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) Roadmap of the tutorial

Focus: sketching matrices (i) by sampling rows/columns and (ii) via "random projections.”

Machinery: (i) Approximating matrix multiplication and (ii) Decoupling "randomization”
from “"matrix perturbation.”

Overview of the tutorial:

(i) Motivation: computational efficiency, interpretability

(ii) Approximating matrix multiplication

(iii) From matrix multiplication to CX/CUR factorizations and the SVD

(iv) Improvements and recent progress

(v) Algorithmic approaches to least-squares problems

(vi) Statistical perspectives on least-squares algorithms

(vii) Theory and practice of: extending these ideas to kernels and SPSD matrices

(viii) Theory and practice of: implementing these ideas in large-scale settings



] Why randomized matrix algorithms?

* Faster algorithms: worst-case theory and/or numerical code

« Simpler algorithms: easier to analyze and reason about

* More-interpretable output: useful if analyst time is expensive

« Implicit reqgularization properties: and more robust output

 Exploit modern computer architectures: by reorganizing steps of alg

* Massive data: matrices that they can be stored only in slow
secondary memory devices or even not at all

Already a big success ... but why do they work?



) Already a big success ...

Avron, Maymounkov, and Toledo 2010:

* "Randomization is arguably the most exciting and innovative
idea to have hit linear algebra in a long time”

Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

« Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."

Already a big success ... but why do they work?



) Already a big success ...

* Better worse-case theory: for L2 regression, L1 regression, low-
rank matrix approximation, column subset selection, Nystrom
approximation, etc.

* Implementations "beat” Lapack: for L2 regression on nearly any non-
tiny tall dense matrix

* Low-rank implementations "better”: in ferms of running time and/or
robustness for dense/sparse scientific computing matrices

* Parallel and distributed implementations: exploit modern computer
architectures to do computations on up to a tera-byte of data

* Genetics, astronomy, etc.: applications to choose good SNPs,
wavelengths, etc. for genotype inference, galaxy identification, etc.

Already a big success ... but why do they work?



‘ A typical result: (1+€)-CX/CUR

Theorem: Let Tgp, |, Time™ be the time to compute an exact or approximate
rank-k approximation to the SVD (e.g., with a random projection).
Then, given an m-by-n matrix A, there exists** an algorithm that runs
in O(Tsyp k) time that picks

at most roughly 3200*** (k/&?****) log (k/€) columns of A
such that with probability at least 0.9*****
1 A-PAll<(1+e) ] A- A I
*Isn't that too expensive?
**What is it?
***Isn't 3200 to big? Why do you need 3200?
****Isn't 1/€? too bad for e= 1015 ?

*****Isn't 0.1 too large a failure probability?



, Why do these algorithms work?

They decouple randomness from vector space structure.

Today, explain this in the context of.

* Least squares regression -> CX/CUR approximation

« CSSP -> Random Projections parameterized more flexibly
 Nystrom approximation of SPSD matrices

Permits finer control in applying the randomization.
* Much better worst-case theory
- Easier to map to ML and statistical ideas

- Easier to parameterize problems in ways that are more natural to
humerical analysts, scientific computers, and software developers



] The devil is in the details ...

Decouple the randomization from the linear algebra:
« originally within the analysis, then made explicit

* permits much finer control in application of randomization

Importance of statistical leverage scores:
* historically used in regression diagnostics to identify outliers

* best random sampling algorithms use them as importance sampling
distribution

* best random projection algorithms go to a random basis where they
are roughly uniform

Couple with domain expertise—to get best results!



] Statistical leverage, coherence, etc.

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

Definition: Given a “tall” n x d matrix A, i.e., withn>d, let U
be any n x d orthogonal basis for span(A), & let the d-vector U,
be the ith row of U. Then:

* the statistical leverage scores are A; = [[Ug| 1,2, forie{1,..,n}

,,,,,

» the (i,j)-cross-leverage scores are U™ Uy = <Ugy U

Note: There are extension of this to:
« "fat” matrices A, with n, d are large and low-rank parameter k

* L1 and other p-norms



~~ Practical applications

* NLA, ML, statistics, data
analysis, genetics, etfc

Theoretical origins

* theoretical computer
science, convex analysis, efc.

« Johnson-Lindenstrauss e Fast JL transform

« Additive-error algs * Relative-error algs

* Good worst-case analysis * Numerically-stable algs
* No statistical analysis * Good statistical properties
| ~—

How to "bridge the gap"?

» decouple randomization from linear algebra

* importance of statistical leverage scores!



‘ Applications in: Astronomy

Szalay (2012, MMDS)

CMB Surveys (pixels)

= 1990 COBE 1000
= 2000 Boomerang 10,000
= 2002 CBI 50,000
= 2003 WMAP 1 Million
= 2008 Planck 10 Million

Angular Galaxy Surveys (obj)

« 1970 Lick 1™
« 1990 APM 2M
« 2005 SDSS 200M
- 2011 P31 1000M
« 2020 LSST 30000M

Time Domain

« QUEST

« SDSS Extension survey
 Dark Energy Camera

« Pan-STARRS

« LSST...

