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] Matrix computations

Eigendecompositions, QR, SVD, least-squares, etc.

Traditional algorithms:
« compute "exact” answers to, say, 10 digits as a black box

* assume the matrix is in RAM and minimize flops

But they are NOT well-suited for:
* with missing or noisy entries
* problems that are very large
- distributed or parallel computation
« when communication is a bottleneck

 when the data must be accessed via "passes”



] Why randomized matrix algorithms?

* Faster algorithms: worst-case theory and/or numerical code

« Simpler algorithms: easier to analyze and reason about

* More-interpretable output: useful if analyst time is expensive

« Implicit regularization properties: and more robust output

* Exploit modern computer architectures: by reorganizing steps of alg

* Massive data: matrices that they can be stored only in slow
secondary memory devices or even not at all

Today, mostly (but not exclusively) focus on low-rank matrix
approximation and least-squares approximation: ubiquitous,
fundamental, and at the center of recent developments



] The general idea ...

* Randomly sample columns/rows/entries of the matrix, with
carefully-constructed importance sampling probabilities, to
form a randomized sketch

* Preprocess the matrix with random projections, to form a
randomized sketch by sampling columns/rows uniformly

* Use the sketch to compute an approximate solution to the
original problem w.h.p.

* Resulting sketches are "similar” to the original matrix in
terms of singular value and singular vector structure, e.qg.,
w.h.p. are bounded distance from the original matrix



] The devil is in the details ...

Decouple the randomization from the linear algebra:

- originally within the analysis, then made explicit

* permits much finer control in application of randomization

Importance of statistical leverage scores:
* historically used in regression diagnostics to identify outliers

* best random sampling algorithms use them as importance sampling
distribution

* best random projection algorithms go to a random basis where they
are roughly uniform

Couple with domain expertise—to get best results!



] History of Randomized Matrix Algs

Theoretical origins \7 & __ Practical applications

* NLA, ML, statistics, data
analysis, genetics, etfc

* theoretical computer
science, convex analysis, eftc.

« Johnson-Lindenstrauss e Fast JL transform

* Relative-error algs

« Additive-error algs
* Good worst-case analysis * Numerically-stable algs
* No statistical analysis * Good statistical properties

| N—

How to "bridge the gap"?

« decouple randomization from linear algebra

* importance of statistical leverage scores!



] Statistical leverage, coherence, etc.

Mahoney and Drineas (2009, PNAS); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2012, ICML)

Definition: Given a “tall” n x d matrix A, i.e., withn>d, let U
be any n x d orthogonal basis for span(A), & let the d-vector U,
be the ith row of U. Then:

* the statistical leverage scores are A; = [|Ugl 1,2, forie{1,..,n}

g

* the (i,j)-cross-leverage scores are U™ Uy = <Uy Uy

Note: There are extension of this to:
« "“fat” matrices A, with n, d are large and low-rank parameter k

* L1 and other p-norms



] Applications in: Human Genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
/.-..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTI'AGCTCGCGCG ATCTCTAGCTAGGGGTGAAG$
...GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACTAAGGGGCCGGAAGGAACCAACCAAGGTT AA|ITTIGG GG GG|TT|TTCCGG TT GG GG TT GG AA ...
..GGTTTTGGTTCCCCCCCCGGAAAGAGAAAGCTAAGGGGCCAGAGCGACCCAACCAAGGTT AG|CT|CGCGCGIATICTCTAGCTAGGG GTGAAG ...
...GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTT AGICTICGCGCGIATICTCT AGCT AGGT GTGAAG ...
..GGTTTTGGTTCCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGGTTGGCCCGCGCGATICTCTAGCTAGGGTT GG AA ...
.GGTTTTGGTTCCCCCGCCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAG CGCGCGIATICTCTAGCTAGGGTT GG AA ...

. CT
&...GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAATI'AAGGGGCCAGAGCGAACCAACGAAGG'I'I'AAEGGGGGG'I'I'TI'CCGGTI'GGGTTI'GGAAy

individuals

Matrices including thousands of individuals and hundreds of thousands if SNPs are available.



‘LWK, & YRI

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Africans Europeans

5 Mbuti pygmy

6 Biaka 13 North ltalian

7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

18 Palestinian

Central and
Southern Asians

19 Balochi
20 Brahui
21 Makrani
22 Sindhi
23 Pathan
24 Burusho
25 Hazara
26 Uygur
27 Kalash

Eastern Asians

32 Hezhen

33 Lahu

34 Miao

35 Orogen
36 She

37 Tujia

38 Tu

39 Xibo
40Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

Oceanians

Native Americans

ol
51 Maya
52 Pima

lan

HGDP data
+ 1,033 samples
* 7 geographic regions

+ 52 populations

HapMap Phase 3 data

+ 1,207 samples
+ 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:
2,240 subjects (rows)
447 143 SNPs (columns)

Dense matrix:

over one billion entries



] The Singular Value Decomposition (SVD)

The formal definition:

Given any m x n matrix A, one can decompose it as:

o: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

2: diagonal matrix containing 0; = 0, = ... = 0, the singular values of A.

