food-web, protein networks
- social networks
 - collaboration networks, friendships
- language networks
 - semantic networks...
- ...

Friendship network.

Semantic network.
Large Social and Information Networks

Interaction graph model of networks:
- **Nodes** represent “entities”
- **Edges** represent “interaction” between pairs of entities

Large networks at Yahoo:
- **social networks**
 - Y! messenger buddylist
 - interaction on Y! Answers
 - address book in Y! mail
- **information networks**
 - advertiser-query
 - user-query
 - query-webpage
 - webpage-webpage
Sponsored ("paid") Search
Text based ads driven by user specified query
Graphs and sponsored search data

• bid, click and impression information for “keyword x advertiser” pair

• mine information at query-time to provide new ads
 - maximize CTR, RPS, advertiser ROI
Sponsored Search Problems

• **Marketplace depth broadening:**
 find new advertisers for a particular query/submarket

• **Query recommender system:**
 suggest to advertisers new queries that have high probability of clicks

• **Contextual query broadening:**
 broaden the user’s query using context information, e.g. past sessions, phrasing, etc.
Graph Mining Recommendations

Marketplace Broadening System

Query Recommender System

Dynamic Query Broadening

Depth Gain = \(\frac{\Delta D \times 100}{D} \)

Portfolio Gain = \(\frac{\Delta P \times 100}{P} \)

\(\Delta Q \)
Micro-markets

find micro-markets by partitioning the “query x advertiser” graph:
Micro-markets in sponsored search

1.4 Million Advertisers

10 million keywords

What is the CTR and advertiser ROI of sports gambling keywords?

Gambling

Sports

Movies Media

Sport videos
What do these networks “look” like?
Questions of interest ...

What are degree distributions, clustering coefficients, diameters, etc.?
Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, ...

Are there natural clusters, communities, partitions, etc.?
Concept-based clusters, link-based clusters, density-based clusters, ...
(e.g., isolated micro-markets with sufficient money/clicks with sufficient coherence)

How do networks grow, evolve, respond to perturbations, etc.?
Preferential attachment, copying, HOT, shrinking diameters, ...

How do dynamic processes - search, diffusion, etc. - behave on networks?
Decentralized search, undirected diffusion, cascading epidemics, ...

How best to do learning, e.g., classification, regression, ranking, etc.?
Information retrieval, machine learning, ...
Clustering and Community Finding

- **Linear (Low-rank) methods**

 If Gaussian, then low-rank space is good.

- **Kernel (non-linear) methods**

 If low-dimensional manifold, then kernels are good

- **Hierarchical methods**

 Top-down and bottom-up -- common in the social sciences

- **Graph partitioning methods**

 Define “edge counting” metric -- conductance, expansion, modularity, etc. -- in interaction graph, then optimize!

"It is a matter of common experience that communities exist in networks ... Although not precisely defined, communities are usually thought of as sets of nodes with better connections amongst its members than with the rest of the world."
Communities, Conductance, and NCPPs

Let A be the adjacency matrix of $G=(V,E)$.

The conductance ϕ of a set S of nodes is:

$$\phi(S) = \frac{\sum_{i \in S, j \notin S} A_{ij}}{\min\{A(S), A(S')\}}$$

$$A(S) = \sum_{i \in S} \sum_{j \in V} A_{ij}$$

The Network Community Profile (NCP) Plot of the graph is:

$$\Phi(k) = \min_{S \subseteq V, |S| = k} \phi(S)$$

Just as conductance captures the "gestalt" notion of cluster/community quality, the NCP plot measures cluster/community quality as a function of size.
Probing Large Networks with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning problems as experimental probes of network structure.

- **Spectral** - (quadratic approx) - confuses “long paths” with “deep cuts”
- **Multi-commodity flow** - (log(n) approx) - difficulty with expanders
- **SDP** - (sqrt(log(n)) approx) - best in theory
- **Metis** - (multi-resolution for mesh-like graphs) - common in practice
- **X+MQI** - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically)

We are not interested in partitions per se, but in probing network structure.
Low-dimensional graphs and expanders

d-dimensional meshes

\[\varphi \text{ (conductance)} \]

\[n \text{ (number of nodes in the cluster)} \]

dimensional meshes

RoadNet-CA

\[\varphi \text{ (conductance)} \]

\[n \text{ (number of nodes in the cluster)} \]
Widely-studied small social networks

Zachary’s karate club

Newman’s Network Science
Large Social and Information Networks

<table>
<thead>
<tr>
<th>Social nets</th>
<th>Nodes</th>
<th>Edges</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPINIONS</td>
<td>75,877</td>
<td>405,739</td>
<td>Who-trusts-whom [35]</td>
</tr>
<tr>
<td>FLICKR</td>
<td>404,733</td>
<td>2,110,078</td>
<td>Photo sharing [21]</td>
</tr>
<tr>
<td>DELICIOUS</td>
<td>147,567</td>
<td>301,921</td>
<td>Collaborative tagging</td>
</tr>
<tr>
<td>CA-DBLP</td>
<td>317,080</td>
<td>1,049,866</td>
<td>Co-authorship (CA) [4]</td>
</tr>
<tr>
<td>CA-COND-MAT</td>
<td>21,363</td>
<td>91,286</td>
<td>CA cond-mat [25]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cit-hep-th</td>
</tr>
<tr>
<td>Blog-Posts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Web graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web-google</td>
</tr>
<tr>
<td>Web-wt10g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bipartite affiliation (authors-to-papers) networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP-DBLP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internet networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
</tr>
<tr>
<td>Gnutella</td>
</tr>
</tbody>
</table>

Table 1: Some of the network datasets we studied.
Large Social and Information Networks

LiveJournal

Epinions
More large networks

Cit-Hep-Th

Web-Google

AtP-DBLP

Gnutella
“Whiskers” and the “core”

- **Whiskers**
 - maximal sub-graph detached from network by removing a single edge
 - on average, contains 40% of nodes and 20% of edges

- **Core**
 - the rest of the graph, i.e., the 2-edge-connected core
 - on average, contains 60% of nodes and 80% of edges

- Global minimum of NCPP is a whisker

Distribution of “whiskers” for AtP-DBLP.
Examples of whiskers

Ten largest “whiskers” from CA-cond-mat.
What if the “whiskers” are removed?

