Column Subset Selection on Terabyte-sized
Scientific Data

Michael W. Mahoney
ICSI and Department of Statistics, UC Berkeley

(Joint work with Alex Gittens and many others.)

December 2015

Overview

Comments on scientific data and choosing good columns as features.

Linear Algebra in Spark
« CXand SVD/PCA implementations and performance

Two scientific applications of Spark
* Applications of the CX and PCA matrix decompositions
* To mass spec imaging, climate science (etc.)

Scientific data and choosing good columns as features

E.g., application in: Human Genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
]] BN

(_AG CT GT GG CT CC CC CC CC AG AG AG AG AG AACT AAGG GG CC GG AG CG AC CC AACCAAGG TT AGCT|CG CG CG AT CT CT AG CT AG GG GT GAAG ...
...GGTTTTGG TT CC CC CC CC GG AA AG AG AG AA CT AAGG GG CC GG AAGG AACCAACCAAGGTTAATT GG GG GG[TTTTCC GG TT GG GG TT GG AA ...
..GGTTTTGGTT CC CC CC CC GG AAAG AG AAAG CT AAGG GG CC AGAG CGACCCAACCAAGGTTAGLCT CGCGCGIATICTCTAGCTAG GG GTGAAG ...
..GGTTTTGG TT CC CC CC CC GG AA AG AG AG AA CC GG AACC CC AG GG CC AC CC AACG AAGG TT AG|CT|CG CG CG|AT|CT CT AG CT AG GT GT GA AG ...
..GGTTTTGG TTCC CC CC CC GG AAGG GG GG AACTAAGG GG CT GG AACCACCGAACCAAGGTT GG|CC|CGCG CEATICTCTAGCTAGGGTTGGAA ...
...GGTTTTGG TT CC CC CG CC AG AG AG AG AG AACT AAGG GG CT GG AG CCCCCGAACCAAGTTTAGLCTCG CGCGIATICTCT AGCTAG GG TT GG AA ...

!GGTTTTGGTTCCCCCC CC GG AAAG AG AG AATT AA GG GG CC AG AGCG AACCAACGAAGG TT AA[TT GG GG GG|TTTTCC GG TTGG GT TT GG AA ... i,

individuals

Matrices including thousands of individuals and hundreds of thousands (large for
some people, small for other people) if SNPs are available.

"4 ASW, MKK, LWK,
' & YR

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Europeans

Africans

5 Mbuti pygmy 12 Fren

6 Biaka 13 North ltalian
7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

18 Palestinian)
31 Daur

Central and
Southern Asians

19 Balochi
21 Makrani
23 Pathan

24 Burusho
25 Hazara

Eastern Asians

32 Hezhen
33 Lahu
34 Miao
35 Orogen
36 She

37 Tujia
38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

Oceanians

47 Papuan

Native Americans

HGDP data
* 1,033 samples
* 7 geographic regions

* 52 populations

HapMap Phase 3 data

* 1,207 samples

* 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)
447,143 SNPs (columns)

Dense matrix:

over one billion entries

Paschou, et al (2010) J Med Genet

EigenSNP 2

EigenSNP 1

* Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the “out-of-Africa” hypothesis.

* Mexican population seems out of place: we move to the top three PCs.

0.04 i I T '
+ AFRICA
x AMERICA
O CENTRAL SOUTH ASIA
& EASTASIA
0.03+— ¥ EUROPE _
O GUJARATI
Eu rope < MEXICANS
O MIDDLE EAST
O OCEANIA
0.02— —
Gujarati
/ Indians
0.01+— —
¥ gt 2
A %South Central
< o H
oL : " iw ; : Asia u
Africa ‘iﬁ 7
i i Ll < %
i *}ﬁ" + + N °
-0.01— Mﬁ* & o |
Oceania &
%% America
-0.02— : Q\ —1
" East Asia
0,03 W —
- \ | | | \ | |
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

0.04

EigenSNP 3

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

Paschou, et al. (2010) J Med Genet

a) Africa
b‘% : i ﬁﬂ" Fit+
+
1)
Oceania e
oW k
S &
East Asia

EigenSNP 1

+</,

o

+ AFRICA

*x AMERICA

0 CENTRAL SOUTH ASIA

< EAST ASIA

* EUROPE

O GUJARATI

“ MEXICANS

O MIDDLE EAST
OCEANIA

0 Togwpg @leyl I -"-

"
S C Asia & ° 2 “n8.% o
Gujarati “5™ i Europe
o
) a
£ 'a(\%
+\C

EigenSNP 2

* Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and — of course — can not be assayed!

