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Overview

Comments on scientific data and choosing good columns as features.

Linear Algebra in Spark
«  CXand SVD/PCA implementations and performance

Two scientific applications of Spark
* Applications of the CX and PCA matrix decompositions
* To mass spec imaging, climate science (etc.)



Scientific data and choosing good columns as features

E.g., application in: Human Genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
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Matrices including thousands of individuals and hundreds of thousands (large for
some people, small for other people) if SNPs are available.
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HGDP data
* 1,033 samples
* 7 geographic regions

* 52 populations

HapMap Phase 3 data

* 1,207 samples

* 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)
447,143 SNPs (columns)

Dense matrix:

over one billion entries



Paschou, et al (2010) J Med Genet

EigenSNP 2

EigenSNP 1

* Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the “out-of-Africa” hypothesis.

* Mexican population seems out of place: we move to the top three PCs.
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* Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and — of course — can not be assayed!

« Can we find actual SNPs that capture the information in the singular vectors?

* Relatedly, can we compute them and/or the truncated SVD “efficiently.”



Two related issues with eigen-analysis

Computing large SVDs: computational time

* |In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

e Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs

Combinatorial optimization problem; hard even for small matrices.

Often called the Column Subset Selection Problem (CSSP).

Not clear that such “good” columns even exist.

Avoid “reification” problem of “interpreting” singular vectors!

* (Solvable in “random projection time" with CX/CUR decompositions! (PNAS, MD09))
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Why do linear algebra in Spark?

Con: Classical MPl-based linear algebra algorithms will
be faster and more efficient

Potential Pros:

Faster development

One abstract uniform interface

An entire ecosystem that can be used before and after the
NLA computations

To some extent, Spark can take advantage of the available
linear algebra codes

Automatic fault-tolerance

Transparent support for out of memory calculations



The Decompositional Approach

“The underlying principle of the decompositional approach to matrix
computation is that it is not the business of matrix algorithmicists to solve
particular problems but to construct computational platforms from which

a wide variety of problems can be solved”

A decomposition solves a multitude of problems
They are expensive to compute, but can be reused
Different algorithms can produce the same product
Facilitates rounding-error analysis

Can be updated efficiently

Well-engineered black-box solutions are available

[G.W. Stewart, “The decompositional approach to matrix computation” (2000)]



The Big 6 Decompositions

. Cholesky Decomposition
A=LL" solving positive-definite linear systems

- LU Decomposition
A=LU solving general linear systems

- QR Decomposition
A =QR

least squares problems;
dimensionality reduction
. Spectral Decomposition

A =VAV' analysis of physical systems

- Schur Decomposition
A = UTUH more stable alternative to eigenvectors

. Singular Value Decomposition
A =UxV7? low-rank approximation




SVD and PCA

The SVD decomposes a matrix into a basis for its column
space (U), a basis for its row space (V) , and singular values (2)

A =UxV?T
where
U=[u,...,u]eR™*" V=[vi,...,v,]ER"

3. = Diag(o1,...,0,) o1 2 20r>0

If the matrix has zero-mean rows, then its SVD is called the
Principal Components Analysis (PCA), and U, V, and 2 are
interpreted as capturing modes/directions and amounts of
variation.



Truncated SVD

The computation time of the full SVD decomposition scales like
O(mn?) so it can be infeasible to compute the full SVD.

Often (for dimensionality reduction, physical interpretation, etc.)
instead it suffices to compute the rank-k truncated SVD (PCA)

Ak - a'rgrninra,nk(B)=k”‘A _ B“%‘
which is given by

Ap =UpZ, VI

Uk: — [u17°' auk]

3 = Diag(o1,...,0%)
Vi = [Vla"')vk]

and can be computed in O(mnk)



Computing the Truncated SVD (l)

To get the right singular vectors of A, we can compute the
eigenvectors of ATA, because

