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Overview of main results 

Detailed empirical evaluation: 
•  On a wide range of SPSD matrices from ML and data analysis 
•  Considered both random projections and random sampling 

•  Considered both running time and reconstruction quality 

•  Many tradeoffs, but prior existing theory was extremely weak 

Qualitatively-improved theoretical results: 
•  For spectral, Frobenius, and trace norm reconstruction error 
•  Structural results (decoupling randomness from the vector space structure) 
and algorithmic results (for both sampling and projections) 

Points to many future extensions (theory, ML, and implementational) ... 

Gittens and Mahoney (2013)  
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Motivation (1 of 2) 

Methods to extract linear structure from the data: 

•  Support Vector Machines (SVMs). 

•  Gaussian Processes (GPs). 

•  Singular Value Decomposition (SVD) and the related PCA. 

Kernel-based learning methods to extract non-linear structure: 

•  Choose features to define a (dot product) space F. 

•  Map the data, X, to F by φ: X→F. 

•  Do classification, regression, and clustering in F with linear methods. 
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Motivation (2 of 2) 

•  Use dot products for information about mutual positions. 

•  Define the kernel or Gram matrix: Gij=kij=(φ(X(i)), φ(X(j))). 

•  Algorithms that are expressed in terms of dot products can be given the 
Gram matrix G instead of the data covariance matrix XTX. 

If the Gram matrix G -- Gij=kij=(φ(X(i)), φ(X(j))) -- is dense but (nearly) low-
rank, then calculations of interest still need O(n2) space and O(n3) time: 

•  matrix inversion in GP prediction,  

•  quadratic programming problems in SVMs,  

•  computation of eigendecomposition of G. 

Idea: use random sampling/projections to speed up these computations! 
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This “revisiting” is particularly timely ... 
Prior existing theory was extremely weak: 

•  Especially compared with very strong 1±ε results for low-rank 
approximation, least-squares approximation, etc. of general matrices 

•  In spite of the empirical success of Nystrom-based and related 
randomized low-rank methods  

Conflicting claims about uniform versus leverage-based sampling: 
•  Some claim “ML matrices have low coherence” based on one ML paper 

•  Contrasts with proven importance of leverage scores is genetics, 
astronomy, and internet applications 

High-quality numerical implementations of random projection and random 
sampling algorithms now exist: 

•  For L2 regression, L1 regression, low-rank matrix approximation, etc. in 
RAM, parallel environments, distributed environments, etc.  
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Some basics 
Leverage scores: 

•  Diagonal elements of projection matrix onto the best rank-k space 

•  Key structural property needed to get 1±ε approximation of general matrices 

Spectral, Frobenius, and Trace norms: 
•  Matrix norms that equal {∞,2,1}-norm on the vector of singular values 

Basic SPSD Sketching Model: 
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Data considered (1 of 2) 
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Data considered (2 of 2) 
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Effects of “Preprocessing” Decisions 
Whitening the input data:  
•  (mean centering, normalizing variances, etc. to put data points on same scale)  
•  Tends to homogenize the leverage scores (a little, for fixed rank parameter k) 
•  Tends to decrease the effective rank & to decrease the spectral gap 
Increasing the rank parameter k:  
•  (leverage scores are defined relative to a given k) 
•  Tends to uniformize the leverage scores (usually a little, sometimes a lot, but 
sometimes it increases their nonuniformity) 
Increasing the rbf σ scale parameter:  
•  (defines “size scale” over which a data point sees other data points) 
•  Tends to uniformize the leverage scores  
Zeroing our small matrix entries: 
•  (replace dense n x n SPSD matrix with a similar sparse matrix)  
•  Tends to increase effective rank & make leverage scores more nonuniform 
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Examples of reconstruction error 
for sampling and projection algorithms 

    HEP, k=20;                    Protein k=10;            AbaloneD(σ=.15,k=20);    AbaloneS(σ=.15,k=20) 

||*||2 

||*||F 

||*||Tr 

Gittens and Mahoney (2013)  
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Summary of Sampling versus Projection 
Linear Kernels & Dense RBF Kernels with larger σ:  

•  have relatively low rank and relatively uniform leverage scores 
•  correspond most closely to what is usually studied in ML 

Sparsifying RBF Kernels &/or choosing smaller σ :  
•  tends to make data less low-rank and more heterogeneous leverage scores 

Dense RBF Kernels with smaller σ  & sparse RBF Kernels:  
•  leverage score sampling tends to do better than other methods 
•  Sparse RBF Kernels have many properties of sparse Laplacians 
corresponding to unstructured social graphs 

Choosing more samples l in the approximation: 
•  Reconstruction quality saturates with leverage score sampling 

Restricting the rank of the approximation: 
•  Rank-restricted approximations (like Tikhonov, not ridge-based) are 
choppier as a function of increasing l 

All methods perform much better than theory would suggest! 
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Approximating the leverage scores  
(1 of 2, for very rectangular matrices) 

•  This algorithm returns relative-error (1±ε) approximations to all the 
leverage scores of an arbitrary tall matrix in time 

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)  
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Approximating the leverage scores  
(2 of 2, for general matrices) 

•  Output is relative-error (1±ε) approximation to all leverage scores of 
an arbitrary matrix (i.e., the leverage scores of a nearby--in Frobenius 
norm, q=0, or spectral norm, q>0--matrix) in time O(ndkq) + TRECTANGULAR.   

