

Matrix computations
Eigendecompositions, QR, SVD, least-squares, etc.

Traditional algorithms:
•  compute “exact” answers to, say, 10 digits as a black box

•  assume the matrix is in RAM and minimize flops

But they are NOT well-suited for:
•  with missing or noisy entries

•  problems that are very large

•  distributed or parallel computation

•  when communication is a bottleneck

•  when the data must be accessed via “passes”

Why randomized matrix algorithms?
•  Faster algorithms: worst-case theory and/or numerical code

•  Simpler algorithms: easier to analyze and reason about

•  More-interpretable output: useful if analyst time is expensive

•  Implicit regularization properties: and more robust output

•  Exploit modern computer architectures: by reorganizing steps of alg

•  Massive data: matrices that they can be stored only in slow
secondary memory devices or even not at all

Today, mostly (but not exclusively) focus on low-rank matrix
approximation and least-squares approximation: ubiquitous,
fundamental, and at the center of recent developments

The general idea ...
•  Randomly sample columns/rows/entries of the matrix, with
carefully-constructed importance sampling probabilities, to
form a randomized sketch

•  Preprocess the matrix with random projections, to form a
randomized sketch by sampling columns/rows uniformly

•  Use the sketch to compute an approximate solution to the
original problem w.h.p.

•  Resulting sketches are “similar” to the original matrix in
terms of singular value and singular vector structure, e.g.,
w.h.p. are bounded distance from the original matrix

The devil is in the details ...
Decouple the randomization from the linear algebra:
•  originally within the analysis, then made explicit

•  permits much finer control in application of randomization

Importance of statistical leverage scores:
•  historically used in regression diagnostics to identify outliers

•  best random sampling algorithms use them as importance sampling
distribution
•  best random projection algorithms go to a random basis where they
are roughly uniform

Couple with domain expertise—to get best results!

History of Randomized Matrix Algs

How to “bridge the gap”?
•  decouple randomization from linear algebra

•  importance of statistical leverage scores!

Theoretical origins
•  theoretical computer
science, convex analysis, etc.

•  Johnson-Lindenstrauss

•  Additive-error algs

•  Good worst-case analysis

•  No statistical analysis

Practical applications
•  NLA, ML, statistics, data
analysis, genetics, etc

•  Fast JL transform

•  Relative-error algs

•  Numerically-stable algs

•  Good statistical properties

Statistical leverage, coherence, etc.

Definition: Given a “tall” n x d matrix A, i.e., with n > d, let U
be any n x d orthogonal basis for span(A), & let the d-vector U(i)
be the ith row of U. Then:

•  the statistical leverage scores are λi = ||U(i)||2
2 , for i ε {1,…,n}

•  the coherence is γ = maxi ε {1,…,n} λi

•  the (i,j)-cross-leverage scores are U(i)
T U(j) = <U(i) ,U(j)>

Note: There are extension of this to:

•  “fat” matrices A, with n, d are large and low-rank parameter k

•  L1 and other p-norms

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

 They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

 Matrices including thousands of individuals and hundreds of thousands if SNPs are available.

Applications in: Human Genetics

HGDP data

•  1,033 samples

•  7 geographic regions

•  52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:
2,240 subjects (rows)

447,143 SNPs (columns)

Dense matrix:

over one billion entries

The Human Genome Diversity Panel (HGDP)

ASW, MKK,
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

•  1,207 samples

•  11 populations

HapMap Phase 3

The Singular Value Decomposition (SVD)

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing σ1 ≥ σ2 ≥ … ≥ σρ, the singular values of A.

The formal definition:

Given any m x n matrix A, one can decompose it as:

Important: Keeping top k singular vectors provides “best” rank-k
approximation to A (w.r.t. Frobenius norm, spectral norm, etc.):

 Ak = argmin{ ||A-X||2,F : rank(X) ≤ k }.

Africa

Middle East

South Central
Asia

Europe

Oceania

East Asia

America

Gujarati
Indians

Mexicans

•  Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

•  The figure renders visual support to the “out-of-Africa” hypothesis.