Galaxy Redshift Surveys (obj)

« 1986 CfA 3500
« 1996 LCRS 23000
« 2003 2dF 250000
« 2008 SDSS 1000000
« 2012 BOSS 2000000

« 2012 LAMOST 2500000

“The Age of Surveys” — generate petabytes/year ...




‘ Galaxy properties from galaxy spectra

Szalay (2012, MMDS)
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) Galaxy diversity from PCA
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‘ Roadmap of the tutorial

Overview of the tutorial:

(v) Algorithmic approaches to least-squares problems



‘ Least Squares (LS) Approximation

(

\

n X d

)

)

/

n>d

&)

Q

[

\

=

2y

min ||b — Az||s
rER4

10— Az

We are interested in over-constrained Lp regression problems, n »>> d.

Typically, there is no x such that Ax = b.

Want to find the "best"” x such that Ax = b.

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



‘ Exact solution to LS Approximation

Cholesky Decomposition: 2y = ;Ielllgi b — Az||o
If A is full rank and well-conditioned, _ | |b B A§j| |2

decompose ATA = RTR, where R is upper triangular, and

solve the normal equations: RTRx=ATb. Pr'ojec‘rion of bon

QR Decomposition: the subspace spanned
by the columns of A

Slower but numerically stable, esp. if A is rank-deficient.
Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:

Most expensive, but best if A is very ill-conditioned. J,
Write A=USVT, in which case: = A*b = VI-1,Ub. 2 __ 2 _ +7112
rite in which case: xgpy L 22 — ||b||2 ||AA b||2
by T = ATbh
Complexity is O(nd?) for all of these, but —
constant factors differ. \

Pseudoinverse
of A



] Modeling with Least Squares

Assumptions underlying its use:
* Relationship between "outcomes” and "predictors is (roughly) linear.
* The error term ¢ has mean zero.
* The error term ¢ has constant variance.

 The errors are uncorrelated.

* The errors are normally distributed (or we have adequate sample size to
rely on large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!



Statistical Issues and Regression Diagnostics

Model: b = Ax+e b = response; A()= carriers;
e = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0
and Var(e)=0°I), uncorrelated, normally distributed

Xopt = (ATA)Y'ATb  (what we computed before)

b'=Hb H = A(ATA)!AT = "hat" matrix
H;; - measures the leverage or influence exerted on b’; by b;,
regardless of the value of b; (since H depends only on A)

e' = b-b'= (I-H)b vector of residuals - note: E(e')=0, Var(e')=02(I-H)

Trace(H)=d Diagnostic Rule of Thumb: Investigate if H; > 2d/n
H=UUT U is from SVD (A=UZVT), or any orthogonal matrix for span(A)

H. = |U®|,2 leverage scores = row "lengths” of spanning orthogonal matrix
i 2 9 9 p 9 9



A "classic" randomized algorithm (lof3)

=

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Over-constrained least squares (n x d matrix A,n >>d)

- Solve:  Z = min ||Az — b||
xe R4

 Solution: ZUOpt _ ATb

Randomized Algorithm: .
*Forallie{l,..,n} compute Pi = EHU('L)HE

* Randomly sample O(d log(d)/ €) rows/elements fro A/b, using
{p;} as importance sampling probabilities.

* Solve the induced subproblem: ., = (SA)TSZ)



‘ A "classic" randomized algorithm (20f3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Theorem: Let v = ||UAUZb||2/|[b||2 . Then:

" [AZopt —bll2 < (1 +€)Z2
" @opt = Foptll2 < Ve (K(A)VAYZ =) [[zopll:

This naive algorithm runs in O(nd?) time

* But it can be improved !l

This algorithm is bottleneck for Low Rank Matrix Approximation
and many other matrix problems.



] A "classic" randomized algorithm (30f3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Sufficient condition for relative-error approximation.

For the “preprocessing" matrix X:

oz (XUy) > 1/\/5; and
||UjZ{XTXbi|\§ < eZ?/2,

« Important: this condition decouples the randomness from the

linear algebra.

« Random sampling algorithms with leverage score probabilities
and random projections satisfy it



] Theoretically "fast” algorithms

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Algorithm 1: Fast Random Projection Algorithm for LS Problem

* Preprocess input (in o(nd?)time) with Fast-JL transform, uniformizes
leverage scores, and sample uniformly in the randomly-rotated space

* Solve the induced subproblem
Algorithm 2: Fast Random Sampling Algorithm for LS Problem

« Compute 1+¢ approximation to statistical leverage scores (in o(nd?)
time), and use them as importance sampling probabilities

» Solve the induced subproblem

Main theorem: For both of these randomized algorithms, we get:

* (1z¢)-approximation
+ in roughly O (ndlog (dlog(n)/€) + d*log(n)log(dlogn)/e) time!



] Practically "fast" implementations (1of2)

Use “randomized sketch” to construct preconditioner
for traditional iterative methods:

« RTO8: preconditioned iterative method improves 1/¢
dependence to log(1/¢), important for high precision

» AMT10: much more detailed evaluation, different Hadamard-
type preconditioners, etc.

