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, Overview of main results

Gittens and Mahoney (2013)

Detailed empirical evaluation:

* On a wide range of SPSD matrices from ML and data analysis
* Considered both random projections and random sampling

- Considered both running time and reconstruction quality
* Many tradeoffs, but prior existing theory was extremely weak

Qualitatively-improved theoretical results:

* For specTr'al, Frobenius, and trace norm reconstruction error

- Structural results (decoupling randomness from the vector space structure)
and algorithmic results (for both sampling and projections)

Points to many future extensions (theory, ML, and implementational) ...



] Motivation (1 of 2)

Methods to extract linear structure from the data:
- Support Vector Machines (SVMs).
* Gaussian Processes (GPs).
- Singular Value Decomposition (SVD) and the related PCA.

Kernel-based learning methods to extract non-linear structure:
» Choose features to define a (dot product) space F.
* Map the data, X, to F by ¢: X—F.

* Do classification, regression, and clustering in F with linear methods.



] Motivation (2 of 2)

» Use dot products for information about mutual positions.
* Define the kernel or Gram matrix: 6;=k;;=(¢(X®), $(XV)).

- Algorithms that are expressed in terms of dot products can be given the
Gram matrix G instead of the data covariance matrix XTX.

If the Gram matrix G -- 6;=k;;=(¢(XD), $(XW))) -- is dense but (nearly) low-
rank, then calculations of interest still need O(n?) space and O(n3) time:

* matrix inversion in GP prediction,
* quadratic programming problems in SVMs,

- computation of eigendecomposition of 6.

Idea: use random sampling/projections to speed up these computations!



) This "revisiting” is particularly timely ...

Prior existing theory was extremely weak:

- Especially compared with very strong 1t¢ results for low-rank
approximation, least-squares approximation, etc. of general matrices

* In spite of the empirical success of Nystrom-based and related
randomized low-rank methods

Conflicting claims about uniform versus leverage-based sampling:
* Some claim "ML matrices have low coherence” based on one ML paper

- Contrasts with proven importance of leverage scores is genetics,
astronomy, and internet applications

High-quality numerical implementations of random projection and random
sampling algorithms now exist:

* For L2 regression, L1 regression, low-rank matrix approximation, etc. in
RAM, parallel environments, distributed environments, etc.



] Some basics

Leverage scores:
- Diagonal elements of projection matrix onto the best rank-k space

- Key structural property needed to get 1+c approximation of general matrices

Spectral, Frobenius, and Trace norms:

* Matrix norms that equal {,2,1}-norm on the vector of singular values

Al < [|Allp < JJA[l < VnllAllF < nl|A]]2
Basic SPSD Sketching Model:

o SPSD Sketching Model. Let A be an n X n positive semi-definite matrix,
and let S be a matrix of size n X £, where ¢ < n. Take

C=AS and W =STAS.

Then CWTCT is a low-rank approximation to A with rank at most /.



Data considered (1 of 2)

Name Description n d Yonnz
Laplacians

HEP arXiv High Energy Physics collaboration graph | 9877 | NA 0.06

GR arXiv General Relativity collaboration graph | 5242 | NA 0.12

Enron subgraph of the Enron email graph 10000 | NA 0.22

Gnutella Gnutella peer to peer network on Aug. 6, 2002 | 8717 | NA 0.09

Linear Kernels

Dexter bag of words 2000 | 20000 | 83.8

Protein derived feature matrix for S. cerevisiae 6621 357 99.7

SNPs DNA microarray data from cancer patients 5520 | 43 100

Gisette images of handwritten digits 6000 | 5000 100
Dense RBF Kernels

AbaloneD physical measurements of abalones 4177 | 8 100

WineD chemical measurements of wine 4898 12 100
Sparse RBF Kernels

AbaloneS physical measurements of abalones 4177 | 8 82.9/48.1

WineS chemical measurements of wine 4898 | 12 11.1/88.0

Table 1: The data sets used in our empirical evaluation. The %nnz for the

Sparse RBF Kernels depends on the o parameter.




