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Comments on scientific data and choosing good columns as features. 
 
 
Linear Algebra in Spark 
•  CX and SVD/PCA implementations and performance 
 
 
Two scientific applications of Spark  
•  Applications of the CX and PCA matrix decompositions 
•  To mass spec imaging, climate science (etc.) 
 

Overview 



E.g., application in: Human Genetics 
 

Scientific data and choosing good columns as features 

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 
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 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

 Matrices including thousands of individuals and hundreds of thousands (large for 
some people, small for other people) if SNPs are available. 



HGDP data 

•  1,033 samples 

•  7 geographic regions 

•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

Apply SVD/PCA on the 
(joint) HGDP and HapMap 

Phase 3 data. 

 

Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 

 

Dense matrix:  

over one billion entries 

The Human Genome Diversity Panel (HGDP) 

ASW, MKK, LWK, 
& YRI 

CEU 

TSI 
JPT, CHB, & CHD 

GIH 

MEX 

HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 



Africa 

Middle East 

South Central 
Asia 

Europe 

Oceania 

East Asia 

America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  The figure renders visual support to the “out-of-Africa” hypothesis. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, et al (2010) J Med Genet 



Africa 
Middle East 

S C Asia & 
Gujarati Europe Oceania 

East Asia 

America 

•  Not altogether satisfactory: the principal components are linear combinations of 
all SNPs, and – of course – can not be assayed! 

•  Can we find actual SNPs that capture the information in the singular vectors? 

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.” 

Paschou, et al. (2010) J Med Genet 



  
 

Two related issues with eigen-analysis 

Computing large SVDs: computational time 
•   In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), 
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes. 

•   Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•   Instead, compute the SVD of AAT. 

•   In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010) 

 

Selecting actual columns that “capture the structure” of the top PCs 
•   Combinatorial optimization problem; hard even for small matrices.  

•   Often called the Column Subset Selection Problem (CSSP). 

•   Not clear that such “good” columns even exist. 

•   Avoid “reification” problem of “interpreting” singular vectors! 

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09)) 



Linear Algebra in Spark: CX and SVD/PCA 
implementations and performance 

Alex Gittens, Jey Kottalam, Jiyan Yang, Michael F. Ringenburg, 
Jatin Chhugani, Evan Racah, Mohitdeep Singh, Yushu Yao, Curt 
Fischer, Oliver Ruebel, Benjamin Bowen, Norman Lewis, Michael 

Mahoney, Venkat Krishnamurthy, Prabhat 

December 2015 
 



Why do linear algebra in Spark? 

Con: Classical MPI-based linear algebra algorithms will  
be faster and more efficient 

 
  Faster development 
  One abstract uniform interface 
  An entire ecosystem that can be used before and after the 

NLA computations 
  To some extent, Spark can take advantage of the available 

linear algebra codes 
  Automatic fault-tolerance 
  Transparent support for out of memory calculations 

Potential Pros:



The Decompositional Approach  

“The underlying principle of the decompositional approach to matrix 
computation is that it is not the business of matrix algorithmicists to solve 
particular problems but to construct computational platforms from which 

a wide variety of problems can be solved” 

  A decomposition solves a multitude of problems 
  They are expensive to compute, but can be reused 
  Different algorithms can produce the same product 
  Facilitates rounding-error analysis 
  Can be updated efficiently 
  Well-engineered black-box solutions are available 

[G.W. Stewart, “The decompositional approach to matrix computation” (2000)] 



 The Big 6 Decompositions 

  Cholesky Decomposition 

  LU Decomposition 

QR Decomposition 

Spectral Decomposition 
 

Schur Decomposition 
 

solving positive-definite linear systems 

solving general linear systems 

least squares problems;  
dimensionality reduction 

Singular Value Decomposition 
 

analysis of physical systems 

more stable alternative to eigenvectors 

low-rank approximation 



SVD and PCA 
The SVD decomposes a matrix into a basis for its column 
space (U), a basis for its row space (V) , and singular values (Σ) 

where  

If the matrix has zero-mean rows, then its SVD is called the 
Principal Components Analysis (PCA), and U, V, and Σ are 
interpreted as capturing modes/directions and amounts of 
variation. 



The computation time of the full SVD decomposition scales like 
O(mn2) so it can be infeasible to compute the full SVD. 
 