« CRT11: use Gaussian projections to compute orthogonal
projections with normal equations

* MSM11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.g., for parallel
computation in Amazon EC2 clusters!



] Practically "fast" implementations (20f2)

Avron, Maymounkov, and Toledo 2010:

« Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

« Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."



‘ Ranking Astronomical Line Indices

INDEX DEFINITIONS

Name Index Bandp Pseud Units M Error! Notes

01 CN, 4143.375-4178.375 4081.375-4118.875 mag CN, Fel 0.021
4245.375-4285.375

02 CN; 4143.375-4178.375  4085.125-4097.625 mag CN, Fel 0.023 2
4245.375-4285.375

03 Cad4227  4223.500-4236.000 4212.250-4221.000 A Cal,Fel, Fell 027 2
4242.250-4252.250

04 G4300 4282.625-4317.626  4267.625-4283.875 A CH, Fel 0.39
4320.125-4336.375

05 Fe4383  4370.375-4421.625 4360.375-4371625 A  Fel, Till 053 2
4444.125-4456.625

06 Cad4455  4453.375-4475.875 4447.125-4455.875 A Cal,Fel,Nil, 025 2
4478.375-4493.375 TiIlLMnI, VI

07 Fed531 4515.500-4560.500  4505.500-4515.500 A Fel, Til, 042 2
4561.750-4580.500 Fell, Ti Il

08 Fed668 4635.250-4721.500 4612.750-4631.500 A Fel, Til,Cr1, 064 2
4744.000-4757.750 MgI, Nil, C,

09 HB 4847.875-4876.625 4827.875-4847.875 A HB, Fe 1 022 3
4876.625-4891.625

10 Fe5015 4977.750-5054.000  4946.500-4977.750 A Fel, Nil, Til 046 23
5054.000-5065.250

11 Mg 5069.125-5134.125  4895.125-4957.625 mag MgH, Fel, Nil 0.007 3
5301.125-5366.125

12 Mg, 5154.125-5196.625 4895.125-4957.625 mag MgH, Mg b, 0.008 3
5301.125-5366.125 Fel

13 Mgh 5160.125-5192.625 5142.625-5161.375 A  Mgb 023 3
5191.375-5206.375

14 Fe5270 5245.650-5285.650  5233.150-5248.150 A Fel Cal 028 3
5285.650-5318.150

15 Fe5335 5312.125-5352.125  5304.625-5315.875 A Fel 026 3
5353.375-5363.375

16 Fe5406  5387.500-5415.000 5376.250-5387.500 A  Fel,Crl 020 23
5415.000-5425.000

17  Fe5709  5698.375-5722.125 5674.625-5698.375 A Fel, Nil, Mgl 018 2
5724.625-5738.375 Cr,VI

18  Fe5782 5778.375-5798.375  5767.125-5777.125 A Fel, Crl 020 2
5799.625-5813.375 Cul, Mgl

19 NaD 5878.625-5911.125  5862.375-5877.375 A Nal 0.24
5923.875-5949.875

20 TiO, 5938.375-5995.875 5818.375-5850.875 mag TiO 0.007
6040.375-6105.375

21  TiOz 6191.375-6273.875 6068.375-6143.375 mag TiO 0.006
6374.375-6416.875

(Worthey et al. 94;
Trager et al. 98)
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Identifying new line indices objectively

Szalay (2012, MMDS); Yip et al (2013)
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' New Spectral Regions (M2;k=5;
‘ overselecting 10X; combine if <30A)

Szalay (2012, MMDS); Yip et al (2013)
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‘ Roadmap of the tutorial

Overview of the tutorial:

(vi) Statistical perspectives on least-squares algorithms



‘ A statistical perspective on "leveraging”

Consider the model
Y = XBO + €,

where y is an n X 1 response vector, X is an n X p fized predictor or design
matrix, By is a p x 1 coefficient vector, and the noise vector € ~ N(0,02%I). In
this case,

Bots = argming||y — XA|172 = (XTX)1xTy
§ = Hy, where H = X(X'X)'x71

p
hy = Z Ufj = ||Us||? is the leverage of the i*" point
j=1



Constructing the subsample

Main “Algorithmic Leveraging” Algorithm:

1. Randomly sample r > p constraints (rows of X and elements of y), using
{m;}*_, as an importance sampling distribution.

2. Rescale each sampled row/element by 1/r7; to form a weighted LS sub-
problem argminﬁeRpHDS%';y — DS X%

3. Solve the weighted LS subproblem and return the solution Bols.

We consider the empirical performance of several versions:

e UNIF: sample uniformly (rescaling doesn’t matter)

e BLEV: sample (and rescale) with “expensive” ezact leverage scores
e SLEV: sample (and rescale) with 0.9lev + 0.1uni f

e UNWL: sample with leverage scores but don’t reweight subproblem



. Bias and variance of subsampling

‘ estimators (1 of 3)

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

The estimate obtained by solving the subproblem is:

~

Bao = (XTSxD?*SLX)"1XTSLD2Syy
= (XTWX)"'XTwy,

where (2 refers to the sampling /resacling process. This depends on subsampling
through a nonlinear function, the inverse of random sampling matrix, so do a
Taylor series expansion.