Data con5|der'ed (2 of 2)

Name Yonnz lﬂi”‘f; ’\f\;:l 100 HA” A‘ﬁ’“HF 100 —H‘Ah A‘?‘"“* kth-lrgst lev
HEP 0.06 | 3078 20 | 0.998 | 7.8 0.4 0.261
HEP 0.06 | 3078 60 | 0.998 | 13.2 1.1 0.278
GR 0.12 1679 20 1 0.999 | 10.5 0.74 0.286
GR 0.12 1679 60 | 1 17.9 2.16 0.289
Enron 0.22 2588 20 | 0997 | 7.77 0.352 0.492
Enron 0.22 2588 60 | 0.999 | 12.0 0.94 0.298
Gnutella 0.09 2757 20 | 1 8.1 0.41 0.381
Gnutella 0.09 | 2757 60 | 0.999 | 13.7 1.20 0.340
Dexter 83.8 176 8 | 0.963 | 14.5 934 0.067
Protein 99.7 | 24 10 | 0.987 | 42.6 7.66 0.008
SNPs 100 3 5 | 0.928 | 85.5 37.6 0.002
Gisette 100 4 12 1 0.90 | 90.1 14.6 0.005
AbaloneD (dense, o = .15) | 100 41 20 | 0.992 | 42.1 3.21 0.087
AbaloneD (dense, o = 1) 100 4 20 | 0.935 | 97.8 59 0.012
WineD (dense, o = 1) 100 31 20 | 0.99 | 431 3.89 0.107
WineD (dense, o0 = 2.1) 100 3 20 | 0.936 | 94.8 31.2 0.009
AbaloneS (sparse, o = .15) | 82.9 400 20 |1 0.989 | 154 1.06 0.232
AbaloneS (sparse, o = 1) 481 |5 20 | 0.982 | 90.6 21.8 0.017
WineS (sparse, o = 1) 11.1 116 20 | 0.995 | 29.5 2.29 0.2
WineS (sparse, o = 2.1) 88.0 | 39 20 | 0.992 | 41.6 3.53 0.098

Table 1: Summary statistics for data sets used in our empirical evaluation.



] Effects of "Preprocessing” Decisions

Whitening the input data:

* (mean centering, normalizing variances, etc. to put data points on same scale)
- Tends to homogenize the leverage scores (a little, for fixed rank parameter k)
- Tends to decrease the effective rank & to decrease the spectral gap

Increasing the rank parameter k:

* (leverage scores are defined relative to a given k)

- Tends to uniformize the leverage scores (usually a little, sometimes a lot, but
sometimes it increases their nonuniformity)

Increasing the rbf o scale parameter:
* (defines "size scale” over which a data point sees other data points)
* Tends to uniformize the leverage scores

Zeroing our small matrix entries:
* (replace dense n x n SPSD matrix with a similar sparse matrix)

- Tends Yo increase effective rank & make leverage scores more nonuniform



=

Relative spectral error

Relative spectral error

Examples of reconstruction error
for sampling and projection algorithms

Gittens and Mahoney (2013)
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] Summary of Sampling versus Projection

Linear Kernels & Dense RBF Kernels with larger o:
* have relatively low rank and relatively uniform leverage scores
- correspond most closely to what is usually studied in ML

Sparsifying RBF Kernels &/or choosing smaller o :
* tends to make data less low-rank and more heterogeneous leverage scores

Dense RBF Kernels with smaller ¢ & sparse RBF Kernels:
- leverage score sampling tends to do better than other methods
- Sparse RBF Kernels have many properties of sparse Laplacians
corresponding to unstructured social graphs

Choosing more samples | in the approximation:
* Reconstruction quality saturates with leverage score sampling

Restricting the rank of the approximation:
* Rank-restricted approximations (like Tikhonov, not ridge-based) are

choppier as a function of increasing |
All methods perform much better than theory would suggest!
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. Approximating the leverage scores
‘ (1 of 2, for very rectangular matrices)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)
Input: A € R"*? (with n > d and SVD A = UXVT) and € € (0,1/2].

e Let IT; € R™*" be an SRFT with r; = Q(¢~2(v/d + vInn)?Ind).
e Compute IT;{A € R™*% and its QR factorization IT{ A = QR.

o Let IT, € R¥*"2 be a matrix of i.i.d. standard Gaussian random variables,
where r9 = () (6_2 In n) .

e Construct the product 2 = AR™'II,.

e Fori=1,...,n compute /; = 123 15-

~

Output: /;,72 =1,...,n, approximations to the leverage scores of A.

» This algorithm returns relative-error (1te) approximations to all the
leverage scores of an arbitrary tall matrix in time

O(ndIn(vVd + VInn) + nde ?Inn + d?e2(v/d + vVInn)?Ind).

