
Implementing Randomized Matrix Algorithms
in Parallel and Distributed Environments

Michael W. Mahoney

Stanford University

(For more info, see:
http:// cs.stanford.edu/people/mmahoney/

or Google on “Michael Mahoney”)

October 2013

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 1 / 36

Outline

1 General thoughts

2 Randomized regression in RAM

3 Solving `2 regression using MPI

4 Solving `1 regression on MapReduce

Goal: very large-scale “vector space analytics”

Small-scale and medium-scale:

Model data by graphs and matrices

Compute eigenvectors, correlations, etc. in RAM

Very large-scale:

Model data with flat tables and the relational model

Compute with join/select and other “counting” in, e.g., Hadoop

Can we “bridge the gap” and do “vector space computations” at very
large scale?

Not obviously yes: exactly computing eigenvectors, correlations, etc. is
subtle and uses lots of comminication.

Not obviously no: lesson from random sampling algorithms is you can get
ε-approximation of optimal with very few samples.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 3 / 36

Why randomized matrix algorithms?

Traditional matrix algorithms (direct & iterative methods, interior point,
simplex, etc.) are designed to work in RAM and their performance is
measured in floating-point operations per second (FLOPS).

Traditional algorithms are NOT well-suited for:
I problems that are very large
I distributed or parallel computation
I when communication is a bottleneck
I when the data must be accessed via “passes”

Randomized matrix algorithms are:
I faster: better theory
I simpler: easier to implement
I implicitly regularize: noise in the algorithm avoids overfitting
I inherently parallel: exploiting modern computer architectures
I more scalable: modern massive data sets

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 4 / 36

Traditional algorithms

for `2 regression:
I direct methods: QR, SVD, and normal equation (O(mn2 + n2) time)

F Pros: high precision & implemented in LAPACK
F Cons: hard to take advantage of sparsity & hard to implement in

parallel environments

I iterative methods: CGLS, LSQR, etc.
F Pros: low cost per iteration, easy to implement in some parallel

environments, & capable of computing approximate solutions
F Cons: hard to predict the number of iterations needed

for `1 regression:
I linear programming
I interior-point methods (or simplex, ellipsoid? methods)
I re-weighted least squares
I first-order methods

Nearly all traditional algorithms for low-rank matrix problems, continuous
optimization problems, etc. boil down to variants of these methods.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 5 / 36

Over-determined/over-constrained regression

An `p regression problem is specified by a design matrix A ∈ Rm×n, a
response vector b ∈ Rm, and a norm ‖ · ‖p:

minimizex∈Rn ‖Ax − b‖p.

Assume m� n, i.e., many more “constraints” than “variables.” Given an
ε > 0, find a (1 + ε)-approximate solution x̂ in relative scale, i.e.,

‖Ax̂ − b‖p ≤ (1 + ε)‖Ax∗ − b‖p,

where x∗ is a/the optimal solution.

p = 2: Least Squares Approximation: Very widely-used, but highly
non-robust to outliers.

p = 1: Least Absolute Deviations: Improved robustness, but at the
cost of increased complexity.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 6 / 36

Large-scale environments and how they scale
Shared memory

I cores: [10, 103]∗

I memory: [100GB, 100TB]
Message passing

I cores: [200, 105]†

I memory: [1TB, 1000TB]
I CUDA cores: [5× 104, 3× 106]‡

I GPU memory: [500GB, 20TB]
MapReduce

I cores: [40, 105]§

I memory: [240GB, 100TB]
I storage: [100TB, 100PB]¶

Distributed computing
I cores: [−, 3× 105]‖.

