Sampling algorithms for l_2 regression and applications

Michael W. Mahoney

Yahoo Research
http://www.cs.yale.edu/homes/mmahoney

(Joint work with P. Drineas and S. (Muthu) Muthukrishnan)

SODA 2006
Regression problems

We seek sampling-based algorithms for solving l_2 regression.

We are interested in overconstrained problems, $n \gg d$. Typically, there is no x such that $Ax = b$.
"Induced" regression problems

\[
\begin{align*}
|Z_2 - Z_{2,s}| &\leq \\
\|\hat{x} - \hat{x}_s\|_2 &\leq \\
\|A\hat{x}_s - b\|_2 &\leq
\end{align*}
\]

\[
Z_{2,s} = \min_{x \in \mathbb{R}^d} \|b_s - A_s x\|_2 = \|b_s - A_s \hat{x}_s\|_2
\]
Regression problems, definition

\[Z_\xi = \min_{x \in \mathbb{R}^d} \| b - Ax \|_\xi \]

\[= \min_{x \in \mathbb{R}^d} \left(\sum_{i=1}^{n} |(b - Ax)_i|^{\xi} \right)^{1/\xi} \]

There is work by K. Clarkson in SODA 2005 on sampling-based algorithms for l_1 regression (\(\xi = 1 \)) for overconstrained problems.
Exact solution

\[z_2 = \min_{x \in \mathbb{R}^d} \| b - Ax \|_2 = \| b - A\hat{x} \|_2 \]

Projection of \(b \) on the subspace spanned by the columns of \(A \)

\[z_2 = \| b \|_2 - \| AA^+b \|_2 \]

\[\hat{x} = A^+b \]
Singular Value Decomposition (SVD)

\[
\begin{pmatrix}
A
\end{pmatrix}_{n \times d} = \begin{pmatrix}
U
\end{pmatrix}_{n \times \rho} \cdot \begin{pmatrix}
\Sigma
\end{pmatrix}_{\rho \times \rho} \cdot \begin{pmatrix}
V
\end{pmatrix}_{\rho \times d}^T
\]

\(U\) (\(V\)): orthogonal matrix containing the left (right) singular vectors of \(A\).
\(\Sigma\): diagonal matrix containing the singular values of \(A\).
\(\rho\): rank of \(A\).

Computing the SVD takes \(O(d^2n)\) time. The pseudoinverse of \(A\) is

\[A^+ = V\Sigma^{-1}U^T \in \mathbb{R}^{d\times n}\]
Can sampling methods provide accurate estimates for l_2 regression?

Is it possible to approximate the optimal vector and the optimal value Z_2 by only looking at a small sample from the input?

(Even if it takes some sophisticated oracles to actually perform the sampling ...)

Equivalently, is there an induced subproblem of the full regression problem, whose optimal solution and its value $Z_{2,s}$ aproximates the optimal solution and its value Z_2?
Creating an induced subproblem

$$Z_2 = \min_{x \in \mathbb{R}^d} \|b - Ax\|_2 = \|b - A\hat{x}\|_2$$

Algorithm

1. Fix a set of probabilities p_i, $i=1...n$, summing up to 1.

2. Pick r indices from $\{1...n\}$ in r i.i.d. trials, with respect to the p_i's.

3. For each sampled index j, keep the j-th row of A and the j-th element of b; rescale both by $(1/rp_j)^{1/2}$.
The induced subproblem

\[Z_{2,s} = \min_{x \in \mathbb{R}^d} \| b_s - A_s x \|_2 \]
\[= \| b_s - A_s \hat{x}_s \|_2 \]

sampled rows of \(A \), rescaled

\[
\begin{pmatrix}
A_s \\
r \times d
\end{pmatrix}
\begin{pmatrix}
\hat{x}_s \\
\end{pmatrix}
\approx
\begin{pmatrix}
b_s \\
\end{pmatrix}
\]
sampled elements of \(b \), rescaled

\[|Z_2 - Z_{2,s}| \leq? \quad \| \hat{x} - \hat{x}_s \|_2 \leq? \quad \| A\hat{x}_s - b \|_2 \leq? \]
Our results

If the p_i satisfy certain conditions, then with probability at least $1-\delta$,

$$Z_{2,s} \leq (1 + \epsilon) Z_2$$

$$Z_2 \leq \|A\hat{x}_s - b\|_2 \leq (1 + \epsilon) Z_2$$

$$\|\hat{x} - \hat{x}_s\|_2 \leq \frac{\epsilon}{\sigma_{\text{min}}(A)} Z_2$$

The sampling complexity is

$$r = O\left(d^2 \log(1/\delta)/\epsilon^2 \right)$$
If the p_i satisfy certain conditions, then with probability at least $1-\delta$,

$$\mathcal{Z}_{2,s} \leq (1 + \epsilon) \mathcal{Z}_2$$

$$\| \hat{x} - \hat{x}_s \|_2 \leq \epsilon \left(\frac{\kappa(A)}{\gamma} \right) \| \hat{x} \|_2$$

The sampling complexity is

$$r = O \left(d^2 \log(1/\delta)/\epsilon^2 \right)$$
Back to induced subproblems ...

\[Z_{2,s} = \min_{x \in \mathbb{R}^d} \| b_s - A_s x \|_2 = \| b_s - A_s \hat{x}_s \|_2 \]

The relevant information for \(l_2 \) regression if \(n >> d \) is contained in an induced subproblem of size \(O(d^2) \)-by-\(d \).