12



. Approximating the leverage scores
‘ (2 of 2, for general matrices)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)
Input: A € R"*¢ a rank parameter k, and an error parameter € € (0,1/2].

e Construct IT € R4*2F with i.i.d. standard Gaussian entries.

e Compute B = (AAT)q ATl € R™*?F with

g In (1 +1/ -I—e\/%\/min{n,d} — k)
1= 2In (1 + ¢/10) — 1/2 /

e Approximate the leverage scores of B by calling the “rectangular” algo-
rithm with inputs B and ¢; let ¢; for 2« = 1,...,n be the outputs.

Output: lii=1,...,n, approximations to the leverage scores of A filtered
through its dominant dimension-k subspace.
* Output is relative-error (1te) approximation to all leverage scores of
an arbitrary matrix (i.e., the leverage scores of a nearby--in Frobenius

horm, g=0, or spectral norm, ¢>0--matrix) in time O(ndKkq) + TrecTancULAR:
13
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low-rank SPSD approximations

Gittens and Mahoney (2013)
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Examples of running times for FAST

low-rank SPSD approximations
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Examples of recons

FAST low-rank SP

Gittens and Mahoney (2013)
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. An aside: Timing for fast approximating
‘ leverage scores of rectangular matrices

Gittens and Mahoney (2013)

Running time is comparable to underlying random projection

* (Can solve the subproblem directly; or, as with Blendenpik, use it to precondition
to solve LS problems of size = thousands-by-hundreds faster than LAPACK.)
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) Summary of running time issues

Running time of exact leverage scores:
- worse than uniform sampling, SRFT-based, & Gaussian-based projections

Running time of approximate leverage scores:
» can be much faster than exact computation
- with g=0 iterations, time comparable to SRFT or Gaussian projection fime
- with ¢@>0 iterations, tfime depends on details of stopping condition

The leverage scores:
- with q=0 iterations, the actual leverage scores are poorly approximated
- with @>0 iterations, the actual leverage scores are better approximated
* reconstruction quality is often no worse, and is often better, when using
approximate leverage scores

On "tall” matrices:
* running time is comparable to underlying random projection
* can use the coordinate-biased sketch thereby obtained as preconditioner for
overconstrained L2 regression, as with Blendenpik or LSRN

18



Weakness of previous theory (1 of 2)

Drineas and Mahoney (COLT 2005, JMLR 2005):
* If sample Q(k £ log(1/d)) columns according to diagonal elements of A, then

|A - CWFC ||y, r < [|A - Ak||2F+5Z A)j
Kumar, Mohri, and Talwalker (ICML 2009, JMLR 2012)

» If sample Q(t k log(k/d)) columns uniformly, where t & coherence and A has
exactly rank k, then can reconstruct A, i.e.,

Gittens (arXiv, 2011): A =CW+CT
* If sample Q(u k log(k/d)) columns uniformly, where u = coherence, then
A-CWHCTl < A=Al (147

2
|A-CW'Cls < [A—Axla+5-[|A = Axlrr
So weak that these results aren't even a qualitative guide to practice

19



Weakness of previous theory (2 of 2)

source, sketch

pred./obs. spectral error

pred./obs. Frobenius error

pred./obs. trace error

Protein, k£ = 10

DMO5 nonuniform Nystrom 119.2 18.6 -
BWO09 uniform Nystrom - - 3.6
KMT12 uniform Nystrom 33.4 20.5 —
GM13 Leverage-based Lemma 42.5 6.9 2.0
GM13 Fourier-based Lemma 297.5 21.7 3.1
GM13 Gaussian-based Lemma 3.8 3.3 1.8
GM13 uniform Nystrom Lemma 86.3 91.3 8
AbaloneD, o = .15,k = 20
DMO5 nonuniform Nystrom 349.9 42.5 -
BWO09 uniform Nystrom - - 2.0
KMT12 uniform Nystrom 62.9 46.7 -
GM13 Leverage-based Lemma 235.3 14.6 1.3
GM13 Fourier-based Lemma 139.4 36.9 1.7
GM13 Gaussian-based Lemma 5.2 4.7 1.1
GM13 uniform Nystrom Lemma 12.9 228.3 5.1
WineS, c =1,k = 20
DMO5 nonuniform Nystrom 422.5 41.0 -
BWO09 uniform Nystrom - — 2.1
KMT12 uniform Nystrom 72.8 44.2 —
GM13 Leverage-based Lemma 244.9 134 1.2
GM13 Fourier-based Lemma 186.7 36.8 1.7
GM13 Gaussian-based Lemma 6.6 4.7 1.2
GM13 uniform Nystrom Lemma 13.7 222.6 5.1