Often (for dimensionality reduction, physical interpretation, etc.) 
instead it suffices to compute the rank-k truncated SVD (PCA) 

Truncated SVD 

which is given by  

and can be computed in O(mnk) 



Computing the Truncated SVD (I) 

To get the right singular vectors of A, we can compute the 
eigenvectors of ATA, because  

Once we have Vk, we can use its orthogonality to recover 
Σk and Uk from 

Thus the two steps in computing the truncated SVD of A are: 

1.  Compute the truncated SVD of ATA to get Vk 

2.  Compute the SVD of AVk to get Σk and Vk 

requires only matrix vector multiplies

assume this is small enough that the SVD can be computed locally 



Computing the Truncated SVD (II) 

To compute the truncated SVD of M = ATA, we use the 
Lanczos algorithm 
 
The idea is to restrict M to Krylov subspaces of increasing 
dimensionality: 

As s increases, the eigenvalues/vectors of Hs approximate the 
extreme eigenvalues/vectors of M and Hs is much smaller.  

Because of the special structure of the Krylov subspace and 
the fact M is symmetric, going from Hs to Hs+1 is very efficient 
and requires only the cost of a matrix-vector multiply by 
M=ATA 



Implementing the truncated SVD algorithm in 
Spark 

Our Scala-Spark implementation assumes: 
1.  A is a (tall-skinny) dense matrix of Doubles given as an 

spark.mllib.linalg.distributed.IndexedRowMatrix 

2.  k is small enough that AVk fits in memory on the 

executor and is small enough not to violate the JVM 
array size restriction (k*m < 232) e.g. for k = 100, this 
means m must be less than 43 billion. 

1.  Use Lanczos on ATA to get Vk 

2.  Compute the SVD of AVk to get Σk and Uk 

Recall the overall algorithm 

The second step is done by using Breeze on the driver 



Computing the Lanczos iterations using Spark (I) 

If then the product can be computed as 

We call the spark.mllib.linalg.EigenvalueDecomposition 
interface to the ARPACK implementation of the Lanczos 
method 
This requires a function which computes a matrix-product 
against ATA  



Computing the Lanczos iterations using Spark (II) 

is computed using a treeAggregate operation over the RDD 

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]!



Spark SVD performance (I)!

Experimental Setup: 

  A 30-node EC2 cluster of r3.8xlarge instances (960 
nodes with 7.2 TB RAM) 

  A is a 6,349,676-by-46,715 dense matrix of Doubles 
(about 1.2 Tb) 

  A is stored in Parquet format, row-wise 
  A is zero-meaned and the columns are standardized 

and is stored in memory 
  k = 20 



Run 1 Run 2 Run 3

Mean/Std of 
ATAx 18.2s (1.2s) 18.2s (2s) 19.2s (1.9s) 

Lanczos 
iterations 70 70 70 

Time in 
Lanczos 21.3 min 21.3 min 22.4 min 

Time to 
collect AVk

29s 34s 30s 

Time to load 
A in mem* 4.2 min 4.1 min 3.9 min 

Total Time 26 min 26 min 26.8 min 

Spark SVD performance (II) 

* we zero-mean and standardize the columns of A to compute a variant of the PCA 



The CX Decomposition (I) 

  Dimensionality reduction is a ubiquitous tool in science 
(bio-imaging, neuro-imaging, genetics, chemistry, 
climatology, …), typical approaches include PCA and 
NMF which give approximations that rely on nonlinear 
combinations of the datapoint in A 

  PCA, NMF, etc. lack reifiability. Instead, CX matrix 
decompositions identify exemplar data points (columns of 
A) that capture the same information as the top singular 
vectors, and give approximations of the form 



The CX Decomposition (II) 

   To get accuracy comparable to the truncated rank-k SVD, 
the CX algorithm randomly samples O(k) columns with 
replacement from A according to the leverage score pmf  

where 

  Since the algorithm is 
randomized, we can 
use a randomized 
algorithm to 
approximate Vk in 
o(mnk) time 

RANDOMIZEDSVD Algorithm

Input: A 2 Rm⇥n, number of power iterations q � 1,
target rank r > 0, slack ` � 0, and let k = r + `.

Output: U⌃V T ⇡ THINSVD(A, r).
1: Initialize B 2 Rn⇥k by sampling Bij ⇠ N (0, 1).
2: for q times do
3: B  MULTIPLYGRAMIAN(A,B)
4: (B, ) THINQR(B)
5: end for
6: Let Q be the first r columns of B.
7: Let C = MULTIPLY(A,Q).
8: Compute (U,⌃, Ṽ T ) = THINSVD(C).
9: Let V = QṼ .