Lemma. (MMY13) A Taylor expansion of 3 around the point wy = 1 = E {w}
yields . A
Ba = Bos + (X' X) "' X" Diag {é} (w — 1) + Rq,

where ¢ = y — X BAO;S is the LS residual vector, and where Rq is the Taylor
expansion remainder.



. Bias and variance of subsampling

‘ estimators (2 of 3)

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Lemma. (MMY13) The conditional expectation and conditional variance for
algorithmic leveraging procedure is given by:

Ew [§Q|y]:/éols + Ew [RQ] 3
1

rm

Vary, [ﬂ}ﬂy]z (XTx)-1xTt [Diag {é} Diag { } Diag {é}] X(XTX)™! + Vary [Rq],

where () specifies the sampling/rescaling probability distribution. The uncon-
ditional expectation and unconditional variance for the is given by:

E [Ba|= 50 + E[Ral;

(1 — hy)?

Uy

2
Var [ Bo|=0?(XTX)"" + 7 (XTX)" X7 Diag { } X(XTX)™! + Var[Rq].
T



. Bias and variance of subsampling
] estimators (3 of 3)

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013

Consider empirical performance of several versions:
« UNIF: variance scales as n/r

« BLEV: variance scales as p/r but have 1/h; terms in
denominator of sandwich expression

« SLEV: variance scales as p/r but 1/h; terms in denominator are
moderated since no probabilities are too small

« UNWL: 1/h.; terms are not in denominator, but estimates
unbiased around B,/ B,

Estimates are unbiased (around B,,./B,), but variance
depends on sampling probabilities.



. BLEV and UNIF on data with different
] leverage scores

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013
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Comparison of BLEV and UNIF
when rank is lost in the sampling
process (n=1000 and p=10).

Left/middle/right panels: T3/T2/

T1 data.

Upper panels: Proportion of
singular X" TWX, out of 500
trials, for BLEV and UNIF .

Middle panels: Boxplots of ranks
of 500 BLEV subsamples.

Lower panels: Boxplots of ranks
of 500 UNIF subsamples.

Note the nonstandard scaling of

the X axis.
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Comparison of BLEV and UNIF
when rank is lost in the sampling
process (n=1000 and p=10).

Left/middle/right panels: T3/T2/
T1 data.

Upper panels: The logarithm of
variances of the estimates.

Middle panels: The logarithm of
variances, zoomed-in on the X-
axis.

Lower panels: The logarithm of
squared bias of the estimates.
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] Combining BELV and UNIF into SLEV, 1

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013
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] Combining BLEV and UNIF into SLEV, 2

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013
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] Results conditioned on the data

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013
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‘ Roadmap of the tutorial

Overview of the tutorial:

(vii) Theory and practice of: extending these ideas to kernels and SPSD matrices



] Motivation (1 of 2)

Methods to extract linear structure from the data:
- Support Vector Machines (SVMs).
* Gaussian Processes (GPs).
- Singular Value Decomposition (SVD) and the related PCA.

Kernel-based learning methods to extract non-linear structure:
» Choose features to define a (dot product) space F.
* Map the data, X, to F by ¢: X—F.

* Do classification, regression, and clustering in F with linear methods.
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] Motivation (2 of 2)

» Use dot products for information about mutual positions.
* Define the kernel or Gram matrix: 6;=k;;=(¢(X®), $(XV)).

- Algorithms that are expressed in terms of dot products can be given the
Gram matrix G instead of the data covariance matrix XTX.

If the Gram matrix G -- 6;=k;;=(¢(XD), $(XW))) -- is dense but (nearly) low-
rank, then calculations of interest still need O(n?) space and O(n3) time:

* matrix inversion in GP prediction,
* quadratic programming problems in SVMs,

- computation of eigendecomposition of 6.

Idea: use random sampling/projections to speed up these computations!
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This "revisiting” is particularly timely ...

=3

"Revisiting the Nystrom Method ...," Gittens and Mahoney (2013)

Prior existing theory was extremely weak:

- Especially compared with very strong 1+¢ results for low-rank
approximation, least-squares approximation, etc. of general matrices

* In spite of the empirical success of Nystrom-based and related
randomized low-rank methods

Conflicting claims about uniform versus leverage-based sampling:
* Some claim "ML matrices have low coherence" based on one ML paper

- Contrasts with proven importance of leverage scores is genetics,
astronomy, and internet applications

High-quality numerical implementations of random projection and random
sampling algorithms now exist:
* For L2 regression, L1 regression, low-rank matrix approximation, etc. in
RAM, parallel environments, distributed environments, efc.
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] Some basics

Leverage scores:
- Diagonal elements of projection matrix onto the best rank-k space

- Key structural property needed to get 1+c approximation of general matrices

Spectral, Frobenius, and Trace norms:

* Matrix norms that equal {,2,1}-norm on the vector of singular values
A2 < [|Allr < ||A]l < VRl|A]|F < n||All2
Basic SPSD Sketching Model:

o SPSD Sketching Model. Let A be an n X n positive semi-definite matrix,
and let S be a matrix of size n X £, where ¢ < n. Take

C=AS and W =STAS.