« Can we find actual SNPs that capture the information in the singular vectors?

* Relatedly, can we compute them and/or the truncated SVD “efficiently.”

Two related issues with eigen-analysis

Computing large SVDs: computational time

* |In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

e Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs

Combinatorial optimization problem; hard even for small matrices.

Often called the Column Subset Selection Problem (CSSP).

Not clear that such “good” columns even exist.

Avoid “reification” problem of “interpreting” singular vectors!

* (Solvable in “random projection time" with CX/CUR decompositions! (PNAS, MD09))

Linear Algebra in Spark: CX and SVD/PCA
implementations and performance

Alex Gittens, Jey Kottalam, Jiyan Yang, Michael F. Ringenburg,
Jatin Chhugani, Evan Racah, Mohitdeep Singh, Yushu Yao, Curt
Fischer, Oliver Ruebel, Benjamin Bowen, Norman Lewis, Michael

Mahoney, Venkat Krishnamurthy, Prabhat

December 2015

Why do linear algebra in Spark?

Con: Classical MPl-based linear algebra algorithms will
be faster and more efficient

Potential Pros:

Faster development

One abstract uniform interface

An entire ecosystem that can be used before and after the
NLA computations

To some extent, Spark can take advantage of the available
linear algebra codes

Automatic fault-tolerance

Transparent support for out of memory calculations

The Decompositional Approach

“The underlying principle of the decompositional approach to matrix
computation is that it is not the business of matrix algorithmicists to solve
particular problems but to construct computational platforms from which

a wide variety of problems can be solved”

A decomposition solves a multitude of problems
They are expensive to compute, but can be reused
Different algorithms can produce the same product
Facilitates rounding-error analysis

Can be updated efficiently

Well-engineered black-box solutions are available

[G.W. Stewart, “The decompositional approach to matrix computation” (2000)]

The Big 6 Decompositions

. Cholesky Decomposition
A=LL" solving positive-definite linear systems

- LU Decomposition
A=LU solving general linear systems

- QR Decomposition
A =QR

least squares problems;
dimensionality reduction
. Spectral Decomposition

A =VAV' analysis of physical systems

- Schur Decomposition
A = UTUH more stable alternative to eigenvectors

. Singular Value Decomposition
A =UxV7? low-rank approximation

SVD and PCA

The SVD decomposes a matrix into a basis for its column
space (U), a basis for its row space (V) , and singular values (2)

A =UxV?T
where
U=[u,...,u]eR™*" V=[vi,...,v,]ER"

3. = Diag(o1,...,0,) o1 2 20r>0

If the matrix has zero-mean rows, then its SVD is called the
Principal Components Analysis (PCA), and U, V, and 2 are
interpreted as capturing modes/directions and amounts of
variation.

Truncated SVD

The computation time of the full SVD decomposition scales like
O(mn?) so it can be infeasible to compute the full SVD.

Often (for dimensionality reduction, physical interpretation, etc.)
instead it suffices to compute the rank-k truncated SVD (PCA)

Ak - a'rgrninra,nk(B)=k”‘A _ B“%‘
which is given by

Ap =UpZ, VI

Uk: — [u17°' auk]

3 = Diag(o1,...,0%)
Vi = [Vla"')vk]

and can be computed in O(mnk)

Computing the Truncated SVD (l)

To get the right singular vectors of A, we can compute the
eigenvectors of ATA, because

A=UXVT = ATA = vx2V7T

Once we have Vi, we can use its orthogonality to recover
>« and Uk from

AV, = UXVIV, = U.X,

Thus the two steps in computing the truncated SVD of A are:

1. Compute the truncated SVD of ATA to get Vi
2. Compute the SVD of AVk to get 2k and Vi

Computing the Truncated SVD (ll)

To compute the truncated SVD of M = ATA, we use the
Lanczos algorithm

The idea is to restrict M to Krylov subspaces of increasing
dimensionality:

Ks = span(xg, Mxg, ..., M* 'xg)

— QsRs
H, = Q/MQ, € R**¢

As s increases, the eigenvalues/vectors of Hs approximate the
extreme eigenvalues/vectors of M and Hs is much smaller.