A=UXVT = ATA = vx2V7T

Once we have Vi, we can use its orthogonality to recover
>« and Uk from

AV, = UXVIV, = U.X,

Thus the two steps in computing the truncated SVD of A are:

1. Compute the truncated SVD of ATA to get Vi
2. Compute the SVD of AVk to get 2k and Vi



Computing the Truncated SVD (ll)

To compute the truncated SVD of M = ATA, we use the
Lanczos algorithm

The idea is to restrict M to Krylov subspaces of increasing
dimensionality:

Ks = span(xg, Mxg, ..., M* 'xg)

— QsRs
H, = Q/MQ, € R**¢

As s increases, the eigenvalues/vectors of Hs approximate the
extreme eigenvalues/vectors of M and Hs is much smaller.

Because of the special structure of the Krylov subspace and
the fact M is symmetric, going from Hs to Hs+1is very efficient

and requires only the cost of a matrix-vector multiply by
M=ATA



Implementing the truncated SVD algorithm in
Spark

Our Scala-Spark implementation assumes:

1. A'is a (tall-skinny) dense matrix of Doubles given as an
spark.mllib.linalg.distributed.IndexedRowMatrix

2. kis small enough that AV fits in memory on the
executor and is small enough not to violate the JVM
array size restriction (k*m < 2%%) e.g. for k = 100, this
means m must be less than 43 billion.

Recall the overall algorithm

1. Use Lanczos on A'A to get Vi
2. Compute the SVD of AVk to get 2k and Uk

The second step is done by using Breeze on the driver



Computing the Lanczos iterations using Spark (1)

We call the spark.mllib.linalg.EigenvalueDecomposition
interface to the ARPACK implementation of the Lanczos
method

This requires a function which computes a matrix-product
against ATA

-
a;

If A= ! |then the product can be computed as
al T A W
a5 _ (A" A)x = Zi_l a;(a; x)



Computing the Lanczos iterations using Spark (ll)

(ATAx =" ai(a]x)

is computed using a treeAggregate operation over the RDD

2| Driver

Y

aggregate S tree aggregate
Exec
Exec Exec
Exec ’//,,//”’/,
Exec
Exec Exoc //////// Dﬁverl

Exec

\

Exec Exec

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]




Spark SVD performance (1)

Experimental Setup:

A 30-node EC2 cluster of r3.8xlarge instances (960
nodes with 7.2 TB RAM)

Ais a 6,349,676-by-46,715 dense matrix of Doubles
(about 1.2 Tb)

A is stored in Parquet format, row-wise

A is zero-meaned and the columns are standardized
and is stored in memory

k =20



Spark SVD performance (I)

Mean/Std of

ATAx 18.2s (1.2s)

18.2s (2s) 19.2s (1.9s)

Lanczos 70 70 70
Iterations
Sl 21.3 min 21.3 min 22.4 min
Lanczos
Time to
collect AV 2% s 2tk
Tlm.e to load 4.2 min 4.1 min 3.9 min
A in mem*
Total Time 26 min 26 min 26.8 min

* we zero-mean and standardize the columns of A to compute a variant of the PCA



The CX Decomposition (l)

Dimensionality reduction is a ubiquitous tool in science
(bio-imaging, neuro-imaging, genetics, chemistry,
climatology, ...), typical approaches include PCA and
NMF which give approximations that rely on nonlinear
combinations of the datapoint in A

PCA, NMF, etc. lack reifiability. Instead, CX matrix
decompositions identify exemplar data points (columns of
A) that capture the same information as the top singular
vectors, and give approximations of the form

A~ CX



The CX Decomposition (ll)

To get accuracy comparable to the truncated rank-k SVD,
the CX algorithm randomly samples O(k) columns with

replacement fﬁo | A according to the leverage score pmf

Pi= "7 where Vi =1[vi,...,Vy]
CXDECOMPOSITION
Input: A € R™*", rank parameter k < rank(A), number
Since the algorithm is of power iterations ¢.
d ized Output: C.
ranaomized, we can 1: Compute an approximatiqn of the top-k right singular
use a randomized vectors of A denoted by V}, using RANDOMIZEDSVD

algori thm to with ¢ powei iteEations. o
) . 2: Let ¢; = Y ;_, Vi;, where ¥, is the (i,j)-th element
approximate Vk in of Vi, fori=1,...,n.
o(mnk) time 3: Define pizéi/ijlﬁj fore=1,...,n.
4: Randomly sample ¢ columns from A in i.i.d. trials, using
the importance sampling distribution {p; }}_; .