Then CWTCT is a low-rank approximation to A with rank at most /.



) Strategy for improved theory

Decouple the randomness from the vector space structure

* This used previously with least-squares and low-rank CSSP approximation

This permits much finer control in the application of randomization
* Much better worst-case theory

- Easier to map to ML and statistical ideas

* Has led to high-quality numerical implementations of LS and low-rank algorithms

* Much easier to parameterize problems in ways that are more natural o numerical
analysts, scientific computers, and software developers

This implicitly looks at the "square root" of the SPSD matrix
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Main structural result

Gittens and Mahoney (2013)

Theorem. Let A be an n X n SPSD matrix with eigenvalue decomposition
A = UXU?T, where U, is top k eigenvalues, ; = UTS etc., and let S be

a sampling matrix of size n x £. Then when C = AS and W = STAS, the
corresponding low-rank SPSD approximation satisfies

|A —CWHCT|||, 1|2 + |25 ° Q07 |13
|A - CWTCT|r 122]| 7 + V2| B2 || 7 + (|25 2007 |12
A - CWHCT ||y, < TrS, + |2 20,07 |12,

IA A

assuming €2y has full row rank.
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‘ Algorithmic applications (1 of 2)

Gittens and Mahoney (2013)

Lemma. Let S be a sampling matrix of size n X £ corresponding to a leverage-
based probability distribution derived from the top k-dimensional eigenspace of
A s.t. for some 3 € (0,1]. If £ > 3200(B¢?) "k 1In(4k/(36)), then w.p. 1 — J the

corresponding low-rank SPSD approximation satisfies
|A - CW*C'|,

|A — CWHCT|r
|A —CWHC! ||,

A — Agll2 + %A — A7,

(14 V2)||A - Axllr +£°||A — Ak,
(1+e)|A - Agllz

IAIAIA

Similar bounds for uniform sampling, except that need to sample proportional to
the coherence (the largest leverage score).
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‘ Algorithmic applications (2 of 2)

Gittens and Mahoney (2013)

Lemma. Let S = \/§DFR be a structured random projection of size n x /.

If ¢ > 247 [Vk + /8In(8n/9)]? In(8k/J), then w.p. 1 —§ the corresponding
low-rank SPSD approximation satisfies

1 161n(n/6)?
A-CWTCh|, < (1 . A—_ A
| o< (1o (5 ) ) 1A - Al
2In(n/9)
A — A7,
|A-CWTCh||p < (1+V44e)||A — Ap|lr +22¢||A — A0,
A -CWTCh||p, < (1+422)[|A — A7,

Similar bounds for Gaussian-based random projections.
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Data considered (1 of 2)

Name Description n d Yonnz
Laplacians

HEP arXiv High Energy Physics collaboration graph | 9877 | NA 0.06

GR arXiv General Relativity collaboration graph | 5242 | NA 0.12

Enron subgraph of the Enron email graph 10000 | NA 0.22

Gnutella Gnutella peer to peer network on Aug. 6, 2002 | 8717 | NA 0.09

Linear Kernels

Dexter bag of words 2000 | 20000 | 83.8

Protein derived feature matrix for S. cerevisiae 6621 357 99.7

SNPs DNA microarray data from cancer patients 5520 | 43 100

Gisette images of handwritten digits 6000 | 5000 100
Dense RBF Kernels

AbaloneD physical measurements of abalones 4177 | 8 100

WineD chemical measurements of wine 4898 12 100
Sparse RBF Kernels

AbaloneS physical measurements of abalones 4177 | 8 82.9/48.1

WineS chemical measurements of wine 4898 | 12 11.1/88.0

Table 1: The data sets used in our empirical evaluation. The %nnz for the

Sparse RBF Kernels depends on the o parameter.
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Data con5|der'ed (2 of 2)