Because of the special structure of the Krylov subspace and
the fact M is symmetric, going from Hs to Hs+1is very efficient

and requires only the cost of a matrix-vector multiply by
M=ATA

Implementing the truncated SVD algorithm in
Spark

Our Scala-Spark implementation assumes:

1. A'is a (tall-skinny) dense matrix of Doubles given as an
spark.mllib.linalg.distributed.IndexedRowMatrix

2. kis small enough that AV fits in memory on the
executor and is small enough not to violate the JVM
array size restriction (k*m < 2%%) e.g. for k = 100, this
means m must be less than 43 billion.

Recall the overall algorithm

1. Use Lanczos on A'A to get Vi
2. Compute the SVD of AVk to get 2k and Uk

The second step is done by using Breeze on the driver

Computing the Lanczos iterations using Spark (1)

We call the spark.mllib.linalg.EigenvalueDecomposition
interface to the ARPACK implementation of the Lanczos
method

This requires a function which computes a matrix-product
against ATA

-
a;

If A= ! |then the product can be computed as
al T A W
a5 _ (A" A)x = Zi_l a;(a; x)

Computing the Lanczos iterations using Spark (ll)

(ATAx =" ai(a]x)

is computed using a treeAggregate operation over the RDD

2| Driver

Y

aggregate S tree aggregate
Exec
Exec Exec
Exec ’//,,//”’/,
Exec
Exec Exoc //////// Dﬁverl

Exec

\

Exec Exec

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]

Spark SVD performance (1)

Experimental Setup:

A 30-node EC2 cluster of r3.8xlarge instances (960
nodes with 7.2 TB RAM)

Ais a 6,349,676-by-46,715 dense matrix of Doubles
(about 1.2 Tb)

A is stored in Parquet format, row-wise

A is zero-meaned and the columns are standardized
and is stored in memory

k =20

Spark SVD performance (I)

Mean/Std of

ATAx 18.2s (1.2s)

18.2s (2s) 19.2s (1.9s)

Lanczos 70 70 70
Iterations
Sl 21.3 min 21.3 min 22.4 min
Lanczos
Time to
collect AV 2% s 2tk
Tlm.e to load 4.2 min 4.1 min 3.9 min
A in mem*
Total Time 26 min 26 min 26.8 min

* we zero-mean and standardize the columns of A to compute a variant of the PCA

The CX Decomposition (l)

Dimensionality reduction is a ubiquitous tool in science
(bio-imaging, neuro-imaging, genetics, chemistry,
climatology, ...), typical approaches include PCA and
NMF which give approximations that rely on nonlinear
combinations of the datapoint in A

PCA, NMF, etc. lack reifiability. Instead, CX matrix
decompositions identify exemplar data points (columns of
A) that capture the same information as the top singular
vectors, and give approximations of the form

A~ CX

The CX Decomposition (ll)

To get accuracy comparable to the truncated rank-k SVD,
the CX algorithm randomly samples O(k) columns with

replacement fﬁo | A according to the leverage score pmf

Pi= "7 where Vi =1[vi,...,Vy]
CXDECOMPOSITION
Input: A € R™*", rank parameter k < rank(A), number
Since the algorithm is of power iterations ¢.
d ized Output: C.
ranaomized, we can 1: Compute an approximatiqn of the top-k right singular
use a randomized vectors of A denoted by V}, using RANDOMIZEDSVD

algori thm to with ¢ powei iteEations. o
) . 2: Let ¢; = Y ;_, Vi;, where ¥, is the (i,j)-th element
approximate Vk in of Vi, fori=1,...,n.
o(mnk) time 3: Define pizéi/ijlﬁj fore=1,...,n.
4: Randomly sample ¢ columns from A in i.i.d. trials, using
the importance sampling distribution {p; }}_; .