Important: Keeping top k singular vectors provides "best” rank-k

approximation fo A (w.r.t. Frobenius norm, spectral norm, etfc.):
Ay = argmin{ ||A-X]|, ¢ : rank(X) < k }.




Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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» Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the "out-of-Africa” hypothesis.

 Mexican population seems out of place: we move to the top three PCs.



EigenSNP 3

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet
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Not altogether satisfactory: the principal components are linear combinations
of all SNPs, and - of course - can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.



‘ Applications in: Astronomy

Szalay (2012, MMDS)

CMB Surveys (pixels)

= 1990 COBE 1000
= 2000 Boomerang 10,000
= 2002 CBI 50,000
= 2003 WMAP 1 Million
= 2008 Planck 10 Million

Angular Galaxy Surveys (obj)

« 1970 Lick 1M
« 1990 APM 2M
« 2005 SDSS 200M
« 2011 P31 1000M
« 2020 LSST 30000M

Time Domain

« QUEST

« SDSS Extension survey
» Dark Energy Camera
 Pan-STARRS

« LSST...

Galaxy Redshift Surveys (obj)

« 1986 CfA 3500
« 1996 LCRS 23000
« 2003 2dF 250000
« 2008 SDSS 1000000
« 2012 BOSS 2000000

« 2012 LAMOST 2500000

“The Age of Surveys” — generate petabytes/year ...




‘ Galaxy properties from galaxy spectra

Szalay (2012, MMDS)
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) Galaxy dwersﬁry from PCA
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Issues with eigen-analysis

* Computing large SVDs: computational time

* In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 20 minutes.

» Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.)
1,200-by-450,000 (roughly, a full leave-one-out cross-validation experiment).

(e.g., Drineas, Lewis, & Paschou (2010) PLoS ONE)
« Selecting actual columns that “capture the structure” of the top PCs
* Combinatorial optimization problem; hard even for small matrices.
* Often called the Column Subset Selection Problem (CSSP).
* Not clear that such "good” columns even exist.

- Avoid "reification” problem of “interpreting” singular vectors!



) Applications in: Real Implementations

In RAM:
« Compute answers to 1 digit or 10 digits faster than LAPACK
* (TCS theory NOT directly relevant here - high-precision issues.)

For very large vector space analytics

 Small-scale data: model by graphs and matrices, and compute eigenvectors/
correlations

* Large-scale data: model with flat table and relational model, and compute with
join/select and other “counting” procedures

* (TCS theory NOT directly relevant here - communication issues)

Can we "bridge the gap”
* between TCS theory and numerical implementations

* between "vector-space computations” and "very large-scale analytics"?



)I Outline

* Background, motivation, and applications

* Algorithms (in RAM) for least-squares
approximation

* Algorithms (in RAM) for low-rank
approximation

* Implementation of L1 and L2 regression in
parallel and distributed environments



]I Outline

* Algorithms (in RAM) for least-squares
approximation



‘ Least Squares (LS) Approximation
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We are interested in over-constrained Lp regression problems, n >> d.

Typically, there is no x such that Ax = b.

Want to find the "best" x such that Ax = b.

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geomeftric interpretation: orthogonally project b onto span(A).



‘ Exact solution to LS Approximation

Cholesky Decomposition: 2y = ::{IEHR% b — Ax|]2
If A is full rank and well-conditioned, _ | |b B Ail |2

decompose ATA = RTR, where R is upper triangular, and

solve the normal equations: RTRx=ATb. Pr'ojec’rion of bon

QR Decomposition: the subspace spanned
by the columns of A

Slower but numerically stable, esp. if A is rank-deficient.
Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:

Most expensive, but best if A is very ill-conditioned.

ite A= T i e Xopr = A'b = -1 U™b. 2 _ 2_ — 2
Write A=USVT, in which case: xopr = A*b = VE-L,UTb z2 = ||b||2 ||AA b”z
hy r = ATb
Complexity is O(nd?) for all of these, but —
constant factors differ. \

Pseudoinverse
of A



] Modeling with Least Squares

Assumptions underlying its use:
* Relationship between "outcomes” and "predictors is (roughly) linear.
* The error term ¢ has mean zero.
* The error term ¢ has constant variance.

 The errors are uncorrelated.

* The errors are normally distributed (or we have adequate sample size to
rely on large sample theory).

Should always check to make sure these assumptions have not
been (to00) violated!