The Randomized SVD algorithm

The matrix analog of the power method:
L ATA.Xt
ST AT Al

Qtr1,-= QR(ATAQt) — Vi

> V1

RANDOMIZEDS VD Algorithm

Input: A € R™*™, number of power iterations q¢ > 1,
target rank k£ > 0, slack p > 0, and let £ = k + p.

Output: UXV7T ~ A,

1: Initialize B € R™** by sampling B;; ~ N (0, 1).

2: for g times do

3 B+ ATAB

4 (B,_) + THINQR(B)

5: end for

6: Let () be the first k& columns of B.

7: Let M = AQ.

8: Compute (U, 3, VT) = THINSVD(M).

9: Let V = QV




Implementing the CX algorithm in Spark

Our Scala-Spark implementation assumes:

1. A'is a fat sparse matrix of Doubles given as an
spark.mllib.linalg.distributed.IndexedRowMatrix

2. | =k + pis small enough that B fits in memory on the
executor and is small enough not to violate the JVM
array size restriction (I*m < 2°9) e.g. for k = 100, this
means m must be less than 43 billion.

The overall algorithm

1. Use the Randomized SVD to approximate Vi
2. Sample the columns of A according to the leverage
probabilities



Computing the Randomized SVD using Spark
A"
As before, if A = then the product can be computed as

aj

(ATA)B =Y a,(aB)

and we use treeAggregation for efficiency

def multiplyGramian (A: RowMatrix, B: LocalMatrix) = {

.rows.treeAggregate (LocalMatrix.zeros (n, k)) (
seqgOp = (X, row) => X += row * row.t =* B,
combOp = (X, Y) => X +=Y



Spark CX performance (I)

Dataset: Ais a 131,048-by-8,258,911 sparse matrix (1 TB)

' Platform | Total Cores | Core Frequency |  Intercomnect | DRAM | SSDs |
D Amaeon BC2 r, 8xlarge | 960 (32 pe-node) | 25 GHs |10 Gigabit Exhernet | 244 GIB | 22 320 GR |
- Cray XC40 | 960 (32 per-noke) | 23 GHs | Cray Asies [20], [27] | 252 GIB | None |
- Expenmental Cray cluster | 960 (24 pernode) | 25 GHx | Cray Anes [20], [20] | 126 GiB | 1 x SO0 GH
Platform Todul Load Time Per | Averape Average Averuge
Runtime Time Iterution Local Agpregation | Network l
Tusk Task YWalt

| Amaevn EC2 ©3,8xlarge | 280 min | 153 min | 269 min | d4sax | 270 sec | 207 sex |
| oy XC40 | 230 min | 232 mi= | 209 min | 3Ssax | 68sec | Dlsx |
|. Experinental Cray cluster | 152 min | 088 mi= | 1S54 min | 28sa | 99s¢ | 27 sy |
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Spark CX performance (Il)
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Spark CX performance (IIl)
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| essons learned

the main challenge is converting the data to a format Spark can
read

treeAggregation is key (and don’t be shy with changing the depth
option) for more efficient row-based linear algebra

increase the worker timeouts and network timeouts with
--conf spark.worker.timeout=1200000
--conf spark.network.timeout=1200000

when passing around large vectors



What next

use optimized NLA libraries under Breeze

get the truncated SVD code to scale successfully when the
RDD cannot be held in memory, or identify the culprit
characterize the performance on EC2 and NERSC, Cray
platforms of the truncated SVD code

characterize the performance of Spark vs parallel ARPACK
investigate how much can be gained by using block-Lanczos
and communication-avoiding algorithms