MULTIPLYGRAMIAN Algorithm

Input: A 2 Rm⇥n, B 2 Rn⇥k.
Output: X = A

T
AB.

1: Initialize X = 0.
2: for each row a in A do
3: X  X + aa

T
B.

4: end for

applications where coupling analytical techniques with do-
main knowledge is at a premium, including genetics [13],
astronomy [14], and mass spectrometry imaging [15].

In more detail, CX decomposition factorizes an m ⇥ n

matrix A into two matrices C and X , where C is an m⇥ c

matrix that consists of c actual columns of A, and X is a c⇥
n matrix such that A ⇡ CX . (CUR decompositions further
choose X = UR, where R is a small number of actual rows
of A [6], [12].) For CX, using the same optimality criterion
defined in (2), we seek matrices C and X such that the
residual error kA� CXkF is small.

The algorithm of [12] that computes a 1 ± ✏ relative-
error low-rank CX matrix approximation consists of three
basic steps: first, compute (exactly or approximately) the
statistical leverage scores of the columns of A; and second,
use those scores as a sampling distribution to select c

columns from A and form C; finally once the matrix C

is determined, the optimal matrix X with rank-k that mini-
mizes kA� CXkF can be computed accordingly; see [12]
for detailed construction.

The algorithm for approximating the leverage scores is
provided in Algorithm ??. Let A = U⌃V T be the SVD of
A. Given a target rank parameter k, for i = 1, . . . , n, the
i-th leverage score is defined as

`i =
kX

j=1

v2
ij . (3)

These scores quantify the amount of “leverage” each column
of A exerts on the best rank-k approximation to A. For each

CXDECOMPOSITION

Input: A 2 Rm⇥n, rank parameter k  rank(A), number
of power iterations q.

Output: C.
1: Compute an approximation of the top-k right singular

vectors of A denoted by Ṽk, using RANDOMIZEDSVD
with q power iterations.

2: Let `i =
Pk

j=1 ṽ
2
ij , where ṽ2

ij is the (i, j)-th element
of Ṽk, for i = 1, . . . , n.

3: Define pi = `i/
Pd

j=1 `j for i = 1, . . . , n.
4: Randomly sample c columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

column of A, we have

ai =
rX

j=1

(�juj)vij ⇡
kX

j=1

(�juj)vij .

That is, the i-th column of A can be expressed as a linear
combination of the basis of the dominant k-dimensional
left singular space with vij as the coefficients. If, for
i = 1, . . . , n, we define the normalized leverage scores as

pi =
`iPn
j=1 `j

, (4)

where `i is defined in (3), and choose columns from A

according to those normalized leverage scores, then (by [6],
[12]) the selected columns are able to reconstruct the matrix
A nearly as well as Ak does.

The running time for CXDECOMPOSITION is determined
by the computation of the importance sampling distribution.
To compute the leverage scores based on (3), one needs to
compute the top k right-singular vectors Vk. This can be
prohibitive on large matrices. However, we can once again
use RANDOMIZEDSVD to compute approximate leverage
scores. This approach, originally proposed by Drineas et
al. [16], runs in “random projection time,” so requires fewer
FLOPS and fewer passes over the data matrix than determin-
istic algorithms that compute the leverage scores exactly.

III. HIGH PERFORMANCE IMPLEMENTATION

We undertake two classes of high performance imple-
mentations for the CX method. We start with a highly
optimized, close-to-the-metal C implementation that focuses
on obtaining peak efficiency from conventional multi-core
CPU chipsets and extend it to multiple nodes. Secondly, we
implement the CX method in Spark, an emerging standard
for parallel data analytics frameworks.

A. Single Node Implementation/Optimizations
We now focus on optimizing the CX implementation on

a single compute-node. We began by profiling our initial
scalar serial CX code and optimizing the steps in the order of



The Randomized SVD algorithm 

The matrix analog of the power method: 

requires only matrix-matrix 
multiplies against ATA

assumes B fits on one machine

RANDOMIZEDSVD Algorithm

Input: A 2 Rm⇥n, number of power iterations q � 1,
target rank k > 0, slack p � 0, and let ` = k + p.

Output: U⌃V T ⇡ Ak.

1: Initialize B 2 Rn⇥` by sampling Bij ⇠ N (0, 1).
2: for q times do
3: B  A

T
AB

4: (B, ) THINQR(B)
5: end for
6: Let Q be the first k columns of B.
7: Let M = AQ.
8: Compute (U,⌃, Ṽ T ) = THINSVD(M).
9: Let V = QṼ .