(upcoming writeup: we can reduce the sampling complexity to \(r = O(d) \).)
Conditions on the probabilities, SVD

\[A = U \Sigma V^T \]

\(U (V) \): orthogonal matrix containing the left (right) singular vectors of \(A \).

\(\Sigma \): diagonal matrix containing the singular values of \(A \).

\(\rho \): rank of \(A \).

Let \(U_{(i)} \) denote the \(i \)-th row of \(U \).

Let \(U^? \mathbb{R}^{n \times (n-\rho)} \) denote the orthogonal complement of \(U \).
Conditions on the probabilities, interpretation

What do the lengths of the rows of the $n \times d$ matrix $U = U_A$ “mean”?

Consider possible $n \times d$ matrices U of d left singular vectors:

$I_n|_k = k$ columns from the identity
row lengths = 0 or 1
$I_n|_k \times \to x$

$H_n|_k = k$ columns from the $n \times n$ Hadamard (real Fourier) matrix
row lengths all equal
$H_n|_k \times \to$ maximally dispersed

$U_k = k$ columns from any orthogonal matrix
row lengths between 0 and 1

The lengths of the rows of $U = U_A$ correspond to a notion of information dispersal
The conditions that the p_i must satisfy, for some $\beta_1, \beta_2, \beta_3 \in (0,1]$:

$\begin{align*}
 p_i & \geq \beta_1 \frac{\|U_{(i)}\|_2^2}{\sum_{j=1}^n \|U_{(j)}\|_2^2} \\
 p_i & \geq \beta_2 \frac{\|U_{(i)}\|_2 (U^\perp U^\perp^T b)_i}{\sum_{j=1}^n \|U_{(j)}\|_2 (U^\perp U^\perp^T b)_j} \\
 p_i & \geq \beta_3 \frac{(U^\perp U^\perp^T b)_i^2}{\sum_{j=1}^n (U^\perp U^\perp^T b)_j^2}
\end{align*}$

Component of b not in the span of the columns of A

The sampling complexity is: $r = O\left(d^2 \log(1/\delta) / (\epsilon^2 \min \{\beta_1^2, \beta_2^2, \beta_3^2\})\right)$
Computing “good” probabilities

In $O(nd^2)$ time we can easily compute p_i’s that satisfy all three conditions, with $\beta_1 = \beta_2 = \beta_3 = 1/3$.

(Too expensive in practice for this problem!)

Open question: can we compute “good” probabilities faster, in a pass efficient manner?

Some assumptions might be acceptable (e.g., bounded condition number of A, etc.)
Critical observation

$$Z_2 = \min_{x \in \mathbb{R}^d} \| b - Ax \|_2 = \| b - A\hat{x} \|_2$$

$$\begin{pmatrix} A \end{pmatrix}_{n \times d, \ n \gg d} \begin{pmatrix} \hat{x} \end{pmatrix} \approx \begin{pmatrix} b \end{pmatrix}$$

sample & rescale

sample & rescale
Critical observation, cont’d

$$\mathcal{Z}_2 = \min_{x \in \mathbb{R}^d} \|b - Ax\|_2 = \|b - A\hat{x}\|_2$$

$$\begin{pmatrix} U \\ \Sigma \\ V \end{pmatrix} \cdot \begin{pmatrix} U \\ \Sigma \\ V \end{pmatrix}^T \begin{pmatrix} \hat{x} \end{pmatrix} \approx \begin{pmatrix} b \end{pmatrix}$$

sample & rescale only U

sample & rescale
Critical observation, cont’d

\[Z_{2,s} = \min_{x \in \mathbb{R}^d} \| b_s - A_s x \|_2 = \| b_s - A_s \hat{x}_s \|_2 \]

\[
\begin{pmatrix}
U_s \\
\Sigma
\end{pmatrix}
\cdot
\begin{pmatrix}
V
\end{pmatrix}
\cdot
\begin{pmatrix}
\hat{x}_s
\end{pmatrix}
\simeq
\begin{pmatrix}
b_s
\end{pmatrix}
\]

Important observation: \(U_s \) is almost orthogonal, and we can bound the spectral and the Frobenius norm of

\[U_s^T U_s - I. \]

(\text{FKV98, DK01, DKM04, RV04})
Application: CUR-type decompositions

Create an approximation to A, using rows and columns of A

\[
\begin{pmatrix}
A \\
C \\
U \\
R
\end{pmatrix}
\approx
\begin{pmatrix}
C \\
U \\
R
\end{pmatrix}
\]

Goal: provide (good) bounds for some norm of the error matrix $A - CUR$

1. How do we draw the rows and columns of A to include in C and R?

2. How do we construct U?