CX code and IPDPS submission: https://github.com/rustandruin/sc-2015.git

Large-scale SVD/PCA code: https://github.com/rustandruin/large-scale-climate.git



Two scientitfic applications of Spark
implementations of the CX and PCA matrix
decompositions
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Mass Spectrometry Imaging (l)

Mass spectrometry measures ions that are derived
from the molecules present in a biological sample

IACCELERATION |
IONISATION
electromagnet
N il L
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I
. o vacuum
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DEFLECTION
DETECTION amplifier

chart
recorder

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]




Mass Spectrometry Imaging (ll)

Scanning over the 2D sample gives a 3D dataset r(x,y,m/z)
where m/z is the mass-to-charge ratio and r is the relative
abundance

relative
abundance

L I [ 1
90 92 94 96 93 100 102 iz

[src: http://www.chemguide.co.uk/analysis/masspec/howitworks.html]




lon-Mobility Mass Spectrometry Imaging

Different ions can have the same m/z signature. lon-
mobility mass spectrometry further supplements dataset to
include drift times T, which assist in differentiating ions,

giving a 4D dataset r(x,y,m/z,T)

CEr ] Sample
I | onize molecules

lons driven by electric field

Drift Tube — Transforms
ion size and shape
000 information into detection
time differences

[ """ ]lon detector

A A

> Time
decreasing ion velocity

lon Mobility Spectrometer
O
O
@]

Signal

[src: http://www.technet.pnnl.gov/sensors/chemical/projects/ES4 IMS.stm




lon-Mobility Mass Spectrometry Imaging in Spark (CX)

A single mass spec image may be many gigabytes; further
exacerbated by using ion-mobility mass spec imaging

Scientists use MSI to find ions corresponding to chemically
and biogically interesting compounds

Question: can the CX decomposition, which identifies a few
columns in a dataset that reliably explain a large portion of
the variance in the dataset, help pinpoint important ions and
locations in MSI images?



CX for lon-Mobility MSI Results (l)

One of the largest available lon-Mobility MSI scans: 100GB
scan of a sample of Lewis Dalisay Peltatum (a plant)

Ais a 8,258,911-by-131,048 matrix; with rows corresponding
to pixels and columns corresponding to (r, m/z) values

| Platform |  Total Cores | Core Frequency | Interconnect | DRAM | SSDs |
| Amazon EC2 r3.8xlarge | 960 (32 per-node) | 2.5 GHz | 10 Gigabit Ethernet | 244 GiB | 2 x 320 GB |
| Cray XC40 | 960 (32 per-node) | 2.3 GHz | Cray Aries [20], [21] | 252 GiB | None |
| Experimental Cray cluster | 960 (24 per-node) | 2.5 GHz | Cray Aries [20], [21] | 126 GiB | 1 x 800 GB |

Table I: Specifications of the three hardware platforms used in these performance experiments.



CX for lon-Mobility MSI Results (ll)

S
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Normalized leverage scores (sampling
probabilities) for the ions. Three regions
account for 59.3% of the total probability
mass. These regions correspond to ions
which are chemically related, so may have
similar biological origins, but have different
spatial distributions within the sample.

10000 points sampled by leverage score. Color
and luminance of each point indicates density
of points at that location as determined by a
Gaussian kernel density estimate.



Climate Analysis (PCA) in Spark

In climate analysis, PCA (EOF analysis) is used to uncover
potentially meaningful spatial and temporal modes of
variability. Given A containing zero-mean i.i.d. observations in
its rows, one column per observation interval,

Ap =UpXVE e R

The columns of Uk capture the dominant modes of spatial
variation in the anomaly field, and the columns of Vi
capture the dominant modes of temporal variation

Despite the fact that fully 3D climate fields (temperature,
velocity, etc.) are available, and their usefulness, EOFs have
historically only been calculated on 2D slices of these fields

Question of interest: Is there any scientific benefit to
computing the EOFs on full 3D climate fields?