∗
http://www.sgi.com/pdfs/4358.pdf
†
http://www.top500.org/list/2011/11/100
‡
http://i.top500.org/site/50310
§
http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
¶
http://hortonworks.com/blog/an-introduction-to-hdfs-federation/
‖
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 7 / 36

http://www.sgi.com/pdfs/4358.pdf
http://www.top500.org/list/2011/11/100
http://i.top500.org/site/50310
http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
http://hortonworks.com/blog/an-introduction-to-hdfs-federation/
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Outline

1 General thoughts

2 Randomized regression in RAM

3 Solving `2 regression using MPI

4 Solving `1 regression on MapReduce

Two important notions: leverage and condition
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Statistical leverage. (Think: eigenvectors. Important for low-precision.)
I The statistical leverage scores of A (assume m� n) are the diagonal

elements of the projection matrix onto the column span of A.
I They equal the `2-norm-squared of any orthogonal basis spanning A.
I They measure:

F how well-correlated the singular vectors are with the canonical basis
F which constraints have largest “influence” on the LS fit
F a notion of “coherence” or “outlierness”

I Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues. Important for high-precision.)
I The `2-norm condition number of A is κ(A) = σmax(A)/σ+

min(A).
I κ(A) bounds the number of iterations; for ill-conditioned problems

(e.g., κ(A) ≈ 106 � 1), the convergence speed is very slow.
I Computing κ(A) is generally as hard as solving the LS problem.

These are for the `2-norm. Generalizations exist for the `1-norm.
Mahoney (Stanford) Randomized Matrix Algorithms October 2013 9 / 36

Meta-algorithm for `2-norm regression
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1: Using the `2 statistical leverage scores of A, construct an importance
sampling distribution {pi}mi=1.

2: Randomly sample a small number of constraints according to {pi}mi=1

to construct a subproblem.

3: Solve the `2-regression problem on the subproblem.

A näıve version of this meta-algorithm gives a 1 + ε relative-error
approximation in roughly O(mn2/ε) time (DMM 2006, 2008). (Ugh.)

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 10 / 36

Meta-algorithm for `2-norm regression, cont.
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.‡‡)

We can make this meta-algorithm “fast” in RAM:∗∗

This meta-algorithm runs in O(mn log n/ε) time in RAM if:
I we perform a Hadamard-based random projection and sample uniformly

in a randomly rotated basis, or
I we quickly computing approximations to the statistical leverage scores

and using those as an importance sampling distribution.

We can make this meta-algorithm “high precision” in RAM:††

This meta-algorithm runs in O(mn log n log(1/ε)) time in RAM if:
I we use the random projection/sampling basis to construct a

preconditioner and couple with a traditional iterative method.

∗∗
(Sarlós 2006; Drineas, Mahoney, Muthu, Sarlós 2010; Drineas, Magdon-Ismail, Mahoney, Woodruff 2011.)

††
(Rokhlin & Tygert 2008; Avron, Maymounkov, & Toledo 2010; Meng, Saunders, & Mahoney 2011.)

‡‡
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 11 / 36

Randomized regression in RAM: Implementations
Avron, Maymounkov, and Toledo, SISC, 32, 1217–1236, 2010.

Conclusions:

Randomized algorithms “beats Lapack’s direct dense least-squares
solver by a large margin on essentially any dense tall matrix.”

These results “suggest that random projection algorithms should be
incorporated into future versions of Lapack.”

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 12 / 36

Randomized regression in RAM: Human Genetics
Paschou et al., PLoS Gen ’07; Paschou et al., J Med Gen ’10; Drineas et al., PLoS ONE ’10; Javed et al., Ann Hum Gen ’11.

Computing large rectangular regressions/SVDs/CUR decompositions:

In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the computation of the SVD of
the dense 2, 240× 447, 143 matrix A takes about 20 minutes.

Computing this SVD is not a one-liner—we can not load the whole matrix in RAM (runs out-of-memory in MatLab).

Instead, compute the SVD of AAT.

In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1, 200× 450, 000 (roughly, a full
leave-one-out cross-validation experiment).

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 13 / 36

A retrospective

Randomized matrix algorithms:

BIG success story in high precision scientific computing applications
and large-scale statistical data analysis!