•  Mexican population seems out of place: we move to the top three PCs.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet

Africa
Middle East

S C Asia &
Gujarati Europe

Oceania

East Asia

America

Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and – of course – can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet

Applications in: Astronomy

CMB Surveys (pixels)
  1990 COBE 1000
  2000 Boomerang 10,000
  2002 CBI 50,000
  2003 WMAP 1 Million
  2008 Planck 10 Million

Galaxy Redshift Surveys (obj)
•  1986 CfA 3500
•  1996 LCRS 23000
•  2003 2dF 250000
•  2008 SDSS 1000000
•  2012 BOSS 2000000
•  2012 LAMOST 2500000

Angular Galaxy Surveys (obj)
•  1970 Lick 1M
•  1990 APM 2M
•  2005 SDSS 200M
•  2011 PS1 1000M
•  2020 LSST 30000M

Time Domain
•  QUEST
•  SDSS Extension survey
•  Dark Energy Camera
•  Pan-STARRS
•  LSST…

“The Age of Surveys” – generate petabytes/year …

Szalay (2012, MMDS)

Galaxy properties from galaxy spectra

Continuum Emissions Spectral Lines

Can we select
“informative”
frequencies
(columns) or
images (rows)
“objectively”?

4K x 1M SVD
Problem:
ideal for
randomized
matrix
algorithms

Szalay (2012, MMDS)

Galaxy diversity from PCA

[Average Spectrum]

[Stellar Continuum]

[Finer Continuum Features + Age]

[Age]
Balmer series hydrogen lines

[Metallicity]
Mg b, Na D, Ca II Triplet

1st

2nd

3rd

4th

5th

PC

Issues with eigen-analysis
•  Computing large SVDs: computational time

•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 20 minutes.

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

•  Instead, compute the SVD of AAT.

•  In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.)
1,200-by-450,000 (roughly, a full leave-one-out cross-validation experiment).
(e.g., Drineas, Lewis, & Paschou (2010) PLoS ONE)

•  Selecting actual columns that “capture the structure” of the top PCs
•  Combinatorial optimization problem; hard even for small matrices.

•  Often called the Column Subset Selection Problem (CSSP).

•  Not clear that such “good” columns even exist.

•  Avoid “reification” problem of “interpreting” singular vectors!

Applications in: Real Implementations
In RAM:
•  Compute answers to 1 digit or 10 digits faster than LAPACK

•  (TCS theory NOT directly relevant here – high-precision issues.)

For very large vector space analytics
•  Small-scale data: model by graphs and matrices, and compute eigenvectors/
correlations

•  Large-scale data: model with flat table and relational model, and compute with
join/select and other “counting” procedures

•  (TCS theory NOT directly relevant here – communication issues)

Can we “bridge the gap”
•  between TCS theory and numerical implementations

•  between “vector-space computations” and “very large-scale analytics”?

Outline

•  Background, motivation, and applications

•  Algorithms (in RAM) for least-squares
approximation

•  Algorithms (in RAM) for low-rank
approximation

•  Implementation of L1 and L2 regression in
parallel and distributed environments

Outline

•  Background, motivation, and applications

•  Algorithms (in RAM) for least-squares
approximation

•  Algorithms (in RAM) for low-rank
approximation

•  Implementation of L1 and L2 regression in
parallel and distributed environments

Least Squares (LS) Approximation

We are interested in over-constrained Lp regression problems, n >> d.
 Typically, there is no x such that Ax = b.

 Want to find the “best” x such that Ax ≈ b.

Ubiquitous in applications & central to theory:
 Statistical interpretation: best linear unbiased estimator.

 Geometric interpretation: orthogonally project b onto span(A).

Exact solution to LS Approximation
Cholesky Decomposition:

 If A is full rank and well-conditioned,
 decompose ATA = RTR, where R is upper triangular, and

 solve the normal equations: RTRx=ATb.
QR Decomposition:

 Slower but numerically stable, esp. if A is rank-deficient.
 Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:
 Most expensive, but best if A is very ill-conditioned.

 Write A=UΣVT, in which case: xOPT = A+b = VΣ-1
kUTb.

Complexity is O(nd2) for all of these, but
constant factors differ.