Statistical Issues and Regression Diagnostics

Model: b = Ax+¢ b = response; A()= carriers;
e = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0
and Var(e)=0°T), uncorrelated, normally distributed

Xopt = (ATA)'ATb  (what we computed before)

b'=Hb H = A(ATA)!AT = "hat" matrix
H;; - measures the leverage or influence exerted on b’ by b,
regardless of the value of b; (since H depends only on A)

e' =b-b'= (I-H)b vector of residuals - note: E(e')=0, Var(e')=02(I-H)

Trace(H)=d Diagnostic Rule of Thumb: Investigate if H; > 2d/n
H=UUT U is from SVD (A=UZVT), or any orthogonal matrix for span(A)

H. = |U®|,2 leverage scores = row "“lengths” of spanning orthogonal matrix
i 2 9 9 p 9 9



A "classic" randomized algorithm (lof3)

=

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Over-constrained least squares (n x d matrix A,n >>d)

» Solve:  Z = min ||Az — b||
xre R4

 Solution: ilfopt _ A]Lb

Randomized Algorithm: .
*Forallie{l,.,n} compute Pi = EHU(z)Hg

« Randomly sample O(d log(d)/ €) rows/elements fro A/b, using
{p;} as importance sampling probabilities.

* Solve the induced subproblem: 7., = (SA)TSb



‘ A "classic" randomized algorithm (20f3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Theorem: Let v = ||[UaUAb||2/|[b]]2 . Then:

" [AZope — bl[2 < (1 +€)2
" @opt = Foptll2 < Ve (R(AVY2 = 1) |[zopells

This ndive algorithm runs in O(nd?) time

* But it can be improved !l

This algorithm is bottleneck for Low Rank Matrix Approximation
and many other matrix problems.



] A "classic" randomized algorithm (30f3)

Drineas, Mahoney, and Muthukrishnan (2006, SODA & 2008, SIMAX)

Sufficient condition for relative-error approximation.

For the “preprocessing” matrix X:

oz (XUy) > 1/\/5; and
\|U}{X”—’“Xblug < eZ?/2,

« Important: this condition decouples the randomness from the

linear algebra.

« Random sampling algorithms with leverage score probabilities
and random projections satisfy it



] Theoretically "fast” algorithms

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007); Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011)

Algorithm 1: Fast Random Projection Algorithm for LS Problem

* Preprocess input (in o(nd?)time) with Fast-JL transform, uniformizes
leverage scores, and sample uniformly in the randomly-rotated space

* Solve the induced subproblem
Algorithm 2: Fast Random Sampling Algorithm for LS Problem

« Compute 1+¢ approximation to statistical leverage scores (in o(nd?)
time), and use them as importance sampling probabilities

* Solve the induced subproblem

Main theorem: For both of these randomized algorithms, we get:

* (1z¢)-approximation
+ in roughly O (ndlog (dlog(n)/€) + d*log(n)log(dlogn)/e) time!



. Random Projections (1 of 4):
‘ The Johnson-Lindenstrauss lemma

For every set S of m points in R” and every € > 0, there exists a mapping
f:R" — R*, where s = O (log m/ 62), such that for all points u € S,

(L =e) flully < IF ()l < (X 4€) Jull,

holds with probability at least 1 — 1/m?.

Johnson & Lindenstrauss (1984)
* We can represent S by an m-by-n matrix A, whose rows correspond fo points.
- We can represent all f(u) by an m-by-s A.
» The "mapping” corresponds to the construction of an n-by-s matrix Q and computing
A=AQ



. Random Projections (2 of 4):
, Different constructions for Q matrix

"Slow"” Random Projections (=O(nd?) time to implement in RAM model):
-+ JL (1984): random k-dimensional space

* Frankl & Maehara (1988): random orthogonal matrix

* DasGupta & Gupta (1999): random matrix with entries from N(0,1), normalized

* Indyk & Motwani (1998): random matrix with entries from N(O,1), normalized

* Achlioptas (2003): random matrix with entries in {-1,0,+1}, normalized

« Alon (2003): optimal dependency on n, and almost optimal dependency on ¢

"Fast” Random Projections (o(nd?) time to implement in RAM model):
* Ailon and Chazelle (2006,2009); Matousek (2008); and many variants more recently.



' Random Projections (3 of 4):
Fast Johnson-Lindenstrauss Transform

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

P e RSX" +1 w.p. (1/2
s = O (logm/e?) PZ] — \/a X 0 ,w.p. 1-q
q = O (10g2 Wl) _1 ’W.I). (1/2
H e R"™" Normalized Hadamard-Walsh transform matrix
(if nis not a power of 2, add all-zero columns to A; or use other
related Hadamard-based methods)
D Rn Xn ) ) )
< Diagonal matrix with D;; set to +1 or -1 w.p. 1/2.
1 ~ 1
R=(PHD) e R"*® ——— A= —AR

NG

* P can also be a matrix representing the "uniform sampling” operation.

* In both cases, the O(n log (n)) running time is computational bottleneck.