MULTIPLYGRAMIAN Algorithm

Input: A 2 Rm⇥n, B 2 Rn⇥k.
Output: X = A

T
AB.

1: Initialize X = 0.
2: for each row a in A do
3: X  X + aa

T
B.

4: end for

applications where coupling analytical techniques with do-
main knowledge is at a premium, including genetics [13],
astronomy [14], and mass spectrometry imaging [15].

In more detail, CX decomposition factorizes an m ⇥ n

matrix A into two matrices C and X , where C is an m⇥ c

matrix that consists of c actual columns of A, and X is a c⇥
n matrix such that A ⇡ CX . (CUR decompositions further
choose X = UR, where R is a small number of actual rows
of A [6], [12].) For CX, using the same optimality criterion
defined in (2), we seek matrices C and X such that the
residual error kA� CXkF is small.

The algorithm of [12] that computes a 1 ± ✏ relative-
error low-rank CX matrix approximation consists of three
basic steps: first, compute (exactly or approximately) the
statistical leverage scores of the columns of A; and second,
use those scores as a sampling distribution to select c

columns from A and form C; finally once the matrix C

is determined, the optimal matrix X with rank-k that mini-
mizes kA� CXkF can be computed accordingly; see [12]
for detailed construction.

The algorithm for approximating the leverage scores is
provided in Algorithm ??. Let A = U⌃V T be the SVD of
A. Given a target rank parameter k, for i = 1, . . . , n, the
i-th leverage score is defined as

`i =
kX

j=1

v2
ij . (3)

These scores quantify the amount of “leverage” each column
of A exerts on the best rank-k approximation to A. For each

CXDECOMPOSITION

Input: A 2 Rm⇥n, rank parameter k  rank(A), number
of power iterations q.

Output: C.
1: Compute an approximation of the top-k right singular

vectors of A denoted by Ṽk, using RANDOMIZEDSVD
with q power iterations.

2: Let `i =
Pk

j=1 ṽ
2
ij , where ṽ2

ij is the (i, j)-th element
of Ṽk, for i = 1, . . . , n.

3: Define pi = `i/
Pd

j=1 `j for i = 1, . . . , n.
4: Randomly sample c columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

column of A, we have

ai =
rX

j=1

(�juj)vij ⇡
kX

j=1

(�juj)vij .

That is, the i-th column of A can be expressed as a linear
combination of the basis of the dominant k-dimensional
left singular space with vij as the coefficients. If, for
i = 1, . . . , n, we define the normalized leverage scores as

pi =
`iPn
j=1 `j

, (4)

where `i is defined in (3), and choose columns from A

according to those normalized leverage scores, then (by [6],
[12]) the selected columns are able to reconstruct the matrix
A nearly as well as Ak does.

The running time for CXDECOMPOSITION is determined
by the computation of the importance sampling distribution.
To compute the leverage scores based on (3), one needs to
compute the top k right-singular vectors Vk. This can be
prohibitive on large matrices. However, we can once again
use RANDOMIZEDSVD to compute approximate leverage
scores. This approach, originally proposed by Drineas et
al. [16], runs in “random projection time,” so requires fewer
FLOPS and fewer passes over the data matrix than determin-
istic algorithms that compute the leverage scores exactly.

III. HIGH PERFORMANCE IMPLEMENTATION

We undertake two classes of high performance imple-
mentations for the CX method. We start with a highly
optimized, close-to-the-metal C implementation that focuses
on obtaining peak efficiency from conventional multi-core
CPU chipsets and extend it to multiple nodes. Secondly, we
implement the CX method in Spark, an emerging standard
for parallel data analytics frameworks.

A. Single Node Implementation/Optimizations
We now focus on optimizing the CX implementation on

a single compute-node. We began by profiling our initial
scalar serial CX code and optimizing the steps in the order of



Implementing the CX algorithm in Spark 

Our Scala-Spark implementation assumes: 
1.  A is a fat sparse matrix of Doubles given as an 

spark.mllib.linalg.distributed.IndexedRowMatrix 

2.  l = k + p is small enough that B fits in memory on the 

executor and is small enough not to violate the JVM 
array size restriction (l*m < 232) e.g. for k = 100, this 
means m must be less than 43 billion. 