20




] Strategy for improved theory

Decouple the randomness from the vector space structure

* This used previously with least-squares and low-rank CSSP approximation

This permits much finer control in the application of randomization
* Much better worst-case theory

- Easier to map to ML and statistical ideas

* Has led to high-quality numerical implementations of LS and low-rank algorithms

* Much easier to parameterize problems in ways that are more natural o numerical
analysts, scientific computers, and software developers

This implicitly looks at the "square root" of the SPSD matrix

21



Main structural result

Gittens and Mahoney (2013)

Theorem. Let A be an n X n SPSD matrix with eigenvalue decomposition
A = UXU?T, where U, is top k eigenvalues, ; = UTS etc., and let S be

a sampling matrix of size n x £. Then when C = AS and W = STAS, the
corresponding low-rank SPSD approximation satisfies

|A —CWHCT|||, 1|2 + |25 ° Q07 |13
|A - CWTCT|r 122]| 7 + V2| B2 || 7 + (|25 2007 |12
A - CWHCT ||y, < TrS, + |2 20,07 |12,

IA A

assuming €2y has full row rank.
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‘ Algorithmic applications (1 of 2)

Gittens and Mahoney (2013)

Lemma. Let S be a sampling matrix of size n X £ corresponding to a leverage-
based probability distribution derived from the top k-dimensional eigenspace of
A s.t. for some 3 € (0,1]. If £ > 3200(B¢?) "k 1In(4k/(36)), then w.p. 1 — J the

corresponding low-rank SPSD approximation satisfies
|A - CW*C'|,

|A — CWHCT|r
|A —CWHC! ||,

A — Agll2 + %A — A7,

(14 V2)||A - Axllr +£°||A — Ak,
(1+e)|A - Agllz

IAIAIA

Similar bounds for uniform sampling, except that need to sample proportional to
the coherence (the largest leverage score).

23



‘ Algorithmic applications (2 of 2)

Gittens and Mahoney (2013)

Lemma. Let S = \/§DFR be a structured random projection of size n x /.

If ¢ > 247 [Vk + /8In(8n/9)]? In(8k/J), then w.p. 1 —§ the corresponding
low-rank SPSD approximation satisfies

1 161n(n/6)?
A-CWTCh|, < (1 . A—_ A
| o< (1o (5 ) ) 1A - Al
2In(n/9)
A — A7,
|A-CWTCh||p < (1+V44e)||A — Ap|lr +22¢||A — A0,
A -CWTCh||p, < (1+422)[|A — A7,

Similar bounds for Gaussian-based random projections.
24



] Conclusions ...

Detailed empirical evaluation:

* On a wide range of SPSD matrices from ML and data analysis
* Considered both random projections and random sampling

- Considered both running time and reconstruction quality
* Many tradeoffs, but prior existing theory was extremely weak

Qualitatively-improved theoretical results:

* For specTr'al, Frobenius, and trace norm reconstruction error

- Structural results (decoupling randomness from the vector space structure)
and algorithmic results (for both sampling and projections)

Points to many (theory, ML, and implementational) future directions ...
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... and Extensions (1 of 2)

More-immediate extension:
Do this on real data 100X or 1000X larger:

» Design the stack to make this possible and relate to related work of Smola
et al '13 Fastfood; Rahimi-Recht '07-'08 construction; etc.

* Use Bekas et al '07-'08 "filtering" methods for evaluating matrix functions
in DFT and scientific computing

» Focus on robustness and sensitivity issues

- Tighten upper bounds in light of Wang-Zhang-'13 lower bounds

- Extensions of this & related prior work fo SVM, CCA, and other ML
problems

For software development, concentrate on use cases where
theory is well-understood and usefulness has been established.

26



] ... and Extensions (2 of 2)

Less-immediate extension:

Relate to recent theory and make it more useful
* Evaluate sparse embedding methods and extend to sparse SPSD matrices
- Apply to solving linear equations (effective resistances are leverage scores)

- Compute the elements of the inverse covariance matrix (localized
eigenvectors and implicit regularization)

* Relate to Kumar-Mohri-Talwalkar-'09 Ensemble Nystrom method

* Relate to Bach-'13 use of leverage scores can be used to control
generalization
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