## Theory (and some practice) of Randomized Algorithms for Matrices and Data

## Michael W. Mahoney

Stanford University

October 2012

(For more info, see: http://cs.stanford.edu/people/mmahoney)

## Matrix computations

- Eigendecompositions, QR, SVD, least-squares, etc.
- Traditional algorithms:
  - compute "exact" answers to, say, 10 digits as a black box
  - assume the matrix is in RAM and minimize flops
- But they are NOT well-suited for:
  - with missing or noisy entries
  - problems that are very large
  - distributed or parallel computation
  - when communication is a bottleneck
  - when the data must be accessed via "passes"

## Why randomized matrix algorithms?

- Faster algorithms: worst-case theory and/or numerical code
- Simpler algorithms: easier to analyze and reason about
- More-interpretable output: useful if analyst time is expensive
- Implicit regularization properties: and more robust output
- Exploit modern computer architectures: by reorganizing steps of alg
- Massive data: matrices that they can be stored only in slow secondary memory devices or even not at all

*Today*, mostly (but not exclusively) focus on **low-rank matrix approximation** and **least-squares approximation**: ubiquitous, fundamental, and at the center of recent developments

## The general idea ...

- Randomly sample columns/rows/entries of the matrix, with carefully-constructed *importance sampling probabilities*, to form a randomized sketch
- Preprocess the matrix with random projections, to form a randomized sketch by sampling columns/rows uniformly
- Use the sketch to compute an approximate solution to the original problem w.h.p.
- Resulting sketches are "similar" to the original matrix in terms of singular value and singular vector structure, e.g., w.h.p. are bounded distance from the original matrix

## The devil is in the details ...

## Decouple the randomization from the linear algebra:

- originally within the analysis, then made explicit
- permits much finer control in application of randomization

## Importance of statistical leverage scores:

- historically used in regression diagnostics to identify outliers
- best random sampling algorithms use them as importance sampling distribution
- best random projection algorithms go to a random basis where they are roughly uniform

Couple with domain expertise—to get best results!

## History of Randomized Matrix Algs

## Theoretical origins

- theoretical computer science, convex analysis, etc.
- Johnson-Lindenstrauss
- Additive-error algs
- Good worst-case analysis
- No statistical analysis



## Practical applications

- NLA, ML, statistics, data analysis, genetics, etc
- Fast JL transform
- Relative-error algs
- Numerically-stable algs
- Good statistical properties

How to "bridge the gap"?

- decouple randomization from linear algebra
- importance of statistical leverage scores!

## Statistical leverage, coherence, etc.

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

**Definition:** Given a "tall" n x d matrix A, i.e., with n > d, let U be *any* n x d orthogonal basis for span(A), & let the d-vector  $U_{(i)}$  be the i<sup>th</sup> row of U. Then:

- the statistical leverage scores are  $\lambda_i = ||U_{(i)}||_2^2$ , for i  $\varepsilon \{1,...,n\}$
- the coherence is  $\gamma = \max_{i \in \{1,...,n\}} \lambda_i$
- the (i,j)-cross-leverage scores are  $U_{(i)}^{T} U_{(j)} = \langle U_{(i)}, U_{(j)} \rangle$

**Note**: There are extension of this to:

- "fat" matrices A, with n, d are large and low-rank parameter k
- L1 and other p-norms

## **Applications in: Human Genetics**

Single Nucleotide Polymorphisms: the most common type of genetic variation in the genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases (alleles) are observed (out of A, C, G, T).

### SNPs

individuals

... AG CT GT GG CT CC CC CC AG AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG ... ... GG TT TT GG TT CC CC CC CG GG AA AG AG AG AA CT AA GG GG CC AG AG GG AA CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG ... ... GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG ... ... GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GA AG ... ... GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG ... ... GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CG CA AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CG CA AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CG CA AG AG AG AG AA AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CC CG AA AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CC CG AA AG AG AG AA AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CC CG GA AG AG AG AA TT AA GG GG CC AG AG CC AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ... ... GG TT TT GG TT CC CC CC CC CG GA AG AG AG AA TT AA GG GG CC AG AG CC AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GT TGG AA ...

Matrices including thousands of individuals and hundreds of thousands if SNPs are available.



### HGDP data

- 1,033 samples
- 7 geographic regions
- 52 populations

#### HapMap Phase 3 data

- 1,207 samples
- 11 populations

Apply SVD/PCA on the (joint) HGDP and HapMap Phase 3 data.

### Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)

#### Dense matrix:

over one billion entries

## The Singular Value Decomposition (SVD)

The formal definition:

Given any m x n matrix A, one can decompose it as:

 $\rho$ : rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

 $\Sigma$ : diagonal matrix containing  $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_{\rho}$ , the singular values of A.

<u>Important</u>: Keeping top k singular vectors provides "best" rank-k approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

 $A_k$  = argmin{  $||A-X||_{2,F}$  : rank(X)  $\leq k$  }.



Paschou, Lewis, Javed, & Drineas (2010) J Med Genet

• <u>Top two Principal Components</u> (PCs or eigenSNPs)

(Lin and Altman (2005) Am J Hum Genet)

- The figure renders visual support to the "out-of-Africa" hypothesis.
- Mexican population seems out of place: we move to the top three PCs.



Not altogether satisfactory: the principal components are linear combinations of all SNPs, and - of course - can not be assayed!

Can we find **actual SNPs** that capture the information in the singular vectors? Formally: spanning the same subspace.



## Applications in: Astronomy

Szalay (2012, MMDS)

| CMB Surveys (pixels)                   |            |  | Angular Galaxy Surveys (obj)  |      |        |   |         |
|----------------------------------------|------------|--|-------------------------------|------|--------|---|---------|
| ■ 1990 COBE                            | 1000       |  | •                             | 1970 | Lick   |   | 1M      |
| 2000 Boomera                           | ang 10,000 |  | •                             | 1990 | APM    |   | 2M      |
| ■ 2002 CBI                             | 50,000     |  | •                             | 2005 | SDSS   |   | 200M    |
| 2003 WMAP                              | 1 Million  |  | •                             | 2011 | PS1    |   | 1000M   |
| <ul> <li>2008 Planck</li> </ul>        | 10 Million |  | •                             | 2020 | LSST   |   | 30000M  |
|                                        |            |  |                               |      |        |   |         |
| Time Domain                            |            |  | Galaxy Redshift Surveys (obj) |      |        |   |         |
| • OUEST                                |            |  | •                             | 1986 | CfA    |   | 3500    |
| SDSS Extension survey                  |            |  | •                             | 1996 | LCRS   |   | 23000   |
| <ul> <li>Dark Energy Camera</li> </ul> |            |  | •                             | 2003 | 2dF    |   | 250000  |
| Pan-STARRS                             |            |  | •                             | 2008 | SDSS   |   | 1000000 |
| • ISST                                 |            |  | •                             | 2012 | BOSS   |   | 2000000 |
|                                        |            |  | •                             | 2012 | LAMOST | Γ | 2500000 |

"The Age of Surveys" - generate petabytes/year ...