Can they really be implemented in parallel and distributed
environments for LARGE-scale statistical data analysis?

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 14 / 36

Outline

1 General thoughts

2 Randomized regression in RAM

3 Solving `2 regression using MPI

4 Solving `1 regression on MapReduce

Algorithm LSRN (for strongly over-determined systems)

(Meng, Saunders, and Mahoney 2011)

1: Choose an oversampling factor γ > 1, e.g., γ = 2. Set s = dγne.
2: Generate G = randn(s,m), a Gaussian matrix.
3: Compute Ã = GA.
4: Compute Ã’s economy-sized SVD: ŨΣ̃Ṽ T .
5: Let N = Ṽ Σ̃−1.
6: Iteratively compute the min-length solution ŷ to

minimizey∈Rr ‖ANy − b‖2.

7: Return x̂ = Nŷ .

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 16 / 36

Why we choose Gaussian random projection
(Meng, Saunders, and Mahoney 2011)

Gaussian random projection

has the best theoretical result on conditioning,

can be generated super fast,

uses level 3 BLAS on dense matrices,

speeds up automatically on sparse matrices and fast operators,

still works (with an extra “allreduce” operation) when A is partitioned
along its bigger dimension.

So, although it is “slow” (compared with “fast” Hadamard-based
projections i.t.o. FLOPS), it allows for better communication properties.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 17 / 36

Theoretical properties of LSRN
(Meng, Saunders, and Mahoney 2011)

In exact arithmetic, x̂ = x∗ almost surely.

The distribution of the spectrum of AN is the same as that of the
pseudoinverse of a Gaussian matrix of size s × r .

κ(AN) is independent of all the entries of A and hence κ(A).

For any α ∈ (0, 1−
√

r/s), we have

P

(
κ(AN) ≤

1 + α +
√

r/s

1− α−
√

r/s

)
≥ 1− 2e−α

2s/2,

where r is the rank of A.

So, if we choose s = 2n ≥ 2r , we have κ(AN) < 6 w.h.p., and hence we
only need around 100 iterations to reach machine precision.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 18 / 36

Implementation of LSRN
(Meng, Saunders, and Mahoney 2011)

Shared memory (C++ with MATLAB interface)
I Multi-threaded ziggurat random number generator (Marsaglia and Tsang

2000), generating 109 numbers in less than 2 seconds using 12 CPU
cores.

I A näıve implementation of multi-threaded dense-sparse matrix
multiplications.

Message passing (Python)
I Single-threaded BLAS for matrix-matrix and matrix-vector products.
I Multi-threaded BLAS/LAPACK for SVD.
I Using the Chebyshev semi-iterative method (Golub and Varga 1961)

instead of LSQR.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 19 / 36

Solving real-world problems

matrix m n nnz rank cond DGELSD A\b Blendenpik LSRN
landmark 71952 2704 1.15e6 2671 1.0e8 29.54 0.6498∗ - 17.55
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 1.203∗ OOM 136.0
tnimg 1 951 1e6 2.1e7 925 - 630.6 1067∗ - 36.02
tnimg 2 1000 2e6 4.2e7 981 - 1291 > 3600∗ - 72.05
tnimg 3 1018 3e6 6.3e7 1016 - 2084 > 3600∗ - 111.1
tnimg 4 1019 4e6 8.4e7 1018 - 2945 > 3600∗ - 147.1
tnimg 5 1023 5e6 1.1e8 full - > 3600 > 3600∗ OOM 188.5

Table: Real-world problems and corresponding running times. DGELSD doesn’t
take advantage of sparsity. Though MATLAB’s backslash may not give the
min-length solutions to rank-deficient or under-determined problems, we still
report its running times. Blendenpik either doesn’t apply to rank-deficient
problems or runs out of memory (OOM). LSRN’s running time is mainly
determined by the problem size and the sparsity.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 20 / 36

Iterating with LSQR
(Paige and Saunders 1982)