Projection of b on
the subspace spanned
by the columns of A

Pseudoinverse
of A

Modeling with Least Squares

Assumptions underlying its use:
•  Relationship between “outcomes” and “predictors is (roughly) linear.

•  The error term ε has mean zero.

•  The error term ε has constant variance.
•  The errors are uncorrelated.

•  The errors are normally distributed (or we have adequate sample size to
rely on large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!

Statistical Issues and Regression Diagnostics
Model: b = Ax+ε b = response; A(i) = carriers;

 ε = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0

 and Var(e)=σ2I), uncorrelated, normally distributed

xopt = (ATA)-1ATb (what we computed before)

b’ = Hb H = A(ATA)-1AT = “hat” matrix
 Hij - measures the leverage or influence exerted on b’i by bj,

 regardless of the value of bj (since H depends only on A)

e’ = b-b’ = (I-H)b vector of residuals - note: E(e’)=0, Var(e’)=σ2(I-H)

Trace(H)=d Diagnostic Rule of Thumb: Investigate if Hii > 2d/n

H=UUT U is from SVD (A=UΣVT), or any orthogonal matrix for span(A)
Hii = |U(i)|2

2 leverage scores = row “lengths” of spanning orthogonal matrix

A “classic” randomized algorithm (1of3)

Over-constrained least squares (n x d matrix A,n >>d)

•  Solve:

•  Solution:

Randomized Algorithm:
•  For all i ε {1,...,n}, compute

•  Randomly sample O(d log(d)/ ε) rows/elements fro A/b, using
{pi} as importance sampling probabilities.

•  Solve the induced subproblem:

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

A “classic” randomized algorithm (2of3)

Theorem: Let . Then:

• 
• 

This naïve algorithm runs in O(nd2) time

•  But it can be improved !!!

This algorithm is bottleneck for Low Rank Matrix Approximation
and many other matrix problems.

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

A “classic” randomized algorithm (3of3)

Sufficient condition for relative-error approximation.

For the “preprocessing” matrix X:

•  Important: this condition decouples the randomness from the
linear algebra.

•  Random sampling algorithms with leverage score probabilities
and random projections satisfy it!

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Theoretically “fast” algorithms
Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Main theorem: For both of these randomized algorithms, we get:

•  (1±ε)-approximation
•  in roughly time!!

Algorithm 1: Fast Random Projection Algorithm for LS Problem
•  Preprocess input (in o(nd2)time) with Fast-JL transform, uniformizes
leverage scores, and sample uniformly in the randomly-rotated space

•  Solve the induced subproblem

Algorithm 2: Fast Random Sampling Algorithm for LS Problem
•  Compute 1±ε approximation to statistical leverage scores (in o(nd2)
time), and use them as importance sampling probabilities
•  Solve the induced subproblem

Random Projections (1 of 4):
The Johnson-Lindenstrauss lemma

Johnson & Lindenstrauss (1984)

•  We can represent S by an m-by-n matrix A, whose rows correspond to points.

•  We can represent all f(u) by an m-by-s Ã.

•  The “mapping” corresponds to the construction of an n-by-s matrix Ω and computing

Ã = A Ω

Random Projections (2 of 4):
Different constructions for Ω matrix

“Slow” Random Projections (≥O(nd2) time to implement in RAM model):
•  JL (1984): random k-dimensional space

•  Frankl & Maehara (1988): random orthogonal matrix

•  DasGupta & Gupta (1999): random matrix with entries from N(0,1), normalized
•  Indyk & Motwani (1998): random matrix with entries from N(0,1), normalized

•  Achlioptas (2003): random matrix with entries in {-1,0,+1}, normalized

•  Alon (2003): optimal dependency on n, and almost optimal dependency on ε

“Fast” Random Projections (o(nd2) time to implement in RAM model):
•  Ailon and Chazelle (2006,2009); Matousek (2008); and many variants more recently.

Random Projections (3 of 4):
Fast Johnson-Lindenstrauss Transform
Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

Normalized Hadamard-Walsh transform matrix
(if n is not a power of 2, add all-zero columns to A; or use other
related Hadamard-based methods)

Diagonal matrix with Dii set to +1 or -1 w.p. 1/2.