Name Yonnz lﬂi”‘f; ’\f\;:l 100 HA” A‘ﬁ’“HF 100 —H‘Ah A‘?‘"“* kth-lrgst lev
HEP 0.06 | 3078 20 | 0.998 | 7.8 0.4 0.261
HEP 0.06 | 3078 60 | 0.998 | 13.2 1.1 0.278
GR 0.12 1679 20 1 0.999 | 10.5 0.74 0.286
GR 0.12 1679 60 | 1 17.9 2.16 0.289
Enron 0.22 2588 20 | 0997 | 7.77 0.352 0.492
Enron 0.22 2588 60 | 0.999 | 12.0 0.94 0.298
Gnutella 0.09 2757 20 | 1 8.1 0.41 0.381
Gnutella 0.09 | 2757 60 | 0.999 | 13.7 1.20 0.340
Dexter 83.8 176 8 | 0.963 | 14.5 934 0.067
Protein 99.7 | 24 10 | 0.987 | 42.6 7.66 0.008
SNPs 100 3 5 | 0.928 | 85.5 37.6 0.002
Gisette 100 4 12 1 0.90 | 90.1 14.6 0.005
AbaloneD (dense, o = .15) | 100 41 20 | 0.992 | 42.1 3.21 0.087
AbaloneD (dense, o = 1) 100 4 20 | 0.935 | 97.8 59 0.012
WineD (dense, o = 1) 100 31 20 | 0.99 | 431 3.89 0.107
WineD (dense, o0 = 2.1) 100 3 20 | 0.936 | 94.8 31.2 0.009
AbaloneS (sparse, o = .15) | 82.9 400 20 |1 0.989 | 154 1.06 0.232
AbaloneS (sparse, o = 1) 481 |5 20 | 0.982 | 90.6 21.8 0.017
WineS (sparse, o = 1) 11.1 116 20 | 0.995 | 29.5 2.29 0.2
WineS (sparse, o = 2.1) 88.0 | 39 20 | 0.992 | 41.6 3.53 0.098

Table 1: Summary statistics for data sets used in our empirical evaluation.
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Weakness of previous theory (1 of 2)

Drineas and Mahoney (COLT 2005, JMLR 2005):

* If sample Q(k £ log(1/d)) columns according to diagonal elements of A, then
_ + T < . n 2
A —CWTClsp < [[A = Agll2,r + €Zk:1(A)

11

Kumar, Mohri, and Talwalker (ICML 2009, JMLR 2012):

* If sample Q(t k log(k/3d)) columns uniformly, where t # coherence and A has
exactly rank k, then can reconstruct A, i.e., A — CWHCT

Gittens (arXiv, 2011):

* If sample Q(u k log(k/d)) columns uniformly, where u = coherence, then
2
A-CWHCTl, < A=Al (147

2
|A-CWTCl; < [A=Axla+ - [|A = Axlrr

So weak that these results aren't even a qualitative guide to practice
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Weakness of previous theory (2 of 2)

source, sketch

pred./obs. spectral error

pred./obs. Frobenius error

pred./obs. trace error

Protein, k£ = 10

DMO5 nonuniform Nystrom 119.2 18.6 -
BWO09 uniform Nystrom - - 3.6
KMT12 uniform Nystrom 33.4 20.5 —
GM13 Leverage-based Lemma 42.5 6.9 2.0
GM13 Fourier-based Lemma 297.5 21.7 3.1
GM13 Gaussian-based Lemma 3.8 3.3 1.8
GM13 uniform Nystrom Lemma 86.3 91.3 8
AbaloneD, o = .15,k = 20
DMO5 nonuniform Nystrom 349.9 42.5 -
BWO09 uniform Nystrom - - 2.0
KMT12 uniform Nystrom 62.9 46.7 -
GM13 Leverage-based Lemma 235.3 14.6 1.3
GM13 Fourier-based Lemma 139.4 36.9 1.7
GM13 Gaussian-based Lemma 5.2 4.7 1.1
GM13 uniform Nystrom Lemma 12.9 228.3 5.1
WineS, c =1,k = 20
DMO5 nonuniform Nystrom 422.5 41.0 -
BWO09 uniform Nystrom - — 2.1
KMT12 uniform Nystrom 72.8 44.2 —
GM13 Leverage-based Lemma 244.9 134 1.2
GM13 Fourier-based Lemma 186.7 36.8 1.7
GM13 Gaussian-based Lemma 6.6 4.7 1.2
GM13 uniform Nystrom Lemma 13.7 222.6 5.1
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. Approximating the leverage scores
‘ (for very rectangular matrices)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)
Input: A € R"*? (with n > d and SVD A = UXVT) and € € (0,1/2].

e Let IT; € R™*" be an SRFT with r; = Q(¢~2(v/d + vInn)?Ind).
e Compute IT; A € R"*4 and its QR factorization II; A = QR.

o Let IT, € R¥*"2 be a matrix of i.i.d. standard Gaussian random variables,
where ro = () (6_2 In n) .

e Construct the product 2 = AR™'II,.

e Fori=1,...,n compute /; = 123 15-

~

Output: /;,72 =1,...,n, approximations to the leverage scores of A.

» This algorithm returns relative-error (1t¢) approximations to all the
leverage scores of an arbitrary tall matrix in o(nd2) time, i.e., in fime

O(ndIn(vVd + VInn) + nde ?Inn + d?e2(v/d + vVInn)?Ind).
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. An aside: Timing for fast approximating
‘ leverage scores of rectangular matrices

Gittens and Mahoney (2013)

Running time is comparable to underlying random projection

* (Can solve the subproblem directly; or, as with Blendenpik, use it to precondition
to solve LS problems of size = thousands-by-hundreds faster than LAPACK.)

10° - . 107

0 0 .
g g " M — -
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| |
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. Running time results (for a vanilla
] implementation in R)

"A statistical perspective on algorithmic leveraging,” Ma, Mahoney, and Yu 2013
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CPU time for calculating exact leverage scores and approximate leverage
scores using the Bfast (Binary Projections) and Gfast (Gaussian Projections),
i.e., "slow" versions of the "fast" algorithm of DMMW12.