The Randomized SVD algorithm

The matrix analog of the power method:
L ATA.Xt
ST AT Al

Qtr1,-= QR(ATAQt) — Vi

> V1

RANDOMIZEDS VD Algorithm

Input: A € R™*™, number of power iterations q¢ > 1,
target rank k£ > 0, slack p > 0, and let £ = k + p.

Output: UXV7T ~ A,

1: Initialize B € R™** by sampling B;; ~ N (0, 1).

2: for g times do

3 B+ ATAB

4 (B,_) + THINQR(B)

5: end for

6: Let () be the first k& columns of B.

7: Let M = AQ.

8: Compute (U, 3, VT) = THINSVD(M).

9: Let V = QV

Implementing the CX algorithm in Spark

Our Scala-Spark implementation assumes:

1. A'is a fat sparse matrix of Doubles given as an
spark.mllib.linalg.distributed.IndexedRowMatrix

2. | =k + pis small enough that B fits in memory on the
executor and is small enough not to violate the JVM
array size restriction (I*m < 2°9) e.g. for k = 100, this
means m must be less than 43 billion.

The overall algorithm

1. Use the Randomized SVD to approximate Vi
2. Sample the columns of A according to the leverage
probabilities

Computing the Randomized SVD using Spark
A"
As before, if A = then the product can be computed as

aj

(ATA)B =Y a,(aB)

and we use treeAggregation for efficiency

def multiplyGramian (A: RowMatrix, B: LocalMatrix) = {

.rows.treeAggregate (LocalMatrix.zeros (n, k)) (
seqgOp = (X, row) => X += row * row.t =* B,
combOp = (X, Y) => X +=Y

Spark CX performance (I)

Dataset: Ais a 131,048-by-8,258,911 sparse matrix (1 TB)

' Platform | Total Cores | Core Frequency | Intercomnect | DRAM | SSDs |
D Amaeon BC2 r, 8xlarge | 960 (32 pe-node) | 25 GHs |10 Gigabit Exhernet | 244 GIB | 22 320 GR |
- Cray XC40 | 960 (32 per-noke) | 23 GHs | Cray Asies [20], [27] | 252 GIB | None |
- Expenmental Cray cluster | 960 (24 pernode) | 25 GHx | Cray Anes [20], [20] | 126 GiB | 1 x SO0 GH
Platform Todul Load Time Per | Averape Average Averuge
Runtime Time Iterution Local Agpregation | Network l
Tusk Task YWalt

Amaevn EC2 ©3,8xlarge	280 min	153 min	269 min	d4sax	270 sec	207 sex
oy XC40	230 min	232 mi=	209 min	3Ssax	68sec	Dlsx
. Experinental Cray cluster	152 min	088 mi=	1S54 min	28sa	99s¢	27 sy

Time(s)

Spark CX performance (Il)

EC2

1800

1600

1400

1200

1000

800

600

400

200

EC2

16 32
Rank

|- Load Matrix Metadata [Load Matrix [Power Iterations [l Finalization (Post—Processing)n

Spark CX performance (IIl)

35
T
30} ' .
1
25} - .
|
-
»‘-ns 20 - 1
= I
£ -
F 15} | |
|
I +
10}
1
|
| i i
5 L _ $:
Q_‘_ w
0 ! 1
NS XS \S s 5 xS
a ate A e 1@ T 12
e e e A o %
40 0 ¥ a® OV et

| essons learned

the main challenge is converting the data to a format Spark can
read

treeAggregation is key (and don’t be shy with changing the depth
option) for more efficient row-based linear algebra

increase the worker timeouts and network timeouts with
--conf spark.worker.timeout=1200000
--conf spark.network.timeout=1200000

when passing around large vectors

What next

use optimized NLA libraries under Breeze

get the truncated SVD code to scale successfully when the
RDD cannot be held in memory, or identify the culprit
characterize the performance on EC2 and NERSC, Cray
platforms of the truncated SVD code

characterize the performance of Spark vs parallel ARPACK
investigate how much can be gained by using block-Lanczos
and communication-avoiding algorithms