•  P can also be a matrix representing the “uniform sampling” operation.

•  In both cases, the O(n log (n)) running time is computational bottleneck.

Random Projections (4 of 4):
Randomized Hadamard preprocessing

Fact 1: Multiplication by HnDn doesn’t change the solution:

Fact 2: Multiplication by HnDn is fast - only O(n log(r)) time, where r is the number of
elements of the output vector we need to “touch”.

(since Hn and Dn are orthogonal matrices).

Fact 3: Multiplication by HnDn approximately uniformizes all leverage scores:

Let Hn be an n-by-n deterministic Hadamard matrix, and
Let Dn be an n-by-n random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

Fast approximation of statistical
leverage and matrix coherence (1 of 4)
Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Simple (deterministic) algorithm:
•  Compute a basis Q for the left singular subspace, with QR or SVD.

•  Compute the Euclidean norms of the rows of Q.

Running time is O(nd2), if n >> d, O(on-basis) time otherwise.

We want faster!
•  o(nd2) or o(on-basis), with no assumptions on input matrix A.

•  Faster in terms of flops of clock time for not-obscenely-large input.
•  OK to live with ε-error or to fail with overwhelmingly-small δ probability

Fast approximation of statistical
leverage and matrix coherence (2 of 4)

View the computation of leverage scores i.t.o an
under-constrained LS problem

Recall (A is n x d, n » d):

• 
But:

• 
Leverage scores are the norm of a min-length solution
of an under-constrained LS problem!

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Fast approximation of statistical
leverage and matrix coherence (3 of 4)
Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

•  This is simpler than for the full under-constrained LS solution since only
need the norm of the solution.
•  This is essentially using R-1 from QR of subproblem as preconditioner for
original problem.
•  I.e., Ω1 A is a randomized “sketch” of A; QR = Ω1 A is QR decomposition
of this sketch; and evaluate row norms of X≈ A R-1., but need Ω2, a second
projection, to make it “fast.”

Fast approximation of statistical
leverage and matrix coherence (4 of 4)
Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Theorem: Given an n x d matrix A, with n >> d, let PA be the
projection matrix onto the column space of A. Then , there is a
randomized algorithm that w.p. ≥ 0.999:

•  computes all of the n diagonal elements of PA (i.e., leverage
scores) to within relative (1±ε) error;

•  computes all the large off-diagonal elements of PA to within
additive error;

•  runs in o(nd2)* time.

*Running time is basically O(n d log(n)/ε), i.e., same as DMMS fast
randomized algorithm for over-constrained least squares.

Note: Clarkson-Woodruff (2012) can compute these in “input sparsity” time!

Practically “fast” implementations (1of2)
Use “randomized sketch” to construct preconditioner
for traditional iterative methods:
•  RT08: preconditioned iterative method improves 1/ε
dependence to log(1/ε), important for high precision

•  AMT10: much more detailed evaluation, different Hadamard-
type preconditioners, etc.

•  CRT11: use Gaussian projections to compute orthogonal
projections with normal equations

•  MSM11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.g., for parallel
computation in Amazon EC2 clusters!

Practically “fast” implementations (2of2)

Avron, Maymounkov, and Toledo 2010:
•  Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

•  Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."

Outline

•  Background, motivation, and applications

•  Algorithms (in RAM) for least-squares
approximation

•  Algorithms (in RAM) for low-rank
approximation

•  Implementation of L1 and L2 regression in
parallel and distributed environments

Low-rank approximation algorithms

Many randomized algorithms for low-rank matrix
approximation use extensions of these basic least-
squares ideas:
•  Relative-error random sampling CX/CUR algorithms (DMM07)

•  Relative-error random projection algorithms (S08)

•  Column subset selection problem (exactly k columns) (BMD09)

•  Numerical implementations, with connections to interpolative
decomposition (LWMRT07,WLRT08,MRT11)

•  Numerical implementations for slower spectral decay (RST09)

Recall, SVD decomposes a matrix as …

Top k left singular vectors

The SVD has very strong
optimality properties., e.g.
the matrix Uk is the “best”
in many ways.