Code snippet (Python):

u = A . matvec (v) − a l p h a ∗u
be ta = s q r t (comm . a l l r e d u c e (np . dot (u , u)))
. . .
v = comm . a l l r e d u c e (A . rmatvec (u)) − be ta ∗v

Cost per iteration:

two matrix-vector multiplications

two cluster-wide synchronizations

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 21 / 36

Iterating with Chebyshev semi-iterative (CS) method
(Golub and Varga 1961)

The strong concentration results on σmax(AN) and σmin(AN) enable use
of the CS method, which requires an accurate bound on the extreme
singular values to work efficiently.

Code snippet (Python):

v = comm . a l l r e d u c e (A . rmatvec (r)) − be ta ∗v
x += a l p h a ∗v
r −= a l p h a ∗A . matvec (v)

Cost per iteration:

two matrix-vector multiplications

one cluster-wide synchronization

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 22 / 36

LSQR vs. CS on an Amazon EC2 cluster
(Meng, Saunders, and Mahoney 2011)

solver Nnodes Nprocesses m n nnz Niter Titer Ttotal

LSRN w/ CS
2 4 1024 4e6 8.4e7

106 34.03 170.4
LSRN w/ LSQR 84 41.14 178.6

LSRN w/ CS
5 10 1024 1e7 2.1e8

106 50.37 193.3
LSRN w/ LSQR 84 68.72 211.6

LSRN w/ CS
10 20 1024 2e7 4.2e8

106 73.73 220.9
LSRN w/ LSQR 84 102.3 249.0

LSRN w/ CS
20 40 1024 4e7 8.4e8

106 102.5 255.6
LSRN w/ LSQR 84 137.2 290.2

Table: Test problems on an Amazon EC2 cluster and corresponding running times
in seconds. Though the CS method takes more iterations, it actually runs faster
than LSQR by making only one cluster-wide synchronization per iteration.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 23 / 36

Outline

1 General thoughts

2 Randomized regression in RAM

3 Solving `2 regression using MPI

4 Solving `1 regression on MapReduce

“Everything generalizes” from `2 regression to `1 regression

(But “everything generalizes messily” since `1 is “worse” that `2.)

A matrix U ∈ Rm×n is (α, β, p = 1)-conditioned if |U|1 ≤ α and
‖x‖∞ ≤ β‖Ux‖1, ∀x ; and `1-well-conditioned basis if α, β = poly(n).

Define the `1 leverage scores of an m × n matrix A, with m > n, as
the `1-norms-squared of the rows of an `1-well-conditioned basis of A.

Define the `1-norm condition number of A, denoted by κ1(A), as:

κ1(A) =
σmax

1 (A)

σmin
1 (A)

=
max‖x‖2=1 ‖Ax‖1

min‖x‖2=1 ‖Ax‖1
.

This implies: σmin
1 (A)‖x‖2 ≤ ‖Ax‖1 ≤ σmax

1 (A)‖x‖2, ∀x ∈ Rn.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 25 / 36

Meta-algorithm for `1-norm regression

1: Using an `1-well-conditioned basis for A, construct an importance
sampling distribution {pi}mi=1 from the `1-leverage scores.

2: Randomly sample a small number of constraints according to {pi}mi=1

to construct a subproblem.
3: Solve the `1-regression problem on the subproblem.

A näıve version of this meta-algorithm gives a 1 + ε relative-error
approximation in roughly O(mn5/ε2) time (DDHKM 2009). (Ugh.)

But, as with `2 regression:

We can make this algorithm run much faster in RAM by
I approximating the `1-leverage scores quickly, or
I performing an “`1 projection” to uniformize them approximately.

We can make this algorithm work at higher precision in RAM at
large-scale by coupling with an iterative algorithm.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 26 / 36

Conditioning: finding an `1 well-conditioned basis

Recall, given an n × d matrix A and p ∈ [1,∞], we want to find a
low-distortion embedding Π ∈ Rs×n s.t. s = O(poly(d)) and

1/O(poly(d)) · ‖Ax‖p ≤ ‖ΠAx‖p ≤ O(poly(d)) · ‖Ax‖p, ∀x ∈ Rd .