CFSRA Datasets

Consists of multiyear (1979—2010) global gridded
representations of atmospheric and oceanic variables,
generated using constant data assimilation and
interpolation using a fixed model

200
L 14 . d
AIRSEV+GOESFV -\
S0 GPSRO+QUIKSCAT
GOESND+VADWND+PROFLR+METAR \\.
0

1980 1985 1990 1995 2000 2005 2009

FiG. 2. Diagram illustrating CFSR data dump volumes,
1978-2009 (GB month™).

[src: http://cfs.ncep.noaa.gov/cfsr/docs/|




CFSR Ocean Temperature Dataset (l)

Ocean temperature (K) observations from 1979—2010
at 6 hours intervals at 40 different depths in the ocean,
on 360-by-720-by-40 grid.

The data was provided in the form of one GRB2 file per
6 hour observation, and were converted to CSV format,
then converted to Parquet format using Spark

The subsequent analysis was conducted on this
dataset

Ais a 6,349,676-by-46,715 matrix (about 1.2TB)

computed the dominant 20 modes (captures
about 81% of the variance)



CFSR Ocean Temperature Dataset (1)
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CFSR Ocean Temperature Dataset (Il

- Run on a 30-node r3.8xlarge EC2 cluster (960 2.5GHz
cores, 7.2TB memory) — CFSR-O cached in memory

Mean/Std of
ATAX

18.2s (1.2s)

18.2s (2s) 19.2s (1.9s)

LD 70 70 70
iterations
Uui 21.3 min 21.3 min 22.4 min
Lanczos
Time to
collect AVi 29s 34s 30s
Time to load 4.2 min 4.1 min 3.9 min

A in mem*

Total Time 26 min 26 min 26.8 min



CFSR Atmospheric Dataset

Consists of 26 2D fields and 5 3D fields, e.g. total cloud
cover (%), several types of fluxes (Wm-2), convective
precipitation rate (kg m2s7), ...

Ais a 54,843,120-by-46,720 matrix (about 10.2
TB); because the fields are measured in different
units, must normalize each row by its standard
deviation

Conversion is still a work in progress. Getting
Parquet to successfully read in the data when the
rows have > 54 million entries is challenging.

This dataset will not fit in memory, so expect
runtime to be much slower



Latest Point of Failure

Try to multiply against A, which is stored in Parquet format

val rows = {
sqlContext. read.parquet(datafname).rdd.map {
case SQLRow(rowname: String, values: WrappedArray[Float]) =>
// DenseVectors have to be doubles
val vector = new DenseVector(values.toArray.map(v => v.toDouble))
new IndexedRow(indexLUT(rowname), vector)
}
}

val nrows : Long = 46752

val ncols = 54843120

val A = new IndexedRowMatrix(rows, nrows, ncols)
A.rows.unpersist() // doesn't help avoid OOM

val x = new DenseMatrix(ncols, 1, BDV.rand(ncols).data)
A.multiply(x).rows.collect

throws an OOM error in the ParquetFileReader

15/12/06 05:23:36 WARN TaskSetManager: Lost task 950.0 in stage 4.0

(TID 28398, 172.31.34.233): java.lang.OutOfMemoryError: Java heap space

at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetF
at org.apache.parquet.hadoop.ParquetFileReader. readNextRowGroup(ParquetFileReader. je
at org.apache.parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRe
at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParque
at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.je

[ see http://stackoverflow.com/questions/3411457 1/parquet-runs-out-of-memory-on-reading]




Conclusion

Sophisticated analytics involves strong control over linear algebra.

Most workflows/applications currently do not demand much of the
linear algebra.

Low-rank matrix algorithms for interpretable scientific analytics on
scores of terabytes of data!

What is the “right” way to do linear algebra for large-scale data
analysis?