. Random Projections (4 of 4):
‘ Randomized Hadamard preprocessing

Facts implicit or explicit in: Ailon & Chazelle (2006), Ailon and Liberty (2008), and Matousek(2008).

Let H, be an n-by-n deterministic Hadamard matrix, and
Let D,, be an n-by-n random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

Fact 1: Multiplication by H,D, doesn't change the solution:
|Az —b||2 = ||H,D,,Ax — H, D, bl|s = ||[HAx — Hb||5

(since H, and D, are orthogonal matrices).

Fact 2: Multiplication by H,D, is fast - only O(n log(r)) time, where r is the number of
elements of the output vector we need to "ftouch”.

Fact 3: Multiplication by H,D, approximately uniformizes all leverage scores:.

dlogn
Uiy sll2 = [[(HUA)(iy||2 < O ( )

n



. Fast approximation of statistical
] leverage and matrix coherence (1 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Simple (deterministic) algorithm:
« Compute a basis Q for the left singular subspace, with QR or SVD.
« Compute the Euclidean norms of the rows of Q.

Running time is O(nd?), if n > d, O(on-basis) time otherwise.

We want faster!
« o(nd?) or o(on-basis), with no assumptions on input matrix A.
* Faster in terms of flops of clock time for not-obscenely-large input.

* OK to live with e-error or to fail with overwhelmingly-small & probability



. Fast approximation of statistical
] leverage and matrix coherence (2 of 4)
Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

View the computation of leverage scores i.t.o an
under-constrained LS problem

Recall (Aisnxd, n»d):
tTA—eAl? — zl =¢AAT

. IMin
xeRn

But:

© pi = |leUall3 = ||leUaUL |5 = ||e; AAT|[3

Leverage scores are the norm of a min-length solution
of an under-constrained LS problem!



. Fast approximation of statistical
] leverage and matrix coherence (3 of 4)

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Pi = (AAT)(z')H%
~ |[(A(Q14)")5]|5 where Q is a fast SRHT
~ (A(QlA)TQQ)(Z‘)”% where (25 is Rand Proj

* This is simpler than for the full under-constrained LS solution since only
need the norm of the solution.

* This is essentially using R from QR of subproblem as preconditioner for
original problem.

*Te., Q Aisarandomized "sketch” of A; QR = Q; A is QR decomposition
of this sketch; and evaluate row norms of X= A Rl but need Q,, a second
projection, fo make it “fast.”



Fast approximation of statistical
leverage and matrix coherence (4 of 4)

=

Drineas, Magdon-Ismail, Mahoney, and Woodruff (2011, arXiv)

Theorem: Given an n x d matrix A, with n>> d, let P, be the
projection matrix onto the column space of A. Then , thereisa
randomized algorithm that w.p. > 0.999:

 computes all of the n diagonal elements of P, (i.e., leverage
scores) to within relative (1z¢) error;

« computes all the large off-diagonal elements of P, to within
additive error;

* runs in o(nd?)* time.

*Running time is basically O(n d log(n)/¢), i.e., same as DMMS fast
randomized algorithm for over-constrained least squares.

Note: Clarkson-Woodruff (2012) can compute these in “input sparsity” time!



] Practically "fast" implementations (1of2)

Use "randomized sketch” to construct preconditioner
for traditional iterative methods:

« RTO8: preconditioned iterative method improves 1/¢
dependence to log(1/¢), important for high precision

» AMTI10: much more detailed evaluation, different Hadamard-
type preconditioners, etc.

« CRT11: use Gaussian projections to compute orthogonal
projections with normal equations

* MSMI11: use Gaussian projections and LSQR or Chebyshev semi-
iterative method to minimize communication, e.qg., for parallel
computation in Amazon EC2 clusters!



] Practically "fast"” implementations (20f2)

Avron, Maymounkov, and Toledo 2010:

* Blendenpik "beats Lapack's direct dense least-squares
solver by a large margin on essentially any dense tall matrix”

« Empirical results "show the potential of random sampling
algorithms and suggest that random projection algorithms
should be incorporated into future versions of Lapack."



]I Outline

* Algorithms (in RAM) for low-rank
approximation



) Low-rank approximation algorithms

Many randomized algorithms for low-rank matrix
approximation use extensions of these basic least-
squares ideas:

* Relative-error random sampling CX/CUR algorithms (DMMO7)
* Relative-error random projection algorithms (S08)
* Column subset selection problem (exactly k columns) (BMDO9)

* Numerical implementations, with connections to interpolative
decomposition (LWMRTO7 WLRTO8 MRT11)

* Numerical implementations for slower spectral decay (RSTO9)



‘ Recall, SVD decomposes a matrix as ...