## Issues with eigen-analysis

### Computing large SVDs: computational time

• In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the computation of the SVD of the dense 2,240-by-447,143 matrix A <u>takes about 20 minutes</u>.

• Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs out-of-memory in MatLab).

• Instead, compute the SVD of  $AA^{T}$ .

• In a similar experiment, compute **1,200 SVDs** on matrices of dimensions (approx.) 1,200-by-450,000 (roughly, a full leave-one-out cross-validation experiment). (e.g., Drineas, Lewis, & Paschou (2010) PLoS ONE)

### • Selecting actual columns that "capture the structure" of the top PCs

- Combinatorial optimization problem; hard even for small matrices.
- Often called the Column Subset Selection Problem (CSSP).
- Not clear that such "good" columns even exist.
- Avoid "reification" problem of "interpreting" singular vectors!

## Applications in: Real Implementations

### In RAM:

- Compute answers to 1 digit or 10 digits faster than LAPACK
- (TCS theory NOT *directly* relevant here high-precision issues.)

### For very large vector space analytics

• *Small-scale data*: model by graphs and matrices, and compute eigenvectors/ correlations

• Large-scale data: model with flat table and relational model, and compute with join/select and other "counting" procedures

• (TCS theory NOT *directly* relevant here - communication issues)

### Can we "bridge the gap"

- between TCS theory and numerical implementations
- between "vector-space computations" and "very large-scale analytics"?

## Outline

- Background, motivation, and applications
- Algorithms (in RAM) for least-squares approximation
- Algorithms (in RAM) for low-rank approximation
- Implementation of L1 and L2 regression in parallel and distributed environments

## Outline

- Background, motivation, and applications
- Algorithms (in RAM) for least-squares approximation
- Algorithms (in RAM) for low-rank approximation
- Implementation of L1 and L2 regression in parallel and distributed environments



We are interested in over-constrained Lp regression problems,  $n \gg d$ .

Typically, there is no x such that Ax = b.

Want to find the "best" x such that  $Ax \approx b$ .

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).

## Exact solution to LS Approximation

### Cholesky Decomposition:

If A is full rank and well-conditioned, decompose  $A^TA = R^TR$ , where R is upper triangular, and solve the normal equations:  $R^TRx=A^Tb$ .

### QR Decomposition:

Slower but numerically stable, esp. if A is rank-deficient. Write A=QR, and solve  $Rx = Q^{T}b$ .

### Singular Value Decomposition:

Most expensive, but best if A is very ill-conditioned.

Write  $A=U\Sigma V^{T}$ , in which case:  $\mathbf{x}_{OPT} = A^{+}b = V\Sigma^{-1}_{k}U^{T}b$ .

Complexity is O(nd<sup>2</sup>) for all of these, but constant factors differ.

$$\mathcal{Z}_2 = \min_{x \in R^d} ||b - Ax||_2$$
$$= ||b - A\hat{x}||_2$$

Projection of b on the subspace spanned by the columns of A



## Modeling with Least Squares

### Assumptions underlying its use:

- Relationship between "outcomes" and "predictors is (roughly) linear.
- The error term  $\epsilon$  has mean zero.
- The error term  $\boldsymbol{\epsilon}$  has constant variance.
- The errors are uncorrelated.
- The errors are normally distributed (or we have adequate sample size to rely on large sample theory).

Should always check to make sure these assumptions have not been (too) violated!

## Statistical Issues and Regression Diagnostics

| Model: $b = Ax + \varepsilon$                                        | b = response; A <sup>(i)</sup> = carriers;                                                |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                      | ε = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0                           |
|                                                                      | and Var(e)= $\sigma^2$ I), uncorrelated, normally distributed                             |
| x <sub>opt</sub> = (A <sup>⊤</sup> A) <sup>-1</sup> A <sup>⊤</sup> b | (what we computed before)                                                                 |
| b' = Hb                                                              | $H = A(A^{T}A)^{-1}A^{T} = hat'' matrix$                                                  |
|                                                                      | $H_{ij}$ - measures the leverage or influence exerted on $b^\prime_i$ by $b_j,$           |
|                                                                      | <i>regardless</i> of the value of b <sub>j</sub> (since H depends only on A)              |
| e' = b-b' = (I-H)b                                                   | vector of residuals - note: E(e')=0, Var(e')=52(I-H)                                      |
| Trace(H)=d                                                           | Diagnostic Rule of Thumb: Investigate if H <sub>ii</sub> > 2d/n                           |
| H=UU <sup>⊤</sup>                                                    | U is from SVD (A=U $\Sigma$ V <sup>T</sup> ), or <i>any</i> orthogonal matrix for span(A) |
| $H_{ii} =  U^{(i)} _2^2$                                             | leverage scores = row "lengths" of spanning orthogonal matrix                             |

## A "classic" randomized algorithm (1of3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

*Over-constrained* least squares (n x d matrix A, n >>d)

- Solve:  $\mathcal{Z} = \min_{x \in R^d} ||Ax b||_2$  Solution:  $x_{opt} = A^{\dagger}b$

### Randomized Algorithm:

• For all i  $\epsilon$  {1,...,n}, compute  $p_i = \frac{1}{d} ||U_{(i)}||_2^2$ 

• Randomly sample O(d log(d)/ $\epsilon$ ) rows/elements fro A/b, using {p<sub>i</sub>} as importance sampling probabilities.

• Solve the induced subproblem: 
$$ilde{x}_{opt} = (SA)^{\dagger}Sb$$

## A "classic" randomized algorithm (20f3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

**Theorem:** Let  $\gamma = ||U_A U_A^T b||_2 / ||b||_2$ . Then:

$$||A\tilde{x}_{opt} - b||_2 \le (1 + \epsilon)\mathcal{Z}$$

$$||x_{opt} - \tilde{x}_{opt}||_2 \le \sqrt{\epsilon} \left(\kappa(A)\sqrt{\gamma^{-2} - 1}\right)||x_{opt}||_2$$

This naïve algorithm runs in  $O(nd^2)$  time

• But it can be improved !!!

This algorithm is bottleneck for Low Rank Matrix Approximation and many other matrix problems.

## A "classic" randomized algorithm (3of3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Sufficient condition for relative-error approximation. For the "preprocessing" matrix X:

$$\sigma_{\min}^2 \left( X U_A \right) \ge 1/\sqrt{2}; \text{ and} \\ ||U_A^T X^T X b^{\perp}||_2^2 \le \epsilon \mathcal{Z}^2/2,$$

• Important: this condition decouples the randomness from the linear algebra.

• Random sampling algorithms with leverage score probabilities and random projections satisfy it!