  Note that, given Uk, the best X = Uk
TA = ΣVT.

  SVD can be computed fairly quickly.

  The columns of Uk are linear combinations of up to all columns of A.

CX (and CUR) matrix decompositions

c columns of A

Carefully
chosen X

Goal: choose actual columns C to make
(some norm) of A-CX small.

Why?

If A is a subject-SNP matrix, then selecting representative columns is
equivalent to selecting representative SNPs to capture the same structure as
the top eigenSNPs.

If A is a frequency-image astronomical matrix, then selecting representative
columns is equivalent to selecting representative frequencies/wavelengths.

Note: To make C small, we want c as small as possible!

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

CX (and CUR) matrix decompositions

Easy to see optimal X = C+A.

Hard to find good columns (e.g., SNPs)
of A to include in C.

This Column Subset Selection Problem
(CSSP), heavily studied in N LA, is a
hard combinatorial problem.

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

c columns of A

Two issues are connected

•  There exist (1+ε) “good” columns in any matrix that contain information about
the top principal components: ||A-CX||F ≤ (1+ε) ||A-Ak||F

•  We can identify such columns via a simple statistic: the leverage scores.

•  This does not immediately imply faster algorithms for the SVD, but, combined
with random projections, it does!

•  Analysis (almost!) boils down to understanding least-squares approximation.

Low-rank structural condition
Boutsidis, Mahoney and Drineas (2009, SODA)

Using this matrix structural condition

Randomly sampling exactly k columns
•  Boutsidis, Mahoney, & Drineas 2008

Fast (1+ε)-low-rank projection algorithm
•  Sarlos 2006

Project to l=k+p dimensions, for small constant p
•  Wolfe, Liberty, Rokhlin, Tygert 2008

Couple with q steps of power iteration
•  Rokhlin,Szlam, Tygert 2009

Decoupling the randomization from the linear algebra---much easier to couple
TCS theory with existing NLA & scientific computing methods!

SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

Africa

Europe

Asia

America

Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics

Paschou et al (2010) J Med Genet

Drineas et al (2010) PLoS One

Javed et al (2011) Annals Hum Genet

An interesting observation
Sampling w.r.t. to leverage scores results in redundant columns being selected.

 (Almost) identical columns have (almost) the same leverage scores and thus might be all selected, even
though they do not really add new “information.”

First Solution:
 Apply a “redundancy removal” step, e.g., a deterministic CSSP algorithm on the sampled columns.

 Very good empirically, even with “naïve” CSSP algorithms (such as the pivoted QR factorization).

Conjecture:
 The “leverage scores” filter out relevant columns, so deterministic methods do a better job later.

 Paschou et al. (2007,2008) for population genetics applications; and Boutsidis et al. (2009, 2010) for theory.

Second Solution:
 Apply clustering to the sampled columns and then return a representative column from each cluster.
 Very good empirically, since it permits clustering of SNPs that have similar functionalities and thus allows
better understanding of the proposed ancestry-informative panels.

Ranking Astronomical Line Indices

(Yip et al. 2012 in prep.)
(Worthey et al. 94;
Trager et al. 98)

Subspace
Analysis of
Spectra Cutouts:

- Othogonality
- Divergence
- Commonality

Identifying new line indices objectively

(Yip et al. 2012 in prep.)

Szalay (2012, MMDS)

New Spectral Regions (M2;k=5;
overselecting 10X; combine if <30A)
Szalay (2012, MMDS)

Old Lick indices are “ad hoc”

New indices are “objective”

•  Recover atomic lines

•  Recover molecular bands

•  Recover Lick indices

•  Informative regions are
orthogonal to each other, in
contrast to Lick

More recent CSSP-based improvements
Can get (1+ε)-approximation bound with s=3k/ε columns
•  Boutsidis, Drineas, & Magdon-Ismail (FOCS 2011)

•  Uses ideas from Batson, Spielman, & Srivastva (STOC 2009)

A (1+ε)-approximation needs at least k/ε columns
•  Deshpande & Vempala (RANDOM 2006)