T
4 =1 Y ( = ) ' ( v ) The SVD has very strong
optimality properties., e.g.

the matrix U, is the "best
in many ways.

n

m X p pXp p XN

/

Top k left singular vectors

» Note that, given U,, the best X = U,TA = ZVT.
> SVD can be computed fairly quickly.
> The columns of U, are linear combinations of up to all columns of A.



‘ CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

Carefully

chosen X
A ~| ¢ ( X )/

Goal: choose actual columns C to make
(some norm) of A-CX small.

/

¢ columns of A

Why?

If A is asubject-SNP matrix, then selecting representative columns is
equivalent to selecting representative SNPs to capture the same structure as
the top eigenSNPs.

If A is a frequency-image astronomical matrix, then selecting representative
columns is equivalent to selecting representative frequencies/wavelengths.

Note: To make C small, we want ¢ as small as possible!



] CX (and CUR) matrix decompositions

Mahoney and Drineas (2009, PNAS); Drineas, Mahoney, and Muthukrishnan (2008, SIMAX)

Easy to see optimal X = C*A.

A ~| © X Hard to find good columns (e.g., SNPs)
of A to include in C.

This Column Subset Selection Problem
7 (CSSP), heavily studied inN LA, is a

hard combinatorial problem.
¢ columns of A

Two issues are connected

* There exist (1+€) "good" columns in any matrix that contain information about
the top principal components: ||A-CX| | < (1+€) ||A-A.llr

* We can identify such columns via a simple statistic: the leverage scores.

* This does not immediately imply faster algorithms for the SVD, but, combined
with random projections, it does!

* Analysis (almost!) boils down to understanding least-squares approximation.



Low-rank structural condition

Boutsidis, Mahoney and Drineas (2009, SODA)

e Structural condition underlying the randomized low-rank algo-
rithm. If VkTZ has full rank, then for v € {2, F'}, i.e., for both the
Frobenius and spectral norms,

2
1A= Paz Al < 1A= A2 + | |S0 (VEL2) (VT 2)]

1 74

holds, where P4z is a projection onto the span of AZ, and where the
dagger symbol represents the Moore-Penrose pseudoinverse.



] Using this matrix structural condition

Randomly sampling exactly k columns

* Boutsidis, Mahoney, & Drineas 2008

Fast (1+€)-low-rank projection algorithm
* Sarlos 2006

Project to I=k+p dimensions, for small constant p
« Wolfe, Liberty, Rokhlin, Tygert 2008

Couple with q steps of power iteration
* Rokhlin,Szlam, Tygert 2009

Decoupling the randomization from the linear algebra---much easier to couple
TCS theory with existing NLA & scientific computing methods!/



Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africa

= Europe

Asia

America

Africa

Europe

Asia

America

6 . 7 . 8 . 13 .14 . 15 .16 .17. 18 1920 .2122

top 30 PCA-correlated SNPs

[ e

PCA-scores

SNPs by chromosomal order

Paschou et al (2007; 2008) PLoS Genetics
Paschou et al (2010) J Med Genet
Drineas et al (2010) PLoS One

Javed et al (2011) Annals Hum Genet



An interesting observation

Sampling w.r.t. to leverage scores results in redundant columns being selected.

(Almost) identical columns have (almost) the same leverage scores and thus might be all selected, even
though they do not really add new “information.”

First Solution:

Apply a "redundancy removal” step, e.g., a deterministic CSSP algorithm on the sampled columns.
Very good empirically, even with "naive” CSSP algorithms (such as the pivoted QR factorization).

Conjecture:

The "leverage scores” filter out relevant columns, so deterministic methods do a better job later.
Paschou et al. (2007,2008) for population genetics applications; and Boutsidis et al. (2009, 2010) for theory.

Second Solution:

Apply clustering to the sampled columns and then return a representative column from each cluster.

Very good empirically, since it permits clustering of SNPs that have similar functionalities and thus allows
better understanding of the proposed ancestry-informative panels.