Left panel is for varying sample size n for fixed predictor size p=500.
Right panel is for varying predictor size p for fixed sample size n=20000.



) Summary of running time issues

Running time of exact leverage scores:
- worse than uniform sampling, SRFT-based, & Gaussian-based projections

Running time of approximate leverage scores:
» can be much faster than exact computation
- with g=0 iterations, time comparable to SRFT or Gaussian projection fime
- with ¢@>0 iterations, tfime depends on details of stopping condition

The leverage scores:
- with q=0 iterations, the actual leverage scores are poorly approximated
- with @>0 iterations, the actual leverage scores are better approximated
* reconstruction quality is often no worse, and is often better, when using
approximate leverage scores

On "tall” matrices:
* running time is comparable to underlying random projection
* can use the coordinate-biased sketch thereby obtained as preconditioner for
overconstrained L2 regression, as with Blendenpik or LSRN
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‘ Roadmap of the tutorial

Overview of the tutorial:

(viii) Theory and practice of: implementing these ideas in large-scale settings



] Parallel environments and how they scale

Shared memory
* cores: [10, 103]*
* memory: [1006B, 100TB]

Message passing

* cores: [200, 10°]**

* memory: [1TB, 1000TB]

* CUDA cores: [5 x 104, 3 x 106]***
* GPU memory: [5006B, 20TB]

MapReduce

s cores: [40, 103]****

* memory: [240GB, 100TB]

* storage: [100TB, 100PBT*****

Distributed computing

s cores: [-, 3 x 103 F**x***



) “Traditional” matrix algorithms

For L2 regression:

« direct methods: QR, SVD, and normal equation (O(mn? + n?) time)
* Pros: high precision & implemented in LAPACK
* Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

* /terative methods. CGLS, LSQR, etc.
* Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
* Cons: hard to predict the number of iterations needed

For L1 regression:

* linear programming

* inferior-point methods (or simplex, ellipsoid? methods)
* re-weighted least squares

« first-order methods



Two important notions:
leverage and condition

Statistical leverage. (Think: eigenvectors & low-precision solutions.)

» The statistical leverage scores of A (assume m>>n) are the diagonal
elements of the projection matrix onto the column span of A.
» They equal the L2-norm-squared of any orthogonal basis spanning A.
» They measure;

« how well-correlated the singular vectors are with the canonical basis

« which constraints have largest “influence" on the LS fit

« a notion of “coherence” or “outlierness”

« Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues & high-precision solutions.)

» The L2-norm condition number of A is (A) = 6, (A)/cin(A).
* k(A) bounds the number of iterations

« for ill-conditioned problems (e.g., k(A) = 10 >> 1), convergence speed is slow.
« Computing k(A) is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.



] Meta-algorithm for L2 regression

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)
1. Using the L2 statistical leverage scores of A, construct an importance
sampling distribution {p}i.; n

.....

construct a subproblem.
3: Solve the L2-regression problem on the subproblem.

Naive implementation: 1+ & approximation in O(mn?/¢€) time. (Ugh.)
“Fast” O(mn log(n)/€) in RAM if
« Hadamard-based projection and sample uniformly

* Quickly compute approximate leverage scores
"High precision” O(mn log(n)log(1/¢)) in RAM if:
« use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?



] Meta-algorithm for L1 (& Lp) regression

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, COMMMW 2012, Meng and Mahoney 2012.)
1. Using the L1 statistical leverage scores of A, construct an importance
sampling distribution {p}i.; n

.....

construct a subproblem.
3: Solve the L1-regression problem on the subproblem.

Naive implementation: 1+ € approximation in O(mn°/€) time. (Ugh.)
"Fast" in RAM if

« we perform a fast "L1 projection” to uniformize them approximately

« we approximate the L1 leverage scores quickly
“High precision” in RAM if:
* we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?



. LARGE versus ... versus large:
, extending to parallel/distributed environments

Can we extend these ideas to parallel & distributed
environments?

* Yeslll

* Roughly, use the same meta-algorithm, but minimize
communication rather than minimize flops

In the remainder, focus on L2 regression.

* Technical issues, especially for iterations, are very different
for L2 regression versus L1/quantile regression

* Talk with me later if you care about L1 regression



LSRN: a fast parallel implementation

=

Meng, Saunders, and Mahoney (2011, arXiv)

A parallel iterative solver based on normal random
projections

» computes unique min-length solution to min, ||Ax-b||,
« very over-constrained or very under-constrained A

« full-rank or rank-deficient A

* A can be dense, sparse, or a linear operator

» easy to implement using threads or with MPI, and scales well
in parallel environments



LSRN: a fast parallel implementation

Meng, Saunders, and Mahoney (2011, arXiv)

Algorithm:
« Generate a yn x m matrix with i.i.d. Gaussian entries G
*Let Nbe Rtor V=!from QR or SVD of GA