Then the lowest conductance sets - the “best” communities - are “2-whiskers”:
“Regularization” and spectral methods

- Regularization properties: spectral embeddings stretch along directions in which the random-walk mixes slowly
 - Resulting hyperplane cuts have "good" conductance cuts, but may not yield the optimal cuts

spectral embedding

notional flow based embedding
Regularized and non-regularized communities (1 of 2)

- Metis+MQI (red) gives sets with better conductance.
- Local Spectral (blue) gives tighter and more well-rounded sets.
Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:
Lower Bounds ...

... can be computed from:

• Spectral embedding
 (independent of balance)

• SDP-based methods
 (for volume-balanced partitions)
Lots of Generative Models

- **Preferential attachment** - add edges to high-degree nodes
 (Albert and Barabasi 99, etc.)

- **Copying model** - add edges to neighbors of a seed node
 (Kumar et al. 00, etc.)

- **Hierarchical methods** - add edges based on distance in hierarchy
 (Ravasz and Barabasi 02, etc.)

- **Geometric PA and Small worlds** - add edges to geometric scaffolding
 (Flaxman et al. 04; Watts and Strogatz 98; etc.)

- **Random/configuration models** - add edges randomly
 (Molloy and Reed 98; Chung and Lu 06; etc.)
NCPP for common generative models

Preferential Attachment

Copying Model

RB Hierarchical

Geometric PA
A simple theorem: random graphs

Let $\mathbf{w} = (w_1, \ldots, w_n)$, where $w_i = ci^{\beta/(\beta-1)}$, $\beta \in (2, 3)$.
Connect nodes i and j w.p.
$p_{ij} = w_i w_j / \sum_k w_k$.

NCP Plot for $G(w)$ model, with power-law degrees and $\beta \in (2,3)$.

Structure of the $G(w)$ model, with $\beta \in (2,3)$.

Note: Sparsity is the issue, not heavy-tails per se. (Power laws with $\beta \in (2,3)$ give us the appropriate sparsity.)
A “forest fire” model

Leskovec, Kleinberg, and Faloutsos 2005

At each time step, a new node v_i:
- links to a “seed” node w, chosen uniformly at random.
- selects x “outlinks” and y “inlinks” of w at random.
- forms “outlinks,” i.e., burns, to those selected nodes and then proceeds to burn recursively.

Notes:
- Preferential attachment flavor - second neighbor is not uniform at random.
- Copying flavor - since burn seed’s neighbors.
- Hierarchical flavor - seed is parent.
- “Local” flavor - burn “near” -- in a diffusion sense -- the seed vertex.
NCPP Of the FF Model

Two different parameter values:

Note: for these parameters, this model also reproduces “densification” and “shrinking diameters” of real graphs (Leskovec et al. 05).
Comparison with “Ground truth” (1 of 2)

Networks with “ground truth” communities:

- LiveJournal12:
 - users create and explicitly join on-line groups
- CA-DBLP:
 - publication venues can be viewed as communities
- AmazonAllProd:
 - each item belongs to one or more hierarchically organized categories, as defined by Amazon
- AtM-IMDB:
 - countries of production and languages may be viewed as communities (thus every movie belongs to exactly one community and actors belongs to all communities to which movies in which they appeared belong)
Comparison with “Ground truth” (2 of 2)

LiveJournal

CA-DBLP

AmazonAllProd

AtM-IMDB
Sociological work on community size (Dunbar and Allen)

- 150 individuals is maximum community size
- On-line communities have 60 members and break down at 80
- Military companies, divisions of corporations, etc. - close to the Dunbar's 150

Common bond vs. common identity theory

- Common bond (people are attached to individual community members) are smaller and more cohesive
- Common identity (people are attached to the group as a whole) focused around common interest and tend to be larger and more interpersonally diverse

What edges “mean” and community identification

- social networks - reasons an individual adds a link to a friend can vary enormously
- citation networks or web graphs - links are more “expensive” and are more semantically uniform
Conclusions

• about networks and data:

 Can use approximation algorithms as experimental probes

 “Best” communities get less and less “community-like”

 “Octopus” or “Jellyfish” model - with “whiskers” and “core”

• about modeling these networks:

 Common generative models don’t capture community phenomenon

 Graph locality - important for realistic network generation

 Local regularization - important due to sparsity
Workshop on “Algorithms for Modern Massive Data Sets”
(http://mmds.stanford.edu)

Objectives:

- Address algorithmic, mathematical, and statistical challenges in modern statistical data analysis.

- Explore novel techniques for modeling and analyzing massive, high-dimensional, and nonlinear-structured data.

- Bring together computer scientists, mathematicians, statisticians, and data analysis practitioners to promote cross-fertilization of ideas.

Organizers: M. W. Mahoney, L-H. Lim, P. Drineas, and G. Carlsson.

Sponsors: NSF, Yahoo! Research, PIMS, DARPA.