1.  Use the Randomized SVD to approximate Vk 

2.  Sample the columns of A according to the leverage 
probabilities 

The overall algorithm 



Computing the Randomized SVD using Spark 

then the product can be computed as As before, if 

and we use treeAggregation for efficiency 

distributed computing, based on a core abstraction called
resilient distributed dataset (RDD). RDDs are immutable
lazily materialized distributed collections supporting func-
tional programming operations such as map, filter, and
reduce, each of which returns a new RDD. RDDs may be
loaded from a distributed file system, computed from other
RDDs, or created by parallelizing a collection created within
the user’s application. RDDs of key-value pairs may also
be treated as associative arrays, supporting operations such
as reduceByKey, join, and cogroup. Spark employs a
lazy evaluation strategy for efficiency. Another major benefit
of Spark over MapReduce is the use of in-memory caching
and storage so that data structures can be reused.

D. Multi-node Spark Implementation
The main consideration when implementing CX and PCA

are efficient implementations of operations involving the
data matrix A. All access of A by the CX and PCA
algorithms occurs through the RANDOMIZEDSVD routine
shared in common. RANDOMIZEDSVD in turn accesses
A only through the MULTIPLYGRAMIAN and MULTIPLY
routines, with repeated invocations of MULTIPLYGRAMIAN
accounting for the majority of the execution time.

The matrix A is stored as an RDD containing one
IndexedRow per row of the input matrix, where each
IndexedRow consists of the row’s index and correspond-
ing data vector. This is a natural storage format for many
datasets stored on a distributed or shared file system, where
each row of the matrix is formed from one record of the
input dataset, thereby preserving locality by not requiring
data shuffling during construction of A.

We then express MULTIPLYGRAMIAN in a form
amenable to efficient distributed implementation by exploit-
ing the fact that the matrix product AT

AB can be written
as a sum of outer products, as shown in Algorithm ??. This
allows for full parallelism across the rows of the matrix with
each row’s contribution computed independently, followed
by a summation step to accumulate the result. This approach
may be implemented in Spark as a map to form the outer
products followed by a reduce to accumulate the results:
def multiplyGramian(A: RowMatrix, B: LocalMatrix) =

A.rows.map(row => row * row.t * B).reduce(_ + _)

However, this approach forms 2m unnecessary temporary
matrices of same dimension as the output matrix n ⇥ k,
with one per row as the result of the map expression, and
the reduce is not done in-place so it too allocates a new
matrix per row. This results in high Garbage Collection
(GC) pressure and makes poor use of the CPU cache, so
we instead remedy this by accumulating the results in-
place by replacing the map and reduce with a single
treeAggregate. The treeAggregate operation is
equivalent to a map-reduce that executes in-place to accu-
mulate the contribution of a single worker node, followed
by a tree-structured reduction that efficiently aggregates the

results from each worker. The reduction is performed in
multiple stages using a tree topology to avoid creating a
single bottleneck at the driver node to accumulate the results
from each worker node. Each worker emits a relatively large
result with dimension n⇥ k, so the communication latency
savings of having multiple reducer tasks is significant.
def multiplyGramian(A: RowMatrix, B: LocalMatrix) = {

A.rows.treeAggregate(LocalMatrix.zeros(n, k))(
seqOp = (X, row) => X += row * row.t * B,
combOp = (X, Y) => X += Y

)
}

IV. EXPERIMENTAL SETUP

A. MSI Dataset
Mass spectrometry imaging with ion-mobility: Mass

spectrometry measures ions that are derived from the
molecules present in a complex biological sample. These
spectra can be acquired at each location (pixel) of a
heterogeneous sample, allowing for collection of spatially
resolved mass spectra. This mode of analysis is known
as mass spectrometry imaging (MSI). The addition of ion-
mobility separation (IMS) to MSI adds another dimension,
drift time The combination of IMS with MSI is finding
increasing applications in the study of disease diagnostics,
plant engineering, and microbial interactions. Unfortunately,
the scale of MSI data and complexity of analysis presents
a significant challenge to scientists: a single 2D-image may
be many gigabytes and comparison of multiple images is
beyond the capabilities available to many scientists. The
addition of IMS exacerbates these problems.

Utility of CX/PCA in MSI: Dimensionality reduction
techniques can help reduce MSI datasets to more amenable
sizes. Typical approaches for dimensionality reduction in-
clude PCA and NMF, but interpretation of the results is
difficult because the components extracted via these methods
are typically combinations of many hundreds or thousands of
features in the original data. CX decompositions circumvent
this problem by identifying small numbers of columns in
the original data that reliably explain a large portion of
the variation in the data. This facilitates rapidly pinpointing
important ions and locations in MSI applications.