CX code and IPDPS submission: https://github.com/rustandruin/sc-2015.git

Large-scale SVD/PCA code: https://github.com/rustandruin/large-scale-climate.git

Two scientitfic applications of Spark
implementations of the CX and PCA matrix
decompositions

Alex Gittens, Jey Kottalam, Jiyan Yang, Michael F. Ringenburg,
Jatin Chhugani, Evan Racah, Mohitdeep Singh, Yushu Yao, Curt
Fischer, Oliver Ruebel, Benjamin Bowen, Norman Lewis, Michael

Mahoney, Venkat Krishnamurthy, Prabhat

December 2015

Mass Spectrometry Imaging (l)

Mass spectrometry measures ions that are derived
from the molecules present in a biological sample

IACCELERATION |
IONISATION
electromagnet
N il L
o 111
I
. o vacuum

/v pump

vaporised
sample
DEFLECTION
DETECTION amplifier

chart
recorder

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]

Mass Spectrometry Imaging (ll)

Scanning over the 2D sample gives a 3D dataset r(x,y,m/z)
where m/z is the mass-to-charge ratio and r is the relative
abundance

relative
abundance

L I [1
90 92 94 96 93 100 102 iz

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]

lon-Mobility Mass Spectrometry Imaging

Different ions can have the same m/z signature. lon-
mobility mass spectrometry further supplements dataset to
include drift times T, which assist in differentiating ions,

giving a 4D dataset r(x,y,m/z,T)

CEr] Sample
I | onize molecules

lons driven by electric field

Drift Tube — Transforms
ion size and shape
000 information into detection
time differences

["""]lon detector

A A

> Time
decreasing ion velocity

lon Mobility Spectrometer
O
O
@]

Signal

[src: http://www.technet.pnnl.gov/sensors/chemical/projects/ES4 IMS.stm

lon-Mobility Mass Spectrometry Imaging in Spark (CX)

A single mass spec image may be many gigabytes; further
exacerbated by using ion-mobility mass spec imaging

Scientists use MSI to find ions corresponding to chemically
and biogically interesting compounds

Question: can the CX decomposition, which identifies a few
columns in a dataset that reliably explain a large portion of
the variance in the dataset, help pinpoint important ions and
locations in MSI images?

CX for lon-Mobility MSI Results (l)

One of the largest available lon-Mobility MSI scans: 100GB
scan of a sample of Lewis Dalisay Peltatum (a plant)

Ais a 8,258,911-by-131,048 matrix; with rows corresponding
to pixels and columns corresponding to (r, m/z) values

Platform	Total Cores	Core Frequency	Interconnect	DRAM	SSDs
Amazon EC2 r3.8xlarge	960 (32 per-node)	2.5 GHz	10 Gigabit Ethernet	244 GiB	2 x 320 GB
Cray XC40	960 (32 per-node)	2.3 GHz	Cray Aries [20], [21]	252 GiB	None
Experimental Cray cluster	960 (24 per-node)	2.5 GHz	Cray Aries [20], [21]	126 GiB	1 x 800 GB

Table I: Specifications of the three hardware platforms used in these performance experiments.

CX for lon-Mobility MSI Results (ll)

S
2 0.02} | I
0.00 In 1 I It 1l Ial 1 I " I | Y
100 200 300 400 500 600 700
mfz

Normalized leverage scores (sampling
probabilities) for the ions. Three regions
account for 59.3% of the total probability
mass. These regions correspond to ions
which are chemically related, so may have
similar biological origins, but have different
spatial distributions within the sample.

10000 points sampled by leverage score. Color
and luminance of each point indicates density
of points at that location as determined by a
Gaussian kernel density estimate.

Climate Analysis (PCA) in Spark

In climate analysis, PCA (EOF analysis) is used to uncover
potentially meaningful spatial and temporal modes of
variability. Given A containing zero-mean i.i.d. observations in
its rows, one column per observation interval,

Ap =UpXVE e R

The columns of Uk capture the dominant modes of spatial
variation in the anomaly field, and the columns of Vi
capture the dominant modes of temporal variation

Despite the fact that fully 3D climate fields (temperature,
velocity, etc.) are available, and their usefulness, EOFs have
historically only been calculated on 2D slices of these fields

Question of interest: Is there any scientific benefit to
computing the EOFs on full 3D climate fields?