Almost asymptotically optimal bound
•  Guruswami & Sinop (SODA 2012)

•  Both deterministic and randomized algorithms

Application to column-based reconstruction in QIP
•  Guruswami & Sinop (SODA 2011)

Outline

•  Background, motivation, and applications

•  Algorithms (in RAM) for least-squares
approximation

•  Algorithms (in RAM) for low-rank
approximation

•  Implementation of L1 and L2 regression in
parallel and distributed environments

Parallel environments and how they scale
Shared memory
•  cores: [10, 103]*

•  memory: [100GB, 100TB]

Message passing
•  cores: [200, 105]**

•  memory: [1TB, 1000TB]

•  CUDA cores: [5 x 104, 3 x 106]***

•  GPU memory: [500GB, 20TB]

MapReduce
•  cores: [40, 105]****

•  memory: [240GB, 100TB]

•  storage: [100TB, 100PB]*****

Distributed computing
•  cores: [-, 3 x 105]******

Traditional algorithms
For L2 regression:
•  direct methods: QR, SVD, and normal equation (O(mn2 + n2) time)

•  Pros: high precision & implemented in LAPACK
•  Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

•  iterative methods: CGLS, LSQR, etc.
•  Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
•  Cons: hard to predict the number of iterations needed

For L1 regression:
•  linear programming
•  interior-point methods (or simplex, ellipsoid? methods)
•  re-weighted least squares
•  first-order methods

Two important notions:
leverage and condition
Statistical leverage. (Think: eigenvectors & low-precision solutions.)

•  The statistical leverage scores of A (assume m>>n) are the diagonal
elements of the projection matrix onto the column span of A.
•  They equal the L2-norm-squared of any orthogonal basis spanning A.
•  They measure:

•  how well-correlated the singular vectors are with the canonical basis
•  which constraints have largest “influence" on the LS fit
•  a notion of “coherence” or “outlierness”

•  Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues & high-precision solutions.)

•  The L2-norm condition number of A is (A) = σmax(A)/σmin(A).
•  κ(A) bounds the number of iterations

•  for ill-conditioned problems (e.g., κ(A) ≅ 106 >> 1), convergence speed is slow.
•  Computing κ(A) is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.

Condition number, well-conditioned
bases and leverage scores for L1 norm

Convenient to formulate L1 regression in what follows as:
 minxεRn ||Ax||1 s.t. cTx=1

•  Def: A matrix U ε Rmxn is (α, β, p = 1)-conditioned if ||U||1 ≤ α and
||x||∞ ≤ β ||Ux||1, forall x; and L1-well-conditioned if α,β = poly(n).

•  Def: The L1 leverage scores of an m x n matrix A, with m > n, are the
L1-norms-squared of the rows of any L1-well-conditioned basis of A.
(Only well-defined up to poly(n) factors.)

•  Def: The L1-norm condition number of A, denoted by κ1(A), is:
 κ1(A) = σ1,max(A) / σ1,min(A)
 = (Max||x||2=1 ||Ax||1) / (Min||x||2=1 ||Ax||1)

Note that this implies:
 σ1,min(A)||x||2 ≤ ||Ax||1 ≤ σ1,max(A)||x||2 , forall x ε Rn.

(Dasgupta, Drineas, Harb, Kumar, Mahoney (2008); Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff (2012))

Meta-algorithm for L2 regression

1: Using the L2 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L2-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn2/ε) time. (Ugh.)

“Fast” O(mn log(n)/ε) in RAM if
•  Hadamard-based projection and sample uniformly
•  Quickly compute approximate leverage scores

“High precision” O(mn log(n)log(1/ε)) in RAM if:
•  use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Meta-algorithm for L1 (& Lp) regression

1: Using the L1 statistical leverage scores of A, construct an importance
sampling distribution {pi}i=1,...,m
2: Randomly sample a small number of constraints according to {pi}i,...,m to
construct a subproblem.
3: Solve the L1-regression problem on the subproblem.

Naïve implementation: 1 + ε approximation in O(mn5/ε) time. (Ugh.)

“Fast” in RAM if

•  we perform a fast “L1 projection” to uniformize them approximately
•  we approximate the L1 leverage scores quickly

“High precision” in RAM if:
•  we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.)