## Theoretically "fast" algorithms

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Algorithm 1: Fast Random Projection Algorithm for LS Problem

- Preprocess input (in o(nd<sup>2</sup>)time) with Fast-JL transform, uniformizes leverage scores, and sample uniformly in the randomly-rotated space
- Solve the induced subproblem

### Algorithm 2: Fast Random Sampling Algorithm for LS Problem

- Compute  $1\pm\epsilon$  approximation to statistical leverage scores (in o(nd<sup>2</sup>) time), and use them as importance sampling probabilities
- Solve the induced subproblem

Main theorem: For both of these randomized algorithms, we get:

- $(1\pm\varepsilon)$ -approximation
- in roughly  $O\left(nd\log\left(d\log(n)/\epsilon\right) + d^3\log(n)\log(d\log n)/\epsilon\right)$  time!!

Random Projections (1 of 4): The Johnson-Lindenstrauss lemma

For every set S of m points in  $\mathbb{R}^n$  and every  $\epsilon > 0$ , there exists a mapping  $f : \mathbb{R}^n \to \mathbb{R}^s$ , where  $s = O(\log m/\epsilon^2)$ , such that for all points  $u \in S$ ,

 $(1-\epsilon) \|u\|_2 \le \|f(u)\|_2 \le (1+\epsilon) \|u\|_2$ 

holds with probability at least  $1 - 1/m^2$ .

### Johnson & Lindenstrauss (1984)

- We can represent S by an m-by-n matrix A, whose rows correspond to points.
- We can represent all f(u) by an m-by-s  $\tilde{A}$ .
- The "mapping" corresponds to the construction of an n-by-s matrix  $\Omega$  and computing

$$\tilde{A} = A \Omega$$

# Random Projections (2 of 4): Different constructions for $\Omega$ matrix

### "Slow" Random Projections ( $\geq O(nd^2)$ time to implement in RAM model):

- JL (1984): random k-dimensional space
- Frankl & Maehara (1988): random orthogonal matrix
- DasGupta & Gupta (1999): random matrix with entries from N(0,1), normalized
- Indyk & Motwani (1998): random matrix with entries from N(0,1), normalized
- Achlioptas (2003): random matrix with entries in {-1,0,+1}, normalized
- Alon (2003): optimal dependency on n, and almost optimal dependency on  $\epsilon$

### "Fast" Random Projections (o(nd<sup>2</sup>) time to implement in RAM model):

• Ailon and Chazelle (2006,2009); Matousek (2008); and many variants more recently.

Random Projections (3 of 4): Fast Johnson-Lindenstrauss Transform

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

 $P \in \mathbb{R}^{s \times n}$  $s = O\left(\log m/\epsilon^2\right)$ 

$$H \in \mathbb{R}^{n \times n}$$

$$P_{ij} = \sqrt{q} \times \begin{cases} +1 & \text{,w.p. } q/2 \\ 0 & \text{,w.p. } 1-q \\ -1 & \text{,w.p. } q/2 \end{cases}$$

Normalized Hadamard-Walsh transform matrix

(if n is not a power of 2, add all-zero columns to A; or use other related Hadamard-based methods)

 $D \in \mathbb{R}^{n \times n}$ 

Diagonal matrix with  $D_{ii}$  set to +1 or -1 w.p. 1/2.

$$R = (PHD)^T \in \mathbb{R}^{n \times s} \longrightarrow \tilde{A} = \frac{1}{\sqrt{s}}AR$$

- P can also be a matrix representing the "uniform sampling" operation.
- In both cases, the O(n log (n)) running time is computational bottleneck.

## Random Projections (4 of 4): Randomized Hadamard preprocessing

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

Let  $H_n$  be an *n-by-n* deterministic Hadamard matrix, and Let  $D_n$  be an *n-by-n* random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

<u>Fact 1</u>: Multiplication by  $H_n D_n$  doesn't change the solution:

$$||Ax - b||_{2} = ||H_{n}D_{n}Ax - H_{n}D_{n}b||_{2} = ||\mathcal{H}Ax - \mathcal{H}b||_{2}$$

(since  $H_n$  and  $D_n$  are orthogonal matrices).

<u>Fact 2</u>: Multiplication by  $H_n D_n$  is fast - only  $O(n \log(r))$  time, where r is the number of elements of the output vector we need to "touch".

Fact 3: Multiplication by H<sub>n</sub>D<sub>n</sub> approximately uniformizes all leverage scores:

$$||U_{(i)}_{\mathcal{H}A}||_2 = ||(\mathcal{H}U_A)_{(i)}||_2 \le O\left(\sqrt{\frac{d\log n}{n}}\right)$$

# Fast approximation of statistical leverage and matrix coherence (1 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

### Simple (deterministic) algorithm:

- Compute a basis Q for the left singular subspace, with QR or SVD.
- Compute the Euclidean norms of the *rows* of Q.

Running time is  $O(nd^2)$ , if n >> d, O(on-basis) time otherwise.

### We want *faster*!

- $o(nd^2)$  or o(on-basis), with no assumptions on input matrix A.
- Faster in terms of flops of clock time for not-obscenely-large input.
- OK to live with  $\epsilon$ -error or to fail with overwhelmingly-small  $\delta$  probability

Fast approximation of statistical leverage and matrix coherence (2 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

View the computation of leverage scores i.t.o an under-constrained LS problem

Recall (A is  $n \times d$ ,  $n \gg d$ ):

 $\min_{x \in \mathbb{R}^n} ||x^T A - e_i A||_2^2 \quad \to \quad x^T = e_i A A^{\dagger}$ 

But:

•  $p_i = ||e_i U_A||_2^2 = ||e_i U_A U_A^T||_2^2 = ||e_i A A^{\dagger}||_2^2$ Leverage scores are the norm of a min-length solution of an under-constrained LS problem! Fast approximation of statistical leverage and matrix coherence (3 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

- $p_{i} = ||(AA^{\dagger})_{(i)}||_{2}^{2}$   $\approx ||(A(\Omega_{1}A)^{\dagger})_{(i)}||_{2}^{2} \text{ where } \Omega_{1} \text{ is a fast SRHT}$  $\approx ||(A(\Omega_{1}A)^{\dagger}\Omega_{2})_{(i)}||_{2}^{2} \text{ where } \Omega_{2} \text{ is Rand Proj}$
- This is simpler than for the full under-constrained LS solution since only need the norm of the solution.

• This is essentially using R<sup>-1</sup> from QR of subproblem as preconditioner for original problem.

• I.e.,  $\Omega_1$  A is a randomized "sketch" of A; QR =  $\Omega_1$  A is QR decomposition of this sketch; and evaluate row norms of X  $\approx$  A R<sup>-1</sup>., but need  $\Omega_2$ , a second projection, to make it "fast."