There are two main ways:

Lemma (Conditioning via QR on low-distortion embedding)

Given a low-distortion embedding matrix Π of Ap, let R be the “R” matrix
from the QR decomposition of ΠA. Then, AR−1 is `p-well-conditioned.

Lemma (Conditioning via ellipsoidal rounding)

Given an n × d matrix A and p ∈ [1,∞], it takes at most O(nd3 log n)
time to find a matrix R ∈ Rd×d such that κp(AR−1) ≤ 2d.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 27 / 36

Making `1 regression work to low and high precision

Finding a good basis (to get a low-precision solution):

name running time κ type passes (for soln)

SCT[SW11] O(mn2 log n) O(n5/2 log3/2 m) QR 2

FCT [CDMMMW13] O(mn log n) O(n7/2 log5/2 m) QR 2

Ellipsoid rounding [Cla05] O(mn5 log m)) n3/2(n + 1)1/2 ER n4

Fast ER [CDMMMW13] O(mn3 log m)) 2n2 ER n2

SPC1 [MM13] O(nnz(A) · log m) O(n
13
2 log

11
2 n) QR 2

SPC2 [MM13] O(nnz(A) · log m) + ER small 6n2 QR+ER 3

SPC3 [YMM13] O(nnz(A) · log m) + QR small O(n
19
4 log

11
4 n) QR+QR 3

Iteratively solving (to get a medium- to high-precision solution):

passes extra work per pass
subgradient (Clarkson 2005) O(n4/ε2) —

gradient (Nesterov 2009) O(m1/2/ε) —
ellipsoid (Nemirovski and Yudin 1972) O(n2 log(κ1/ε)) —

inscribed ellipsoids
(Tarasov, Khachiyan, and Erlikh 1988) O(n log(κ1/ε)) O(n7/2 log n)

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 28 / 36

Prior work and evaluations
Evaluate on real and simulated data:

Simulated data, size ca. 109 × 102, designed to have “bad” nonuniformities.

Real US Census data, size ca. 107 × 10, or “stacked” to size ca. 1010 × 10.

0 0.5 1
0.08

0.09

0.1

0.11

0.12

0.13

Quantile

U
n

m
a

rr
ie

d

(a) Unmarried

0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

Quantile

E
d

u
c
a

ti
o

n

(b) Education

Solution of LS regression

Solution of LAD regression

Solution of Quantile regression

Approximate solution of Quantile

90% confidence intervals

(c) Legend

State of the art (due to Portnoy-Koenker, 1997]):

Standard solver for `1 regression is interior-point method ipm, applicable for
106 × 50-sized problems.

Best previous sampling algorithm for `1 regression, prqfn, uses an
interior-point method on a smaller randomly-constructed subproblem.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 29 / 36

A MapReduce implementation

Inputs: A ∈ Rm×n and κ1 such that

‖x‖2 ≤ ‖Ax‖1 ≤ κ1‖x‖2, ∀x ,

c ∈ Rn, sample size s, and number of subsampled solutions nx .

Mapper:
1 For each row ai of A, let pi = min{s‖ai‖1/(κ1n1/2), 1}.
2 For k = 1, . . . , nx , emit (k , ai/pi) with probability pi .

Reducer:
1 Collect row vectors associated with key k and assemble Ak .
2 Compute x̂k = arg mincT x=1 ‖Akx‖1 using interior-point methods.
3 Return x̂k .

Note that multiple subsampled solutions can be computed in a single pass.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 30 / 36

Evaluation on large-scale `1 regression problem

2 4 6 8 10 12 14

10
−3

10
−2

10
−1

10
0

index
|x

j −
 x

* j|

cauchy
gaussian
nocd
unif

First (solid) and the third (dashed) quartiles of entry-wise absolute errors (on synthetic

data that has “bad” nonuniformities).