In this paper, we analyze one of the largest (1TB sized)
mass-spec imaging datasets in the field. The sheer size of this
dataset has previously made complex analytics intractable.
This paper presents first-time science results from the suc-
cessful application of CX to TB-sized data.

B. Platforms
In order to assess the relative performance of CX matrix

factorization on various hardware, we choose the following
contemporary platforms:

• a Cray® XC40™ system [20], [21],
• an experimental Cray cluster, and
• an Amazon EC2 r3.8xlarge cluster.



Spark CX performance (I) 

Dataset: A is a 131,048-by-8,258,911 sparse matrix (1 TB) 



Spark CX performance (II) 



Spark CX performance (III) 



Lessons learned 

  the main challenge is converting the data to a format Spark can 
read 

  treeAggregation is key (and don’t be shy with changing the depth 
option) for more efficient row-based linear algebra  

  increase the worker timeouts and network timeouts with 
--conf spark.worker.timeout=1200000 

--conf spark.network.timeout=1200000


when passing around large vectors 



What next 

  use optimized NLA libraries under Breeze 
  get the truncated SVD code to scale successfully when the 

RDD cannot be held in memory, or identify the culprit 
  characterize the performance on EC2 and NERSC, Cray 

platforms of the truncated SVD code 
  characterize the performance of Spark vs parallel ARPACK 
  investigate how much can be gained by using block-Lanczos 

and communication-avoiding algorithms 
 

CX code and IPDPS submission: https://github.com/rustandruin/sc-2015.git 

Large-scale SVD/PCA code: https://github.com/rustandruin/large-scale-climate.git  
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Mass Spectrometry Imaging (I) 

  Mass spectrometry measures ions that are derived 
from the molecules present in a biological sample!

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]!



Mass Spectrometry Imaging (II) 

  Scanning over the 2D sample gives a 3D dataset r(x,y,m/z) 
where m/z is the mass-to-charge ratio and r is the relative 
abundance 

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]!



Ion-Mobility Mass Spectrometry Imaging 

  Different ions can have the same m/z signature. Ion-
mobility mass spectrometry further supplements dataset to 
include drift times 𝝉, which assist in differentiating ions, 
giving a 4D dataset r(x,y,m/z,𝝉) 

[src: http://www.technet.pnnl.gov/sensors/chemical/projects/ES4_IMS.stm!



Ion-Mobility Mass Spectrometry Imaging in Spark (CX) 

  A single mass spec image may be many gigabytes; further 
exacerbated by using ion-mobility mass spec imaging 

  Scientists use MSI to find ions corresponding to chemically 
and biogically interesting compounds 

  Question: can the CX decomposition, which identifies a few 
columns in a dataset that reliably explain a large portion of 
the variance in the dataset, help pinpoint important ions and 
locations in MSI images? 



CX for Ion-Mobility MSI Results (I) 

  One of the largest available Ion-Mobility MSI scans: 100GB 
scan of a sample of Lewis Dalisay Peltatum (a plant) 

  A is a 8,258,911-by-131,048 matrix; with rows corresponding 
to pixels and columns corresponding to (𝝉, m/z) values 

  k = 16, l = 18, p = 1 

Platform Total Cores Core Frequency Interconnect DRAM SSDs

Amazon EC2 r3.8xlarge 960 (32 per-node) 2.5 GHz 10 Gigabit Ethernet 244 GiB 2 x 320 GB

Cray XC40 960 (32 per-node) 2.3 GHz Cray Aries [20], [21] 252 GiB None

Experimental Cray cluster 960 (24 per-node) 2.5 GHz Cray Aries [20], [21] 126 GiB 1 x 800 GB

Table I: Specifications of the three hardware platforms used in these performance experiments.

For all platforms, we sized the Spark job to use 960
executor cores (except as otherwise noted). Table I shows
the full specifications of the three platforms. Note that these
are state-of-the-art configurations in datacenters and high
performance computing centers.

V. RESULTS

A. CX Performance using C and MPI
In Table II, we show the benefits of various optimizations

described in Sec. III-A. As far as single-node performance
is concerned, we started with a parallelized implementation
without any of the described optimizations. We first im-
plemented the multi-core synchronization scheme, wherein
a single copy of the output matrix is maintained, which
resulted in a speedup of 6.5X, primarily due to the reduction
in the amount of data traffic between main memory and
caches. We then implemented our cache blocking scheme,
which led to a further 2.4X speedup (overall 15.6X). We
then implemented our SIMD code that sped it up by a further
2.6X, for an overall speedup of 39.7X. Although the SIMD
width is 4, there are overheads of address computation,
stores, and not all computations (e.g. QR) were vectorized.