# Fast approximation of statistical leverage and matrix coherence (4 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

**Theorem:** Given an  $n \times d$  matrix A, with  $n \gg d$ , let  $P_A$  be the projection matrix onto the column space of A. Then, there is a randomized algorithm that w.p.  $\geq 0.999$ :

- computes all of the n diagonal elements of  $P_A$  (i.e., leverage scores) to within relative  $(1\pm\epsilon)$  error;
- computes all the large off-diagonal elements of  $P_A$  to within additive error;
- runs in o(nd<sup>2</sup>)\* time.

\*Running time is basically  $O(n d \log(n)/\epsilon)$ , i.e., same as DMMS fast randomized algorithm for over-constrained least squares.

Note: Clarkson-Woodruff (2012) can compute these in "input sparsity" time!

## Practically "fast" implementations (1of2)

Use "randomized sketch" to construct preconditioner for traditional iterative methods:

- RT08: preconditioned iterative method improves  $1/\epsilon$  dependence to log $(1/\epsilon)$ , important for high precision
- AMT10: much more detailed evaluation, different Hadamardtype preconditioners, etc.
- CRT11: use Gaussian projections to compute orthogonal projections with normal equations
- MSM11: use Gaussian projections and LSQR or Chebyshev semiiterative method to minimize communication, e.g., for parallel computation in Amazon EC2 clusters!
### Practically "fast" implementations (20f2)

Avron, Maymounkov, and Toledo 2010:

• Blendenpik "beats Lapack's direct dense least-squares solver by a large margin on essentially any dense tall matrix"

• Empirical results "show the potential of random sampling algorithms and suggest that random projection algorithms should be incorporated into future versions of Lapack."

## Outline

- Background, motivation, and applications
- Algorithms (in RAM) for least-squares approximation

# • Algorithms (in RAM) for low-rank approximation

• Implementation of L1 and L2 regression in parallel and distributed environments

### Low-rank approximation algorithms

Many randomized algorithms for low-rank matrix approximation use extensions of these basic leastsquares ideas:

- Relative-error random sampling CX/CUR algorithms (DMM07)
- Relative-error random projection algorithms (508)
- Column subset selection problem (exactly k columns) (BMD09)
- Numerical implementations, with connections to interpolative decomposition (LWMRT07,WLRT08,MRT11)
- Numerical implementations for slower spectral decay (RST09)

### Recall, SVD decomposes a matrix as ...

$$\begin{pmatrix} A \\ \end{pmatrix} = \begin{pmatrix} U \\ U \\ m \times \rho \end{pmatrix} \cdot \begin{pmatrix} \Sigma \\ \rho \times \rho \end{pmatrix} \cdot \begin{pmatrix} V \end{pmatrix}^{T}$$

The SVD has very strong optimality properties., e.g. the matrix  $U_k$  is the "best" in many ways.

Top k left singular vectors

- > Note that, given  $U_k$ , the best X =  $U_k^T A = \Sigma V^T$ .
- > SVD can be computed fairly quickly.
- > The columns of  $U_k$  are linear combinations of up to all columns of A.

### CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)



#### Why?

If A is a subject-SNP matrix, then selecting representative columns is equivalent to selecting representative SNPs to capture the same structure as the top eigenSNPs.

If A is a frequency-image astronomical matrix, then selecting representative columns is equivalent to selecting representative frequencies/wavelengths.

Note: To make C small, we want c as small as possible!

### CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

$$A \qquad \left( \begin{array}{c} C \\ \end{array} \right) \approx \left( \begin{array}{c} C \\ \end{array} \right) \left( \begin{array}{c} X \\ \end{array} \right)$$

Easy to see optimal  $X = C^{+}A$ .

Hard to find good columns (e.g., SNPs) of A to include in C.

This Column Subset Selection Problem (CSSP), heavily studied in N LA, is a hard combinatorial problem.

#### Two issues are connected

- There exist (1+ $\epsilon$ ) "good" columns in any matrix that contain information about the top principal components:  $||A-CX||_F \le (1+\epsilon) ||A-A_k||_F$
- We can identify such columns via a simple statistic: the leverage scores.
- This does not immediately imply faster algorithms for the SVD, but, combined with random projections, it does!
- Analysis (almost!) boils down to understanding least-squares approximation.

### Low-rank structural condition

Boutsidis, Mahoney and Drineas (2009, SODA)

• Structural condition underlying the randomized low-rank algorithm. If  $V_k^T Z$  has full rank, then for  $\nu \in \{2, F\}$ , *i.e.*, for both the Frobenius and spectral norms,

$$||A - P_{AZ}A||_{\nu}^{2} \le ||A - A_{k}||_{\nu}^{2} + \left| \left| \Sigma_{k,\perp} \left( V_{k,\perp}^{T}Z \right) \left( V_{k}^{T}Z \right)^{\dagger} \right| \right|_{\nu}^{2}$$

holds, where  $P_{AZ}$  is a projection onto the span of AZ, and where the dagger symbol represents the Moore-Penrose pseudoinverse.

### Using this matrix structural condition

#### Randomly sampling exactly k columns

• Boutsidis, Mahoney, & Drineas 2008

Fast  $(1+\varepsilon)$ -low-rank projection algorithm

• Sarlos 2006

Project to I=k+p dimensions, for small constant p

• Wolfe, Liberty, Rokhlin, Tygert 2008

Couple with q steps of power iteration

• Rokhlin,Szlam, Tygert 2009

Decoupling the randomization from the linear algebra---much easier to couple TCS theory with existing NLA & scientific computing methods!

#### Selecting PCA SNPs for individual assignment to four continents (Africa, Europe, Asia, America)



SNPs by chromosomal order

Paschou et al (2007; 2008) PLoS Genetics Paschou et al (2010) J Med Genet Drineas et al (2010) PLoS One Javed et al (2011) Annals Hum Genet

### An interesting observation

#### Sampling w.r.t. to leverage scores results in redundant columns being selected.

(Almost) identical columns have (almost) the same leverage scores and thus might be all selected, even though they do not really add new "information."

#### First Solution:

Apply a "redundancy removal" step, e.g., a deterministic CSSP algorithm on the sampled columns. Very good empirically, even with "naïve" CSSP algorithms (such as the pivoted QR factorization).

#### Conjecture:

The "leverage scores" filter out relevant columns, so deterministic methods do a better job later. Paschou et al. (2007,2008) for population genetics applications; and Boutsidis et al. (2009, 2010) for theory.

#### Second Solution:

Apply clustering to the sampled columns and then return a representative column from each cluster. Very good empirically, since it permits clustering of SNPs that have similar functionalities and thus allows better understanding of the proposed ancestry-informative panels.