stronomical L

‘ Ranking A

INDEX DEFINITIONS

Name Index Bandp Pseud Units M. Error! Notes

01 CN, 4143.375-4178.375  4081.375-4118.875 mag CN, Fel 0.021
4245.375-4285.375

02 CN; 4143.375-4178.375  4085.125-4097.625 mag CN, Fel 0.023 2
4245.375-4285.375

03 Cad227  4223.500-4236.000 4212.250-4221.000 A Cal,Fel, Fell 027 2
4242.250-4252.250

04 G4300 4282.625-4317.625 4267.625-4283.875 A  CH, Fel 0.39
4320.125-4336.375

05 Fe4383 4370.375-4421.625 4360.375-4371625 A Fel, Till 053 2
4444.125-4456.625

06 Cad4455  4453.375-4475.875 4447.125-4455.875 A Cal,Fel,Nil, 025 2
4478.375-4493.375 TilLMnI, VI

07  Fed4531 4515.500-4560.500  4505.500-4515.500 A Fel, Til, 042 2
4561.750-4580.500 Fell, Ti Il

08  Fe4668 4635.250-4721.500 4612.750-4631.500 A Fel, Til,Crl, 064 2
4744.000-4757.750 MgI,Nil, C;

09 Hp 4847.875-4876.625 4827.875-4847.875 A HB, Fe 1 022 3
4876.625-4891.625

10 Fe5015 4977.750-5054.000  4946.500-4977.750 A FeNiI, Til 046 23
5054.000-5065.250

11 Mg 5069.125-5134.125  4895.125-4957.625 mag MgH, Fel, Nil 0.007 3
5301.125-5366.125

12 Mg, 5154.125-5196.625 4895.125-4957.625 mag MgH, Mg b, 0.008 3
5301.125-5366.125 Fel

13 Mgb 5160.125-5192.625 5142.625-5161.375 A  Mgb 023 3
5191.375-5206.375

14 Fe5270 5245.650-5285.650  5233.150-5248.150 A Fel Cal 028 3
5285.650-5318.150

15  Fe5335 5312.125-5352.125  5304.625-5315.875 A Fel 026 3
5353.375-5363.375

16  Fe5406 5387.500-5415.000 5376.250-5387.500 A Fel Crl 020 23
5415.000-5425.000

17 Fe5709  5698.375-5722.125 5674.625-5698.375 A Fel, Nil, Mg I 018 2
5724.625-5738.375 CrLVI

18  Fe5782  5778.375-5798.375 5767.125-5777.125 A Fel, Crl 020 2
5799.625-5813.375 Cul, Mgl

19 NaD 5878.625-5911.125  5862.375-5877.375 A Nal 0.24
5923.875-5949.875

20 TiO, 5938.375-5995.875 5818.375-5850.875 mag TiO 0.007
6040.375-6105.375

21 TiO; 6191.375-6273.875 6068.375-6143.375 mag TiO 0.006
6374.375-6416.875

(Worthey et al. 94;
Trager et al. 98)

ine Indices

DH4OOO
Ho

A
G4300
HéF
H7A
H‘yF
l\/Ig2
Mg,
CN2
CN1
TIOZ
C24668
Fe5015
l\/Ig1

HE
Fe4383
NaD
Fe5270
Fe4531 &
TiO1 —
Ca4227 =
Fed335
Ca4455 =
Fe5709
Fe5406
Fe5782

Subspace
Analysis of
Spectra Cutouts:

-Othogonality
-Divergence
~-Commonality

0.00

0.02

0.04 0.06 0.08 0.10
Leverage—Score—Sum

(Yip et al. 2012 in prep.)



Identifying new line indices objectively

Szalay (2012, MMDS)
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' New Spectral Regions (M2;k=5;

‘ overselecting 10X; combine if <30A)

Szalay (2012, MMDS)

Old Lick indices are “"ad hoc"

New indices are "objective"
» Recover atomic lines

* Recover molecular bands

» Recover Lick indices

« Informative regions are
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More recent CSSP-based improvements

Can get (1+€)-approximation bound with s=3k/¢ columns
* Boutsidis, Drineas, & Magdon-Ismail (FOCS 2011)
« Uses ideas from Batson, Spielman, & Srivastva (STOC 2009)

A (1+€)-approximation needs at least k/e columns
* Deshpande & Vempala (RANDOM 2006)

Almost asymptotically optimal bound
* Guruswami & Sinop (SODA 2012)

* Both deterministic and randomized algorithms

Application to column-based reconstruction in QIP
* Guruswami & Sinop (SODA 2011)



* Implementation of L1 and L2 regression in
parallel and distributed environments



] Parallel environments and how they scale

Shared memory
* cores: [10, 103]*
* memory: [100GB, 100TB]

Message passing

* cores: [200, 105]**

* memory: [1TB, 1000TB]

« CUDA cores: [5 x 104, 3 x 106]***
« GPU memory: [50068B, 20TB]

MapReduce

* cores: [40, 105]F***

* memory: [2406GB, 100TB]

* storage: [100TB, 100PBT*****

Distributed computing

* cores: [-, 3 x 103 F**>***



) Traditional algorithms

For L2 regression:

« direct methods: QR, SVD, and normal equation (O(mn? + n?) time)
* Pros: high precision & implemented in LAPACK
* Cons: hard to take advantage of sparsity & hard to implement in
parallel environments

* /terative methods. CGLS, LSQR, etc.
* Pros: low cost per iteration, easy to implement in some parallel
environments, & capable of computing approximate solutions
* Cons: hard to predict the number of iterations needed

For L1 regression:

* linear programming

* interior-point methods (or simplex, ellipsoid? methods)
* re-weighted least squares

* first-order methods



Two important notions:
leverage and condition

Statistical leverage. (Think: eigenvectors & low-precision solutions.)