CFSRA Datasets

Consists of multiyear (1979—2010) global gridded
representations of atmospheric and oceanic variables,
generated using constant data assimilation and
interpolation using a fixed model

200
L 14 . d
AIRSEV+GOESFV -\
S0 GPSRO+QUIKSCAT
GOESND+VADWND+PROFLR+METAR \\.
0

1980 1985 1990 1995 2000 2005 2009

FiG. 2. Diagram illustrating CFSR data dump volumes,
1978-2009 (GB month™).

[src: http://cfs.ncep.noaa.gov/cfsr/docs/|

CFSR Ocean Temperature Dataset (l)

Ocean temperature (K) observations from 1979—2010
at 6 hours intervals at 40 different depths in the ocean,
on 360-by-720-by-40 grid.

The data was provided in the form of one GRB2 file per
6 hour observation, and were converted to CSV format,
then converted to Parquet format using Spark

The subsequent analysis was conducted on this
dataset

Ais a 6,349,676-by-46,715 matrix (about 1.2TB)

computed the dominant 20 modes (captures
about 81% of the variance)

CFSR Ocean Temperature Dataset (1)

SST portian of hrst EOF

First two years of first temporal eof

0.008
0.006/ 0.006

0.004| 0.004/

0.002} 0.002} §

o

~0.004} Do

0006k . ~0.004

—0.008| ¥ ~0.006}

~0-0195—550 1000 1500 2000 2500 3000 0098500 1000 1500 2000 2500 3000

date index date index

CFSR Ocean Temperature Dataset (Il

- Run on a 30-node r3.8xlarge EC2 cluster (960 2.5GHz
cores, 7.2TB memory) — CFSR-O cached in memory

Mean/Std of
ATAX

18.2s (1.2s)

18.2s (2s) 19.2s (1.9s)

LD 70 70 70
iterations
Uui 21.3 min 21.3 min 22.4 min
Lanczos
Time to
collect AVi 29s 34s 30s
Time to load 4.2 min 4.1 min 3.9 min

A in mem*

Total Time 26 min 26 min 26.8 min

CFSR Atmospheric Dataset

Consists of 26 2D fields and 5 3D fields, e.g. total cloud
cover (%), several types of fluxes (Wm-2), convective
precipitation rate (kg m2s7), ...

Ais a 54,843,120-by-46,720 matrix (about 10.2
TB); because the fields are measured in different
units, must normalize each row by its standard
deviation

Conversion is still a work in progress. Getting
Parquet to successfully read in the data when the
rows have > 54 million entries is challenging.

This dataset will not fit in memory, so expect
runtime to be much slower

Latest Point of Failure

Try to multiply against A, which is stored in Parquet format

val rows = {
sqlContext. read.parquet(datafname).rdd.map {
case SQLRow(rowname: String, values: WrappedArray[Float]) =>
// DenseVectors have to be doubles
val vector = new DenseVector(values.toArray.map(v => v.toDouble))
new IndexedRow(indexLUT(rowname), vector)
}
}

val nrows : Long = 46752

val ncols = 54843120

val A = new IndexedRowMatrix(rows, nrows, ncols)
A.rows.unpersist() // doesn't help avoid OOM

val x = new DenseMatrix(ncols, 1, BDV.rand(ncols).data)
A.multiply(x).rows.collect

throws an OOM error in the ParquetFileReader

15/12/06 05:23:36 WARN TaskSetManager: Lost task 950.0 in stage 4.0

(TID 28398, 172.31.34.233): java.lang.OutOfMemoryError: Java heap space

at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetF
at org.apache.parquet.hadoop.ParquetFileReader. readNextRowGroup(ParquetFileReader. je
at org.apache.parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRe
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParque
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.je

[see http://stackoverflow.com/questions/3411457 1/parquet-runs-out-of-memory-on-reading]

Conclusion

Sophisticated analytics involves strong control over linear algebra.

Most workflows/applications currently do not demand much of the
linear algebra.

Low-rank matrix algorithms for interpretable scientific analytics on
scores of terabytes of data!

What is the “right” way to do linear algebra for large-scale data
analysis?