### Ranking Astronomical Line Indices

|    | INDEX DEFINITIONS              |                   |                                        |       |                                       |                    |       |  |  |
|----|--------------------------------|-------------------|----------------------------------------|-------|---------------------------------------|--------------------|-------|--|--|
|    | Name                           | Index Bandpass    | Pseudocontinua                         | Units | Measures                              | Error <sup>1</sup> | Notes |  |  |
| 01 | $CN_1$                         | 4143.375-4178.375 | 4081.375-4118.875                      | mag   | CN, Fe I                              | 0.021              |       |  |  |
| 02 | $CN_2$                         | 4143.375-4178.375 | 4085.125-4097.625<br>4245.375-4285.375 | mag   | CN, Fe I                              | 0.023              | 2     |  |  |
| 03 | Ca4227                         | 4223.500-4236.000 | 4212.250-4221.000                      | Å     | Ca I, Fe I, Fe II                     | 0.27               | 2     |  |  |
| 04 | G4300                          | 4282.625-4317.625 | 4267.625-4283.875                      | Å     | CH, Fe I                              | 0.39               |       |  |  |
| 05 | Fe4383                         | 4370.375-4421.625 | 4360.375-4371.625                      | Å     | Fe I, Ti II                           | 0.53               | 2     |  |  |
| 06 | Ca4455                         | 4453.375-4475.875 | 4447.125-4455.875<br>4478.375-4493.375 | Å     | Ca I, Fe I, Ni I,<br>Ti II, Mn I, V I | 0.25               | 2     |  |  |
| 07 | Fe4531                         | 4515.500-4560.500 | 4505.500-4515.500<br>4561.750-4580.500 | Å     | Fe I, Ti I,<br>Fe II. Ti II           | 0.42               | 2     |  |  |
| 08 | Fe4668                         | 4635.250-4721.500 | 4612.750-4631.500<br>4744.000-4757.750 | Â     | Fe I, Ti I, Cr I,<br>Mg I, Ni I, Ca   | 0.64               | 2     |  |  |
| 09 | $\mathbf{H}\boldsymbol{\beta}$ | 4847.875-4876.625 | 4827.875-4847.875<br>4876.625-4891.625 | Å     | $H\beta$ , Fe I                       | 0.22               | 3     |  |  |
| 10 | Fe5015                         | 4977.750-5054.000 | 4946.500-4977.750<br>5054.000-5065.250 | Å     | Fe I, Ni I, Ti I                      | 0.46               | 2,3   |  |  |
| 11 | Mg1                            | 5069.125-5134.125 | 4895.125-4957.625<br>5301.125-5366.125 | mag   | MgH, Fe I, Ni I                       | 0.007              | 3     |  |  |
| 12 | Mg <sub>2</sub>                | 5154.125-5196.625 | 4895.125-4957.625<br>5301.125-5366.125 | mag   | MgH, Mg b,<br>Fe I                    | 0.008              | 3     |  |  |
| 13 | Mg b                           | 5160.125-5192.625 | 5142.625-5161.375<br>5191.375-5206.375 | Å     | Mg b                                  | 0.23               | 3     |  |  |
| 14 | Fe5270                         | 5245.650-5285.650 | 5233.150-5248.150<br>5285.650-5318.150 | Å     | Fe I, Ca I                            | 0.28               | 3     |  |  |
| 15 | Fe5335                         | 5312.125-5352.125 | 5304.625-5315.875<br>5353.375-5363.375 | Å     | Fe I                                  | 0.26               | 3     |  |  |
| 16 | Fe5406                         | 5387.500-5415.000 | 5376.250-5387.500<br>5415.000-5425.000 | Å     | Fe I, Cr I                            | 0.20               | 2,3   |  |  |
| 17 | Fe5709                         | 5698.375-5722.125 | 5674.625-5698.375<br>5724.625-5738.375 | Å     | Fe I, Ni I, Mg I<br>Cr I, V I         | 0.18               | 2     |  |  |
| 18 | Fe5782                         | 5778.375-5798.375 | 5767.125-5777.125<br>5799.625-5813.375 | Å     | Fe I, Cr I<br>Cu I, Mg 1              | 0.20               | 2     |  |  |
| 19 | Na D                           | 5878.625-5911.125 | 5862.375-5877.375<br>5923.875-5949.875 | Å     | Na I                                  | 0.24               |       |  |  |
| 20 | ${\rm TiO}_1$                  | 5938.375-5995.875 | 5818.375-5850.875<br>6040.375-6105.375 | mag   | TiO                                   | 0.007              |       |  |  |
| 21 | ${\rm TiO}_2$                  | 6191.375-6273.875 | 6068.375-6143.375<br>6374.375-6416.875 | mag   | TiO                                   | 0.006              |       |  |  |



(Worthey et al. 94; Trager et al. 98)

(Yip et al. 2012 in prep.)



New Spectral Regions (M2;k=5; overselecting 10X; combine if <30A)

Szalay (2012, MMDS)

Old Lick indices are "ad hoc"

New indices are "objective"

- Recover atomic lines
- Recover molecular bands
- Recover Lick indices
- Informative regions are orthogonal to each other, in contrast to Lick



### More recent CSSP-based improvements

- Can get  $(1+\epsilon)$ -approximation bound with s=3k/ $\epsilon$  columns
- Boutsidis, Drineas, & Magdon-Ismail (FOCS 2011)
- Uses ideas from Batson, Spielman, & Srivastva (STOC 2009)
- A (1+ $\epsilon$ )-approximation needs at least k/ $\epsilon$  columns
- Deshpande & Vempala (RANDOM 2006)

Almost asymptotically optimal bound

- Guruswami & Sinop (SODA 2012)
- Both deterministic and randomized algorithms
- Application to column-based reconstruction in QIP
- Guruswami & Sinop (SODA 2011)

## Outline

- Background, motivation, and applications
- Algorithms (in RAM) for least-squares approximation
- Algorithms (in RAM) for low-rank approximation
- Implementation of L1 and L2 regression in parallel and distributed environments

### Parallel environments and how they scale

#### Shared memory

- cores: [10, 10<sup>3</sup>]\*
- memory: [100GB, 100TB]

#### Message passing

- cores: [200, 10<sup>5</sup>]\*\*
- memory: [1TB, 1000TB]
- CUDA cores: [5 x 10<sup>4</sup>, 3 x 10<sup>6</sup>]\*\*\*
- GPU memory: [500GB, 20TB]

#### MapReduce

- cores: [40, 10<sup>5</sup>]\*\*\*\*
- memory: [240GB, 100TB]
- storage: [100TB, 100PB]\*\*\*\*\*

#### Distributed computing

• cores: [-, 3 x 10<sup>5</sup>]\*\*\*\*\*

### Traditional algorithms

#### For L2 regression:

- direct methods: QR, SVD, and normal equation (O(mn<sup>2</sup> + n<sup>2</sup>) time)
  - Pros: high precision & implemented in LAPACK
  - Cons: hard to take advantage of sparsity & hard to implement in parallel environments
- *iterative methods*: CGLS, LSQR, etc.
  - Pros: low cost per iteration, easy to implement in some parallel environments, & capable of computing approximate solutions
  - Cons: hard to predict the number of iterations needed

#### For L1 regression:

- linear programming
- interior-point methods (or simplex, ellipsoid? methods)
- re-weighted least squares
- first-order methods

### Two important notions: leverage and condition

#### Statistical leverage. (Think: eigenvectors & low-precision solutions.)

- The *statistical leverage scores* of A (assume m>>n) are the diagonal elements of the projection matrix onto the column span of A.
- They equal the L2-norm-squared of any orthogonal basis spanning A.
- They measure:
  - how well-correlated the singular vectors are with the canonical basis
  - which constraints have largest "influence" on the LS fit
  - a notion of "coherence" or "outlierness"
- Computing them exactly is as hard as solving the LS problem.