» The statistical leverage scores of A (assume m>>n) are the diagonal
elements of the projection matrix onto the column span of A.
 They equal the L2-norm-squared of any orthogonal basis spanning A.
» They measure:
« how well-correlated the singular vectors are with the canonical basis
 which constraints have largest “influence" on the LS fit
« a notion of “coherence” or “outlierness”

« Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues & high-precision solutions.)

» The L2-norm condition number of A is (A) = 6, (A)/6in(A).
* k(A) bounds the number of iterations

« for ill-conditioned problems (e.g., k(A) = 10 >> 1), convergence speed is slow.
« Computing k(A) is generally as hard as solving the LS problem.

These are for the L2-norm. Generalizations exist for the L1-norm.



Condition number, well-conditioned
bases and leverage scores for L1 norm

=

(Dasgupta, Drineas, Harb, Kumar, Mahoney (2008); Clarkson, Drineas, Magdon-Ismail, Mahoney, Meng, Woodruff (2012))

Convenient to formulate L1 regression in what follows as:
Min,p, ||AX]]; s.1. cTx=1

* Def: A matrix U e R™nis (o, B, p = 1)-conditioned if ||U||;<a and
|1x]].. < B [|Ux||{, forall x; and LI-well-conditioned if a,p = poly(n).

* Def: The L1 leverage scores of an m x n matrix A, with m > n, are the
L1-norms-squared of the rows of any L1-well-conditioned basis of A.
(Only well-defined up to poly(n) factors.)

« Def: The LI-norm condition number of A, denoted by k,(A), is:

KI(A) = o-l,max(A) / c’l,min(A) .
= ( Max |21 [HAX] 1) 7 (CMing 221 THAX] )

Note that this implies:
01 min(A) X1 ]2 < [AX]]; € 01 pax(A)IX]], , forall x € R™.



] Meta-algorithm for L2 regression

(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1. Using the L2 statistical leverage scores of A, construct an importance

,,,,,

,,,,,

construct a subproblem.
3: Solve the L2-regression problem on the subproblem.

Naive implementation: 1+ € approximation in O(mn?/¢€) time. (Ugh.)
“Fast” O(mn log(n)/¢€) in RAM if
* Hadamard-based projection and sample uniformly

* Quickly compute approximate leverage scores
"High precision” O(mn log(n)log(1/¢)) in RAM if:
« use the random projection/sampling basis to construct a preconditioner

Question: can we extend these ideas to parallel-distributed environments?



] Meta-algorithm for L1 (& Lp) regression

(Clakson 2005, DDHKM 2008, Sohler and Woodruff 2011, CDMMMW 2012, Meng and Mahoney 2012.)

1. Using the L1 statistical leverage scores of A, construct an importance

,,,,,

,,,,,

construct a subproblem.
3: Solve the L1-regression problem on the subproblem.

Naive implementation: 1+ € approximation in O(mn>/¢) time. (Ugh.)
“Fast” in RAM if

* we perform a fast "L1 projection” to uniformize them approximately

« we approximate the L1 leverage scores quickly
“High precision” in RAM if:
* we use the random projection/sampling basis to construct an L1 preconditioner

Question: can we extend these ideas to parallel-distributed environments?



LSRN: a fast parallel implementation

=

Meng, Saunders, and Mahoney (2011, arXiv)

A parallel iterative solver based on normal random
projections

» computes unique min-length solution to min, ||Ax-b||,
« very over-constrained or very under-constrained A

* full-rank or rank-deficient A

* A can be dense, sparse, or a linear operator

- easy to implement using threads or with MPI, and scales well
in parallel environments



LSRN: a fast parallel implementation

Meng, Saunders, and Mahoney (2011, arXiv)

Algorithm:
* Generate a yn x m matrix with i.i.d. Gaussian entries G
*Let Nbe Rtor V=!from QR or SVD of GA

« Use LSQR or Chebyshev Semi-Iterative (CSI) method to
solve the preconditioned problem min, ||ANy-b| |,

Things to note:
* Normal random projection: embarassingly parallel
* Bound «(A): strong control on number of iterations

* CSI particularly good for parallel environments: doesn't have
vector inner products that need synchronization b/w nodes



LSRN: Solving real-world problems

Meng, Saunders, and Mahoney (2011, arXiv)

=

TaeLe 6.2
Real-world problems and corresponding running times in seconds. DGELSD doesn't take ad-
wantage of sparsity. Though MATLAB's backslash (SuiteSparse(QR) may not give the min-length
solutions to rank-deficient or under-determined problemas, we still report is running times. Blenden-
pik either dosan't apply to rank-deficient problemas or runs owt of memory (OOM). LSRN's running
time 33 basically determined by the problem size and the sparsity.