‖x − x∗‖1/‖x∗‖1 ‖x − x∗‖2/‖x∗‖2 ‖x − x∗‖∞/‖x∗‖∞
CT (Cauchy) [0.008, 0.0115] [0.00895, 0.0146] [0.0113, 0.0211]

GT (Gaussian) [0.0126, 0.0168] [0.0152, 0.0232] [0.0184, 0.0366]
NOCD [0.0823, 22.1] [0.126, 70.8] [0.193, 134]
UNIF [0.0572, 0.0951] [0.089, 0.166] [0.129, 0.254]

First and the third quartiles of relative errors in 1-, 2-, and ∞-norms on a data set of

size 1010 × 15. CT (and FCT) clearly performs the best. GT is worse but follows closely.

NOCD and UNIF are much worse. (Similar results for size 1010 × 100 if SPC2 is used.)

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 31 / 36

The Method of Inscribed Ellipsoids (MIE)

MIE works similarly to the bisection method, but in a higher dimension.

Why do we choose MIE?

Least number of iterations

Initialization using all the subsampled solutions

Multiple queries per iteration

At each iteration, we need to compute (1) a function value and (2) a
gradient/subgradient.

For each subsampled solution, we have a hemisphere that contains
the optimal solution.

We use all these solution hemispheres to construct initial search
region.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 32 / 36

Constructing the initial search region

Given any feasible x̂ , let f̂ = ‖Ax̂‖1 and ĝ = AT sign(Ax̂). we have

‖x∗ − x̂‖2 ≤ ‖A(x∗ − x̂)‖1 ≤ ‖Ax∗‖1 + ‖Ax̂‖1 ≤ 2f̂ ,

and, by convexity,

‖Ax∗‖1 ≥ ‖Ax̂‖1 + ĝT (x∗ − x̂),

which implies ĝT x∗ ≤ ĝT x̂ .

Hence, for each subsampled solution, we have a hemisphere that contains
the optimal solution.

We use all these hemispheres to construct the initial search region S0.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 33 / 36

Computing multiple f and g in a single pass

On MapReduce, the IO cost may dominate the computational cost, which
requires algorithms that could do more computation in a single pass.

Single query:

f (x) = ‖Ax‖1, g(x) = AT sign(Ax).

Multiple queries:

F (X) = sum(|AX |, 0), G (X) = AT sign(AX).

An example on a 10-node Hadoop cluster:

A : 108 × 50, 118.7GB.

A single query: 282 seconds.

100 queries in a single pass: 328 seconds.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 34 / 36

MIE with sampling initialization and multiple queries

0 10 20 30 40 50 60 70 80 90 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

number of iterations

re
la

tiv
e

er
ro

r

mie

mie w/ multi q

mie w/ sample init

mie w/ sample init and multi q

(d) size: 106 × 20

5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

number of iterations

(f
−

f*)/
f*

standard IPCPM

proposed IPCPM

(e) size: 5.24e9× 15

Comparing different MIE methods on large/LARGE `1 regression problem.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 35 / 36

Conclusion

Randomized regression in parallel & distributed environments:
different design principles for high-precision versus low-precision

I Least Squares Approximation
I Least Absolute Deviations
I Extensions to Quantile Regression, Kernel-based Learning, Etc.

Algorithms require more computation than traditional matrix
algorithms, but they have better communication profiles.

I On MPI: Chebyshev semi-iterative method vs. LSQR.
I On MapReduce: Method of inscribed ellipsoids with multiple queries.
I Look beyond FLOPS in parallel and distributed environments.

Mahoney (Stanford) Randomized Matrix Algorithms October 2013 36 / 36

	General thoughts
	Randomized regression in RAM
	Solving 2 regression using MPI
	Solving 1 regression on MapReduce