#### **Condition number.** (Think: eigenvalues & high-precision solutions.)

- The *L2-norm condition number* of A is  $(A) = \sigma_{max}(A)/\sigma_{min}(A)$ .
- $\kappa(A)$  bounds the number of iterations
  - for ill-conditioned problems (e.g.,  $\kappa(A) \cong 10^6 >> 1$ ), convergence speed is slow.
- Computing  $\kappa(A)$  is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.



(Dasgupta, Drineas, Harb, Kumar, Mahoney (2008); Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff (2012))

Convenient to formulate L1 regression in what follows as:  $\min_{x \in Rn} ||Ax||_1 \text{ s.t. } c^Tx=1$ 

• **Def:** A matrix U  $\varepsilon \mathbb{R}^{m \times n}$  is  $(\alpha, \beta, p = 1)$ -conditioned if  $||U||_1 \le a$  and  $||x||_{\infty} \le \beta ||Ux||_1$ , forall x; and *L1-well-conditioned* if  $a,\beta = poly(n)$ .

• **Def**: The <u>L1 leverage scores</u> of an m x n matrix A, with m > n, are the L1-norms-squared of the rows of any L1-well-conditioned basis of A. (Only well-defined up to poly(n) factors.)

• **Def**: The <u>L1-norm condition number</u> of A, denoted by  $\kappa_1(A)$ , is:  $\kappa_1(A) = \sigma_{1,\max}(A) / \sigma_{1,\min}(A)$  $= (Max_{||x||2=1} ||Ax||_1) / (Min_{||x||2=1} ||Ax||_1)$ 

Note that this implies:

 $\sigma_{1,\min}(A)||x||_2 \leq ||Ax||_1 \leq \sigma_{1,\max}(A)||x||_2 \text{ , forall } x \in \mathbb{R}^n.$ 

### Meta-algorithm for L2 regression

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1: Using the L2 statistical leverage scores of A, construct an importance sampling distribution  $\{p_i\}_{i=1,\dots,m}$ 

2: Randomly sample a small number of constraints according to  $\{p_i\}_{i,\dots,m}$  to construct a subproblem.

3: Solve the L2-regression problem on the subproblem.

Naïve implementation:  $1 + \varepsilon$  approximation in  $O(mn^2/\varepsilon)$  time. (Ugh.)

"Fast"  $O(mn \log(n)/\epsilon)$  in RAM if

- Hadamard-based projection and sample uniformly
- Quickly compute approximate leverage scores

"High precision"  $O(mn \log(n)\log(1/\epsilon))$  in RAM if:

• use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?

### Meta-algorithm for L1 (& Lp) regression

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.)

1: Using the L1 statistical leverage scores of A, construct an importance sampling distribution  $\{p_i\}_{i=1,\dots,m}$ 

2: Randomly sample a small number of constraints according to  $\{p_i\}_{i,\dots,m}$  to construct a subproblem.

3: Solve the L1-regression problem on the subproblem.

Naïve implementation:  $1 + \epsilon$  approximation in  $O(mn^5/\epsilon)$  time. (Ugh.) "Fast" in RAM if

- we perform a fast "L1 projection" to uniformize them approximately
- we approximate the L1 leverage scores quickly
- "High precision" in RAM if:

• we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?

### LSRN: a fast parallel implementation

Meng, Saunders, and Mahoney (2011, arXiv)

# A parallel iterative solver based on normal random projections

- computes unique min-length solution to  $min_x ||Ax-b||_2$
- very over-constrained or very under-constrained A
- full-rank or rank-deficient A
- A can be dense, sparse, or a linear operator
- easy to implement using threads or with MPI, and scales well in parallel environments

### LSRN: a fast parallel implementation

Meng, Saunders, and Mahoney (2011, arXiv)

#### Algorithm:

- Generate a  $\gamma$ n x m matrix with i.i.d. Gaussian entries G
- Let N be R-1 or V  $\Sigma^{\text{-1}}$  from QR or SVD of GA
- Use LSQR or Chebyshev Semi-Iterative (CSI) method to solve the preconditioned problem  $\min_{y} ||ANy-b||_2$

#### Things to note:

- Normal random projection: embarassingly parallel
- Bound  $\kappa(A)$ : strong control on number of iterations
- CSI particularly good for parallel environments: doesn't have vector inner products that need synchronization b/w nodes

### LSRN: Solving real-world problems

Meng, Saunders, and Mahoney (2011, arXiv)

#### TABLE 6.2

Real-world problems and corresponding running times in seconds. DGELSD doesn't take advantage of sparsity. Though MATLAB's backslash (SuiteSparseQR) may not give the min-length solutions to rank-deficient or under-determined problems, we still report its running times. Blendenpik either doesn't apply to rank-deficient problems or runs out of memory (OOM). LSRN's running time is basically determined by the problem size and the sparsity.

| matrix   | m     | $\boldsymbol{n}$ | nnz    | rank | cond  | DGELSD | $A \setminus b$ | Blendenpik | LSRN  |
|----------|-------|------------------|--------|------|-------|--------|-----------------|------------|-------|
| landnark | 71952 | 2704             | 1.15e6 | 2671 | 1.0e8 | 29.54  | 0.6498*         | -          | 17.55 |
| ra114284 | 4284  | 1.1e6            | 1.1e7  | full | 400.0 | > 3600 | 1.203*          | OOM        | 136.0 |
| tning_1  | 951   | 1e6              | 2.1e7  | 925  | -     | 630.6  | 1067*           | -          | 36.02 |
| tning_2  | 1000  | 2e6              | 4.2e7  | 981  | -     | 1291   | > 3600*         | -          | 72.05 |
| tning_3  | 1018  | 3e6              | 6.3e7  | 1016 | -     | 2084   | > 3600*         | -          | 111.1 |
| tning_4  | 1019  | 4e6              | 8.4e7  | 1018 | -     | 2945   | > 3600*         | -          | 147.1 |
| tning_5  | 1023  | 5e6              | 1.05e8 | full | -     | > 3600 | > 3600*         | OOM        | 188.5 |



Code snippet (Python):

Cost per iteration:

- two matrix-vector multiplications
- two cluster-wide synchronizations

# Chebyshev semi-iterative (CSI)

The strong concentration results on  $\sigma^{\max}(AN)$  and  $\sigma^{\min}(AN)$  enable use of the CS method, which requires an accurate bound on the extreme singular values to work efficiently.

```
Code snippet (Python):
```

```
v = comm.allreduce(A.rmatvec(r)) — beta*v
x += alpha*v
r -= alpha*A.matvec(v)
```

Cost per iteration:

- two matrix-vector multiplications
- one cluster-wide synchronization

### LSRN: on Amazon EC2 cluster

Meng, Saunders, and Mahoney (2011, arXiv)

#### TABLE 6.3

Test problems on the Amazon EC2 cluster and corresponding running times in seconds. When we enlarge the problem scale by a factor of 10 and increase the number of cores accordingly, the running time only increases by a factor of 50%. It shows LSRN's good scalability. Though the CS method takes more iterations, it is faster than LSQR by saving communication cost.

| solver       | $N_{nodes}$ | np  | matrix     | m    | n   | nnz   | $N_{iter}$ | $T_{iter}$ | $T_{total}$ |
|--------------|-------------|-----|------------|------|-----|-------|------------|------------|-------------|
| LSRN w/ CS   | 2           | 4   | tnimg 4    | 1024 | 406 | 8 407 | 106        | 34.03      | 170.4       |
| LSRN w/ LSQR | 2           | -   | curing_4   | 1024 | 400 | 0.401 | 84         | 41.14      | 178.6       |
| LSRN w/ CS   | F           | 10  | taing 10   | 1024 | 1-7 | 21.0  | 106        | 50.37      | 193.3       |
| LSRN w/ LSQR | 5           | 10  | 5 ching_10 | 1024 | 1er | 2.100 | 84         | 68.72      | 211.6       |
| LSRN w/ CS   | 10          | 20  | tnimg 20   | 1024 | 207 | 4.208 | 106        | 73.73      | 220.9       |
| LSRN w/ LSQR | 10          | 20  | ching_20   | 1024 | 281 | 4.260 | 84         | 102.3      | 249.0       |
| LSRN w/ CS   | 20          | 40  | tnimg 40   | 1024 | 407 | 8.408 | 106        | 102.5      | 255.6       |
| LSRN w/ LSQR | 20          | -40 | cning_40   | 1024 | 487 | 0.460 | 84         | 137.2      | 290.2       |

### $\ell_1$ -norm preconditioning via oblivious projections

Find an oblivious (i.e., independent of A) projection matrix  $\Pi \in \mathbb{R}^{\mathcal{O}(n \log n) \times m}$ , such that

$$\|Ax\|_1 \le \|\Pi Ax\|_1 \le \kappa_{\Pi} \|Ax\|_1, \quad \forall x.$$

Compute  $R = qr(\Pi A)$ . Then,  $\frac{1}{\kappa_{\Pi}} \|y\|_2 \le \|AR^{-1}y\|_1 \le \mathcal{O}(n^{1/2} \log^{1/2} n) \|y\|_2, \quad \forall y.$ 

Therefore,  $AR^{-1}$  is  $\ell_1$ -well-conditioned:  $\kappa_1(AR^{-1}) = \mathcal{O}(n^{1/2} \log^{1/2} n \cdot \kappa_{\Pi})$ .

| Constructions for Π                                                                                                      | time                                                   | $\kappa_{\Pi}$                                         |  |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
| Cauchy (Sohler and Woodruff 2011)<br>Fast Cauchy (Clarkson, Drineas, Magdon-Ismail,<br>Mahoney, Meng, and Woodruff 2012) | $\mathcal{O}(mn^2 \log n)$<br>$\mathcal{O}(mn \log n)$ | $\mathcal{O}(n \log n)$<br>$\mathcal{O}(n^2 \log^2 n)$ |  |

#### Evaluation on large-scale $\ell_1$ regression problem (1 of 2).

|               | $  x - x^*  _1 /   x^*  _1$ | $  x - x^*  _2 /   x^*  _2$ | $  x - x^*  _{\infty} /   x^*  _{\infty}$ |
|---------------|-----------------------------|-----------------------------|-------------------------------------------|
| CT (Cauchy)   | [0.008, 0.0115]             | [0.00895, 0.0146]           | [0.0113, 0.0211]                          |
| GT (Gaussian) | [0.0126, 0.0168]            | [0.0152, 0.0232]            | [0.0184, 0.0366]                          |
| NOCD          | [0.0823, 22.1]              | [0.126, 70.8]               | [0.193, 134]                              |
| UNIF          | [0.0572, 0.0951]            | [0.089, 0.166]              | [0.129, 0.254]                            |

Table: The first and the third quartiles of relative errors in 1-, 2-, and  $\infty$ -norms on a data set of size  $10^{10} \times 15$ . CT clearly performs the best. (FCT performs similarly.) GT follows closely. NOCD generates large errors, while UNIF works but it is about a magnitude worse than CT.

#### Evaluation on large-scale $\ell_1$ regression problem (2 of 2).



Figure: The first (solid) and the third (dashed) quartiles of entry-wise absolute errors on a data set of size  $10^{10} \times 15$ . CT clearly performs the best. (FCT performs similarly.) GT follows closely. NOCD and UNIF are much worse.

#### $\ell_1$ -norm preconditioning via ellipsoidal rounding

Find an ellipsoid  $\mathcal{E} = \{x | x^T E^{-1} x \leq 1\}$  such that

$$\frac{1}{\kappa_1}\mathcal{E}\subseteq \mathcal{C}=\{x\mid \|Ax\|_1\leq 1\}\subseteq \mathcal{E}.$$

Then we have

$$\|y\|_2 \le \|AE^{1/2}y\|_1 \le \kappa_1 \|y\|_2, \quad \forall y.$$

|                             | time                               | $\kappa_1$                        | passes   |
|-----------------------------|------------------------------------|-----------------------------------|----------|
| Löwner-John ellipsoid       | (exists)                           | n <sup>1/2</sup>                  |          |
| Clarkson 2005 (Lovász 1986) | $\mathcal{O}(mn^5 \log m)$         | п                                 | multiple |
| Meng and Mahoney 2012       | $\mathcal{O}(mn^3 \log m)$         | 2 <i>n</i>                        | multiple |
|                             | $\mathcal{O}(mn^2\log\frac{m}{n})$ | $2n^{2}$                          | single   |
|                             | $\mathcal{O}(mn\log\frac{m}{n^2})$ | $\mathcal{O}(n^{5/2}\log^{1/2}n)$ | single   |

#### Fast ellipsoidal rounding

- Partition A into sub-matrices  $A_1, A_2, \ldots, A_M$  of size  $\mathcal{O}(n^3 \log n) \times n$ .
- ② Compute  $\tilde{A}_i \in \mathbb{R}^{\mathcal{O}(n \log n) \times n} = \text{FJLT}(A_i)$ , for i = 1, ..., M.
- $\rightarrow$  By a proper scaling,  $\mathcal{E}$  gives an  $\mathcal{O}(n^{5/2} \log^{1/2} n)$ -rounding of  $\mathcal{C}$ .