As far as the multi-node performance is concerned, on the
Amazon EC2 cluster, with 30 nodes (960-cores in total),
and the 1 TB dataset as input, it took 151 seconds to
perform CX computation (including time to load the data
into main memory). As compared to the Scala code on the
same platform (details in next sec.), we achieve a speedup of
21X. This performance gap can be attributed to the careful
cache optimizations of maintaining single copy of the output
matrix shared across threads, bandwidth friendly access of
matrices and vector computation using SIMD units.

Some of these optimizations can be implemented in Spark,
such as arranging the order of memory accesses to make
efficient use of memory. However, other optimizations such
as sharing the output matrix between threads and use of
SIMD intrinsics fall outside the Spark programming model,
and would require piercing the abstractions provided by
Spark and JVM. Thus there is a tradeoff between optimiz-
ing performance and ease of implementation, available by
expressing programs in the Spark programming model.

B. CX Performance Using Spark
1) CX Spark Phases: Our implementations of CX and

PCA share the RANDOMIZEDSVD subroutine, which ac-
counts for the bulk of the runtime and all of the distributed

Single Node Optimization Overall Speedup
Original Implementation 1.0

Multi-Core Synchronization 6.5
Cache Blocking 15.6

SIMD 39.7

Table II: Single node opt. to CX C implementation and
subsequent speedup each additional optimization provides.

computations. The execution of RANDOMIZEDSVD pro-
ceeds in four distributed phases listed below, along with a
small amount of additional local computation.

1) Load Matrix Metadata The dimensions of the matrix
are read from the distributed filesystem to the driver.

2) Load Matrix A distributed read is performed to load
the matrix entries into an in-memory cached RDD
containing one entry per row of the matrix.

3) Power Iterations The MULTIPLYGRAMIAN loop
(lines 2-5) of RANDOMIZEDSVD is run to compute
an approx. Q of the dominant right singular subspace.

4) Finalization (Post-Processing) Right multiplication
by Q (line 7) of RANDOMIZEDSVD to compute C.

Figure 2: Strong scaling for the 4 phases of CX on an XC40
for 100GB dataset at k = 32 and default partitioning as
concurrency is increased.

2) Empirical Results: Fig. 2 shows how the distributed
Spark portion of our code scales. We considered 240, 480,
and 960 cores. An additional doubling (to 1920 cores) would
be ineffective as there are only 1654 partitions, so many



CX for Ion-Mobility MSI Results (II) 

Normalized leverage scores (sampling 
probabilities) for the ions. Three regions 
account for 59.3% of the total probability 
mass. These regions correspond to ions 
which are chemically related, so may have 
similar biological origins, but have different 
spatial distributions within the sample. 10000 points sampled by leverage score. Color 

and luminance of each point indicates density 
of points at that location as determined by a 
Gaussian kernel density estimate. 



Climate Analysis (PCA) in Spark 

   In climate analysis, PCA (EOF analysis) is used to uncover 
potentially meaningful spatial and temporal modes of 
variability. Given A containing zero-mean i.i.d. observations in 
its rows, one column per observation interval, 

  Despite the fact that fully 3D climate fields (temperature, 
velocity, etc.) are available, and their usefulness, EOFs have 
historically only been calculated on 2D slices of these fields 

  Question of interest: Is there any scientific benefit to 
computing the EOFs on full 3D climate fields? 

  The columns of Uk capture the dominant modes of spatial 
variation in the anomaly field, and the columns of Vk 
capture the dominant modes of temporal variation 



CFSRA Datasets!

  Consists of multiyear (1979—2010) global gridded 
representations of atmospheric and oceanic variables, 
generated using constant data assimilation and 
interpolation using a fixed model 

[src: http://cfs.ncep.noaa.gov/cfsr/docs/] 

AMMA special observations. A special observation 
program known as AMMA has been ongoing since 
2001, which is focused on reactivating, renovating, 
and installing radiosonde sites in West Africa (Kadi 
2009). The CFSR was able to include much of this 
special data in 2006, thanks to an arrangement with 
the ECMWF and the AMMA project.

AIRCRAFT AND ACARS DATA. The bulk of CFSR aircraft 
observations are taken from the U.S. operational 
NWS archives; they start in 1962 and are continuous 
through the present time. A number of archives from 
military and national sources have been obtained and 
provide data that are not represented in the NWS 
archive. Very useful datasets have been supplied by 
NCAR, ECMWF, and JMA. The ACARS aircraft 
observations enter the CFSR in 1992.