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012)  
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Examples of running times for SLOW 
low-rank SPSD approximations  

     GR(k=20)                              GR(k=60)                                  Protein(k=10) 

Time 

                SNPs(k=5)                     AbaloneD(σ=.15,k=20)              AbaloneS(σ=.15,k=20)  

Time 

Gittens and Mahoney (2013)  
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Examples of running times for FAST 
low-rank SPSD approximations  

     GR(k=20)                              GR(k=60)                                  Protein(k=10) 

Time 

                SNPs(k=5)                     AbaloneD(σ=.15,k=20)              AbaloneS(σ=.15,k=20)  

Time 

Gittens and Mahoney (2013)  
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Examples of reconstruction error for 
FAST low-rank SPSD approximations 

    HEP, k=20;                    Protein k=10;            AbaloneD(σ=.15,k=20);    AbaloneS(σ=.15,k=20) 

||*||2 

||*||F 

||*||Tr 

Gittens and Mahoney (2013)  
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An aside: Timing for fast approximating 
leverage scores of rectangular matrices 

Running time is comparable to underlying random projection 
•  (Can solve the subproblem directly; or, as with Blendenpik, use it to precondition 
to solve LS problems of size ≥ thousands-by-hundreds faster than LAPACK.) 

                       Protein k=10;                                      SNPs(k=5) 

Gittens and Mahoney (2013)  
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Summary of running time issues 
Running time of exact leverage scores:  

•  worse than uniform sampling, SRFT-based, & Gaussian-based projections 
Running time of approximate leverage scores:  

•  can be much faster than exact computation 
•  with q=0 iterations, time comparable to SRFT or Gaussian projection time 
•  with q>0 iterations, time depends on details of stopping condition 

The leverage scores:  
•  with q=0 iterations, the actual leverage scores are poorly approximated 
•  with q>0 iterations, the actual leverage scores are better approximated 
•  reconstruction quality is often no worse, and is often better, when using 
approximate leverage scores 

On “tall” matrices: 
•  running time is comparable to underlying random projection 
•  can use the coordinate-biased sketch thereby obtained as preconditioner for 
overconstrained L2 regression, as with Blendenpik or LSRN  
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Weakness of previous theory (1 of 2) 
Drineas and Mahoney (COLT 2005, JMLR 2005): 

•  If sample Ω(k ε-4 log(1/δ)) columns according to diagonal elements of A, then 

Kumar, Mohri, and Talwalker (ICML 2009, JMLR 2012): 
•  If sample Ω(τ k log(k/δ)) columns uniformly, where τ ≈ coherence and A has 
exactly rank k, then can reconstruct A, i.e.,  

Gittens (arXiv, 2011): 
•  If sample Ω(µ k log(k/δ)) columns uniformly, where µ = coherence, then  

So weak that these results aren’t even a qualitative guide to practice 
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Weakness of previous theory (2 of 2) 
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Strategy for improved theory 

Decouple the randomness from the vector space structure 
•  This used previously with least-squares and low-rank CSSP approximation 

This permits much finer control in the application of randomization 
•  Much better worst-case theory 

•  Easier to map to ML and statistical ideas 

•  Has led to high-quality numerical implementations of LS and low-rank algorithms 

•  Much easier to parameterize problems in ways that are more natural to numerical 
analysts, scientific computers, and software developers 

This implicitly looks at the “square root” of the SPSD matrix 
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Main structural result 
Gittens and Mahoney (2013)  
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Algorithmic applications (1 of 2) 

Similar bounds for uniform sampling, except that need to sample proportional to 
the coherence (the largest leverage score). 

Gittens and Mahoney (2013)  
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Algorithmic applications (2 of 2) 

Similar bounds for Gaussian-based random projections.  

Gittens and Mahoney (2013)  
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Conclusions ... 

Detailed empirical evaluation: 
•  On a wide range of SPSD matrices from ML and data analysis 
•  Considered both random projections and random sampling 

•  Considered both running time and reconstruction quality 

•  Many tradeoffs, but prior existing theory was extremely weak 

Qualitatively-improved theoretical results: 
•  For spectral, Frobenius, and trace norm reconstruction error 
•  Structural results (decoupling randomness from the vector space structure) 
and algorithmic results (for both sampling and projections) 

Points to many (theory, ML, and implementational) future directions ... 
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... and Extensions (1 of 2) 
More-immediate extension:  

Do this on real data 100X or 1000X larger:  
•  Design the stack to make this possible and relate to related work of Smola 
et al ‘13 Fastfood; Rahimi-Recht ‘07-’08 construction; etc.  

•  Use Bekas et al ‘07-’08 “filtering” methods for evaluating matrix functions 
in DFT and scientific computing 

•  Focus on robustness and sensitivity issues 

•  Tighten upper bounds in light of Wang-Zhang-’13 lower bounds 

•   Extensions of this & related prior work to SVM, CCA, and other ML 
problems 

For software development, concentrate on use cases where 
theory is well-understood and usefulness has been established. 
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... and Extensions (2 of 2) 
Less-immediate extension:  

Relate to recent theory and make it more useful 
•  Evaluate sparse embedding methods and extend to sparse SPSD matrices 

•  Apply to solving linear equations (effective resistances are leverage scores) 

•  Compute the elements of the inverse covariance matrix (localized 
eigenvectors and implicit regularization) 

•  Relate to Kumar-Mohri-Talwalkar-’09 Ensemble Nystrom method 
•  Relate to Bach-’13 use of leverage scores can be used to control 
generalization 