LSRN: a fast parallel implementation

A parallel iterative solver based on normal random
projections
•  computes unique min-length solution to minx ||Ax-b||2

•  very over-constrained or very under-constrained A

•  full-rank or rank-deficient A

•  A can be dense, sparse, or a linear operator

•  easy to implement using threads or with MPI, and scales well
in parallel environments

Meng, Saunders, and Mahoney (2011, arXiv)

LSRN: a fast parallel implementation
Algorithm:

•  Generate a γn x m matrix with i.i.d. Gaussian entries G

•  Let N be R-1 or V Σ-1 from QR or SVD of GA

•  Use LSQR or Chebyshev Semi-Iterative (CSI) method to
solve the preconditioned problem miny ||ANy-b||2

Things to note:

•  Normal random projection: embarassingly parallel

•  Bound κ(A): strong control on number of iterations

•  CSI particularly good for parallel environments: doesn’t have
vector inner products that need synchronization b/w nodes

Meng, Saunders, and Mahoney (2011, arXiv)

LSRN: Solving real-world problems
Meng, Saunders, and Mahoney (2011, arXiv)

LSQR
Paige and Saunders (1982)

Chebyshev semi-iterative (CSI)
Golub and Varga (1961)

LSRN: on Amazon EC2 cluster
Meng, Saunders, and Mahoney (2011, arXiv)

L1 slides 1 of 12

L1 slides 2 of 12

L1 slides 3 of 12

L1 slides 4 of 12

L1 slides 5 of 12

L1 slides 6 of 12

L1 slides 7 of 12

L1 slides 8 of 12

L1 slides 9 of 12

L1 slides 10 of 12

L1 slides 11 of 12

L1 slides 12 of 12

Dealing with sparse matrices
Many matrices are “sparse,” i.e., have very few nonzeros:
•  Scientific computing – nonzeros often structured, e.g., can apply
fast to arbitrary vector

•  Informatics graphs – nonzeros very unstructured, e.g., can have no
good large partitions

Problem: Projections, etc. typically densify matrices, so can
perform very poorly on sparse matrices.

Solution 1: If the sparse matrix is “structured,” can often quickly
apply a dense Gaussian projection.

Solution 2: Try to get embeddings and/or solution to regression,
etc. problems in O(nnz(A)) + poly(n/ε)) time, if m>>n, i.e., “input
sparsity” time.

Dealing with sparse matrices, cont

Thm: (Clarkson&Woodruff-12) Can find L2 embedding matrix
and compute solution to L2 regression, low-rank approximation,
leverage score computation, etc., in input sparsity time.

Pf: Decompose space into high-leverage and low-leverage parts.
High-leverage rows are heavy hitters.

Extension 1: (Meng-Mahoney12) Don’t need leverage decomposition for
L2; improved direct proof that uses Gershgorin discs.

Extension 2a: (MM12) Use CW12 decomposition ideas extend to Lp
input-sparsity time embeddings and apply to Lp regression.

Extension 2b: (CW12) Can get Lp regression with direct proof with L2
ideas and L1-FCT.

Fruitful interplay between TCS data streaming and NLA structural ideas; see David’s talk for more details!

Clarkson and Woodruff (arXiv 2012)

Future directions?
Lots of them:
•  Other traditional NLA and large-scale optimization problems

•  Parallel and distributed computational environments

•  Sparse graphs, sparse matrices, and sparse projections

•  Laplacian matrices and large informatics graphs

•  Randomized algorithms and implicit regularization

•  ...

“New data and new problems are forcing us to reconsider the
algorithmic and statistical basis of large-scale data analysis.”

For more info ...
Two very good recent reviews:
•  "Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions,” by N.
Halko, P. G. Martinsson, J. Tropp, SIAM Review, 53(2), 2011.
(Also available at arXiv:0909.4061).

•  "Randomized Algorithms for Matrices and Data,” M. W.
Mahoney, NOW Publishers' Foundations and Trends in
Machine Learning series, 2011. (Also available at arXiv:
1104.5557).

And no doubt more to come ...