SURFACE OBSERVATIONS. The U.S. NWS operational 
archive of ON124 surface synoptic observations 
is used beginning in 1976 to supply land surface 
data for CFSR. Prior to 1976, a number of military 
and national archives were combined to provide 
the land surface pressure data for the CFSR. All of 
the observed marine data from 1948 through 1997 
have been supplied by the COADS datasets. Start-
ing in May 1997 all surface 
observations are taken from 
the NCEP operational ar-
chives. METAR automated 
reports also start in 1997. 
Very high-density MESO-
NET data are included in 
the CFSR database starting 
in 2002, a lthough these 
observations are not as-
similated.

PAOBS. PAOBS are bogus 
observations of sea level 
pressure created at the Aus-
tralian BOM from the 1972 
through the present. They 
were initially created for 
NWP to mitigate the extreme 
lack of observations over 
the Southern Hemisphere 
oceans. Studies of the impact 
of PAOB data (Seaman and 
Hart 2003) show positive 
impacts on SH analyses, at 
least until 1998 when ATOVS 
became available.

SATOB OBSERVATIONS. Atmospheric motion vectors 
derived from geostationary satellite imagery are 
assimilated in the CFSR beginning in 1979. The 
imagery from GOES, METEOSAT, and GMS satel-
lites provide the observations used in CFSR, which 
are mostly obtained from U.S. NWS archives of GTS 
data. GTS archives from JMA were used to aug-
ment the NWS set through 1993 in R1. Reprocessed 
high-resolution GMS SATOB data were specially 

FIG. 2. Diagram illustrating CFSR data dump volumes, 
1978–2009 (GB month−1).

FIG. 3. Performance of 500-mb radiosonde temperature observations. (top) 
Monthly RMS and mean fits of quality-controlled observations to the first 
guess (blue) and the analysis (green). The fits of all observations, includ-
ing those rejected by the QC, are shown in red. Units: K. (bottom) The 
0000 UTC data counts of all observations (red) and those that passed QC 
and were assimilated (green).
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CFSR Ocean Temperature Dataset (I)!

  Ocean temperature (K) observations from 1979—2010 
at 6 hours intervals at 40 different depths in the ocean, 
on 360-by-720-by-40 grid. 

  A is a 6,349,676-by-46,715 matrix (about 1.2TB) 

  The subsequent analysis was conducted on this 
dataset 

  The data was provided in the form of one GRB2 file per 
6 hour observation, and were converted to CSV format, 
then converted to Parquet format using Spark 

  computed the dominant 20 modes (captures 
about 81% of the variance) 



CFSR Ocean Temperature Dataset (II)!



CFSR Ocean Temperature Dataset (III)!

Run 1 Run 2 Run 3

Mean/Std of 
ATAx 18.2s (1.2s) 18.2s (2s) 19.2s (1.9s) 

Lanczos 
iterations 70 70 70 

Time in 
Lanczos 21.3 min 21.3 min 22.4 min 

Time to 
collect AVk

29s 34s 30s 

Time to load 
A in mem* 4.2 min 4.1 min 3.9 min 

Total Time 26 min 26 min 26.8 min 

  Run on a 30-node r3.8xlarge EC2 cluster (960 2.5GHz 
cores, 7.2TB memory) — CFSR-O cached in memory 



CFSR Atmospheric Dataset!

  Consists of 26 2D fields and 5 3D fields, e.g. total cloud 
cover (%), several types of fluxes (Wm-2), convective 
precipitation rate (kg m-2 s-1), … 

  A is a  54,843,120-by-46,720 matrix (about 10.2 
TB); because the fields are measured in different 
units, must normalize each row by its standard 
deviation 

  Conversion is still a work in progress. Getting 
Parquet to successfully read in the data when the 
rows have > 54 million entries is challenging. 

  This dataset will not fit in memory, so expect 
runtime to be much slower 



Latest Point of Failure 
Try to multiply against A, which is stored in Parquet format 

throws an OOM error in the ParquetFileReader 

[ see http://stackoverflow.com/questions/34114571/parquet-runs-out-of-memory-on-reading] 



 
 
Sophisticated analytics involves strong control over linear algebra. 
 
 
Most workflows/applications currently do not demand much of the 
linear algebra. 
 
Low-rank matrix algorithms for interpretable scientific analytics on 
scores of terabytes of data! 
 
What is the “right” way to do linear algebra for large-scale data 
analysis? 
 
 

Conclusion 