« Use LSQR or Chebyshev Semi-Iterative (CSI) method to
solve the preconditioned problem min, ||ANy-b| |,

Things to note:
* Normal random projection: embarassingly parallel
* Bound k(A): strong control on number of iterations

« CST particularly good for parallel environments: doesn't have
vector inner products that need synchronization b/w nodes



=

LSRN: Solving real-world problems

Meng, Saunders, and Mahoney (2011, arXiv)

TaeLe 6.2
Real-world problems and corresponding running times in seconds. DGELSD doesn't take ad-
wantage of sparsity. Though MATLAB's backslash (SuiteSparseQR) may not give the min-length
solutions to rank-deficient or under-determined problema, we still report s running times. Blenden-
pik either dosan't apply to rank-deficient problems or runs owt of memory (OOM). LSRN's running
time 33 basically determined by the problem size and the sparsity.

matrix m n nnx rank | cond DGELSD A\b Blendenpik | L3R¥
landmark || 71902 | 2704 | 1.1oe6 | 2671 | 1.0e8 20.54 0.6408" - 17.55
raildzad 4284 1.1c6 1.1a7 full | 400.0 > 3600 1.203* OOM 136.0
toimg 1 || 9ol TaG 2le7 | 925 - Gan.; 1067 - a6.02
toing. 2 1000 206 4.2a7 981 - 1201 > 3600° - 72.05
toing 3 1018 3ab 637 | 1016 - 2084 > 3600* - 111.1
toing 4 1019 dab Sd4a7 | 1018 - 2045 > 3600* - 147.1
toing 6 1023 b 1.00e8 | full - > 3600 > 3600° OOM 188.5




|
‘ Paige and Saunders (1982)

Code snippet (Python):

u = A.matvec(v) — alphaxu
beta = sqrt(comm. allreduce(np.dot(u,u)))

v = comm. allreduce (A.rmatvec(u)) — betaxv

Cost per iteration:
@ two matrix-vector multiplications

@ two cluster-wide synchronizations



Chebyshev semi-iterative (CSI)

Golub and Varga (1961)

|
The strong concentration results on ™ (AN) and c™"(AN) enable use

of the CS method, which requires an accurate bound on the extreme
singular values to work efficiently.

Code snippet (Python):

v = comm.allreduce(A.rmatvec(r)) — betaxv
X += alphaxv
r —— alphaxA.matvec(v)

Cost per iteration:
@ two matrix-vector multiplications

@ one cluster-wide synchronization



LSRN: on Amazon EC2 cluster

Meng, Saunders, and Mahoney (2011, arXiv)

TaeLE 6.3
Teat problemas on the Amazon ECE cluster and corresponding running times in zeconds. When
we enlarge the problem scale by a factor of 10 and increasze the number of cores accordingly, the

running time only increases by a factor of 50%,. It shows LSRN 's good scalability. Though the CS
method takes more iterations, it s faster than LSQR by saving communication coast.

solver Nicdes | np | matrix m n nnz | Nuar | Tiee | Ttowm
comnwy/ LsQRr | 2 | 4| wmime | 1020 | aes | maer | SO0 ] UL 700
L;‘;:i‘}'{‘ggR 5 | 10 | tnimg10 | 1024 | 1e7 | 2.1e8 1:46 22::;; ;?f:;
le.':nni‘;{.ggn 10 | 20 | tnimg 20 | 1024 | 27 | 4.2e8 18046 13272 g:ﬁ
LSRN w/ CS 106 | 1025 | 25566

20 40 | tnimg 40 | 1024 | 4e7 | 8.4e8

LSRN w/ LSQR a4 | 127.2 | 200.2



) Additional topics not covered ...

Theory/practice of L1/quantile regression:
* Cauchy transform, ellipsoidal rounding, etc. to get low-precision soln

« couple with randomized interior point cutting plane method to get
moderate-precision solutions on a terabyte of data in Hadoop

Theory/practice of “input-sparsity” regression algorithms:

* input-sparsity time matrix multiplication result -> input-sparsity time
L2 regression, low-rank approximation, leverage score algorithms

* nearly-input-sparsity time Lp regression algorithms via input-sparsity
time low-distortion embeddings



Conclusions to Part IT

=

Least-squares regression:

« faster sampling/projection in theory and implementation

* importance of decoupling randomness from vector space structure
Statistical perspective:

* better practical results without sacrificing worst-case quality
Revisiting the Nystrom method:

* the devil is in the details, if we want o make these algorithms useful
in real large-scale systems

Implementing in parallel/distributed environments:

* the same meta-algorithms work, but highlights the limits of
theoretically-useful models, and suggests future directions

All of these suggest future directions ...



) Conclusions on "RandNLA"

Many many modern massive data sets are well-modeled
by matrices:
* but existing algorithms were not designed for them

Randomization is a powerful tool for:
* the design of algorithms with better worst-case guarantees
* the design of algorithms with better statistical properties

* the design of algorithms for large-scale architectures

]

Great model/proof-of-principle for "bridging the gap":
* between TCS and NLA and ML

« useful theory and theoretically-fruitful practice arises