Can use this to get a "one-pass conditioning" algorithm!

#### A MapReduce implementation

• Inputs:  $A \in \mathbb{R}^{m \times n}$  and  $\kappa_1$  such that

$$||x||_2 \le ||Ax||_1 \le \kappa_1 ||x||_2, \quad \forall x,$$

 $c \in \mathbb{R}^n$ , sample size s, and number of subsampled solutions  $n_x$ .

- Mapper:
  - **1** For each row  $a_i$  of A, let  $p_i = \min\{s ||a_i||_1/(\kappa_1 n^{1/2}), 1\}$ .
  - **2** For  $k = 1, ..., n_x$ , emit  $(k, a_i/p_i)$  with probability  $p_i$ .
- Reducer:
  - Collect row vectors associated with key k and assemble Ak.
  - 2 Compute  $\hat{x}_k = \arg \min_{c^T x = 1} ||A_k x||_1$  using interior-point methods.
  - 8 Return x<sup>k</sup>.

Note that multiple subsampled solutions can be computed in a single pass.

### Iteratively solving

If we want to have a few more accurate digits from the subsampled solutions, we may consider iterative methods.

|                                                               | passes                                     | extra work per pass          |
|---------------------------------------------------------------|--------------------------------------------|------------------------------|
| subgradient (Clarkson 2005)                                   | $\mathcal{O}(n^4/\epsilon^2)$              |                              |
| gradient (Nesterov 2009)                                      | $\mathcal{O}(m^{1/2}/\epsilon)$            |                              |
| ellipsoid (Nemirovski and Yudin 1972)                         | $\mathcal{O}(n^2 \log(\kappa_1/\epsilon))$ |                              |
| inscribed ellipsoids<br>(Tarasov, Khachiyan, and Erlikh 1988) | $\mathcal{O}(n\log(\kappa_1/\epsilon))$    | $\mathcal{O}(n^{7/2}\log n)$ |

### The Method of Inscribed Ellipsoids (MIE)

MIE works similarly to the bisection method, but in a higher dimension.

It starts with a search region  $S_0 = \{x \mid Sx \leq t\}$  which contains a ball of desired solutions described by a separation oracle. At step k, we first compute the maximum-volume ellipsoid  $\mathcal{E}_k$  inscribing  $\mathcal{S}_k$ . Let  $y_k$  be the center of  $\mathcal{E}_k$ . Send  $y_k$  to the oracle, if  $y_k$  is not a desired solution, the oracle returns a linear cut that refines the search region  $\mathcal{S}_k \to \mathcal{S}_{k+1}$ .

Why do we choose MIE?

- Least number of iterations
- Initialization using all the subsampled solutions
- Multiple queries per iteration

#### Constructing the initial search region

Given any feasible  $\hat{x}$ , let  $\hat{f} = ||A\hat{x}||_1$  and  $\hat{g} = A^T \operatorname{sign}(A\hat{x})$ . we have

$$\|x^* - \hat{x}\|_2 \le \|A(x^* - \hat{x})\|_1 \le \|Ax^*\|_1 + \|A\hat{x}\|_1 \le 2\hat{f},$$

and, by convexity,

$$\|Ax^*\|_1 \ge \|A\hat{x}\|_1 + \hat{g}^T(x^* - \hat{x}),$$

which implies  $\hat{g}^T x^* \leq \hat{g}^T \hat{x}$ .

Hence, for each subsampled solution, we have a hemisphere that contains the optimal solution.

We use all these hemispheres to construct the initial search region  $S_0$ .
#### Computing multiple f and g in a single pass

On MapReduce, the cost of input/output may dominate the cost of the actual computation, which requires us to design algorithms that could do more computations in a single pass.

A single query:

$$f(x) = \|Ax\|_1, \quad g(x) = A^T \operatorname{sign}(Ax).$$

Multiple queries:

$$F(X) = \operatorname{sum}(|AX|, 0), \quad G(X) = A^T \operatorname{sign}(AX).$$

An example on a 10-node Hadoop cluster:

•  $A: 10^8 \times 50, 118.7$ GB.

- A single query: 282 seconds.
- 100 queries in a single pass: 328 seconds.

#### MIE with sampling initialization and multiple queries



Figure: Comparing different MIEs on an  $\ell_1$  regression problem of size  $10^6 \times 20$ .

#### MIE with sampling initialization and multiple queries



Figure: Comparing different MIEs on an  $\ell_1$  regression problem of size 5.24e9 × 15.

## Dealing with sparse matrices

Many matrices are "sparse," i.e., have very few nonzeros:

• Scientific computing - nonzeros often structured, e.g., can apply fast to arbitrary vector

• Informatics graphs – nonzeros very unstructured, e.g., can have no good large partitions

**Problem:** Projections, etc. typically densify matrices, so can perform very poorly on sparse matrices.

**Solution 1:** If the sparse matrix is "structured," can often quickly apply a dense Gaussian projection.

**Solution 2:** Try to get embeddings and/or solution to regression, etc. problems in  $O(nnz(A)) + poly(n/\epsilon)$  time, if m>>n, i.e., "input sparsity" time.

# Dealing with sparse matrices, cont

Clarkson and Woodruff (arXiv 2012)

**Thm:** (Clarkson&Woodruff-12) Can find L2 embedding matrix and compute solution to L2 regression, low-rank approximation, leverage score computation, etc., in input sparsity time.

**Pf:** Decompose space into high-leverage and low-leverage parts. High-leverage rows are heavy hitters.

Extension 1: (Meng-Mahoney12) Don't need leverage decomposition for L2; improved direct proof that uses Gershgorin discs.

Extension 2a: (MM12) Use CW12 decomposition ideas extend to Lp input-sparsity time embeddings and apply to Lp regression.

Extension 2b: (CW12) Can get Lp regression with direct proof with L2 ideas and L1-FCT.

Fruitful interplay between TCS data streaming and NLA structural ideas; see David's talk for more details!

## Future directions?

- Lots of them:
- Other traditional NLA and large-scale optimization problems
- Parallel and distributed computational environments
- Sparse graphs, sparse matrices, and sparse projections
- Laplacian matrices and large informatics graphs
- Randomized algorithms and implicit regularization
- ...

"New data and new problems are forcing us to reconsider the algorithmic and statistical basis of large-scale data analysis."

### For more info ...

Two very good recent reviews:

• "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," by N. Halko, P. G. Martinsson, J. Tropp, SIAM Review, 53(2), 2011. (Also available at arXiv:0909.4061).

• "Randomized Algorithms for Matrices and Data," M. W. Mahoney, NOW Publishers' Foundations and Trends in Machine Learning series, 2011. (Also available at arXiv: 1104.5557).

And no doubt more to come ...