matrix m n nnz rank | cond DGELSD A\b Blendenpik | L3R¥
landmark || 71952 | 2704 | 1.1oe6 | 2671 | 1.0e8 20.54 0.6408" - 17.55
raild2ad 4284 1.1c6 1.1a7 full | 400.0 > 3600 1.203* ooM 136.0
toing_1 o5 Tab 21a7 | 925 - Ga0.6 1067 - a6.02
toing .2 1000 206 4.2a7 981 - 1201 > 3600° - 72.05
toing 3 1018 3ab 6.3a7 1016 - 2084 > 3600* - 1111
toing 4 1019 dal Bda7 1018 - 2045 > 3600* - 147.1
toing & 1023 b 1.00e8 | full - > 3600 > 3600° ooM 188.5




LSQR

Paige and Saunders (1982)

=

Code snippet (Python):

u = A.matvec(v) — alphaxu
beta = sqrt(comm. allreduce(np.dot(u,u)))

v = comm. allreduce (A.rmatvec(u)) — betaxv

Cost per iteration:
@ two matrix-vector multiplications

@ two cluster-wide synchronizations



‘ Chebyshev semi-iterative (CSI)

Golub and Varga (1961)

The strong concentration results on ™™ (AN) and c™"(AN) enable use
of the CS method, which requires an accurate bound on the extreme
singular values to work efficiently.

Code snippet (Python):

v = comm.allreduce(A.rmatvec(r)) — betaxv
X += alphaxv
r —— alphaxA.matvec(v)

Cost per iteration:
@ two matrix-vector multiplications

@ one cluster-wide synchronization



LSRN: on Amazon EC?2 cluster

Meng, Saunders, and Mahoney (2011, arXiv)

TaeLE 6.3
Teat problemas on the Amazon ECE cluster and corresponding running times in zeconds. When
we enlarge the problem scale by a factor of 10 and increasze the number of cores accordingly, the

running fime only increases by a factor of 50%. It shows LSEN's good scalability. Though the CS
method takes more iterations, it i faster than LSQR by saving communication coast.

solver Nicdes | np | matrix m n nnz | Nuar | Tiee | Trorm
tomnwy LsQR | 2 | 4 | wmimet | 1020 | aes | maer | B0 ] UL 700
L;'::i‘;'{ggn 5 | 10 | tnimg10 | 1024 | 1e7 | 2.1e8 1:46 23:?; ;i’f:g
L;‘;:i;’{ggpt 10 | 20 | tnimg 20 | 1024 | 27 | 4.2e8 18046 ’;'3273 gzg
LSRN w, CS 106 | 102.5 | 255.6

20 40 | tnimg 40 | 1024 | 4e7 | 8.4e8 a4 1372 | 200.2

LSRN w/ LSQR



{1-norm preconditioning via oblivious projections

Find an oblivious (i.e., independent of A) projection matrix
N e RO(nlogn)xm o, h that

[Ax][s < INAx]ly < &nllAx]lL,  ¥x.

Compute R = qr(MA).
Then, g
Iyl < IART Yl < O(n"2log 2 n)llyfl2, V.

Therefore, AR~ is £1-well-conditioned: k1(AR™1) = O(n'/2log!? n - kn).

Constructions for [T time K
Cauchy (sohler and Woodnff 2011) O(mn?logn)  O(nlog n)
Fast Cauchy (Clarkson, Drineas, Magdon-Ismail, 2 2
Mahoney, Meng, and Woodruff 2012) O(mn IOg n) O(n IOg n)




Evaluation on large-scale /1 regression problem (1 of 2).

x = x*l1/Ix* Ml lIx = x*ll2/1Ix* M2 lIx = x*{loo/ lIX* [l oo

CT (Cauchy) | [0.008, 0.0115] [0.00895, 0.0146]  [0.0113, 0.0211]

GT (Gaussian) | [0.0126, 0.0168]  [0.0152, 0.0232]  [0.0184, 0.0366]
NOCD [0.0823, 22.1] [0.126, 70.8] [0.103, 134]
UNIF 0.0572, 0.0051]  [0.089, 0.166] [0.129, 0.254]

Table: The first and the third quartiles of relative errors in 1-, 2-, and co-norms
on a data set of size 101 x 15. CT clearly performs the best. (FCT performs
similarly.) GT follows closely. NOCD generates large errors, while UNIF works but
it is about a magnitude worse than CT.



Evaluation on large-scale /1 regression problem (2 of 2).
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Figure: The first (solid) and the third (dashed) quartiles of entry-wise absolute
errors on a data set of size 101 x 15. CT clearly performs the best. (FCT
performs similarly.) GT follows closely. NOCD and UNIF are much worse.



{1-norm preconditioning via ellipsoidal rounding

Find an ellipsoid £ = {x|xT E~1x < 1} such that

1
—£cc={x||Adh<1}CE
vl

Then we have
lyll2 < |AEY?y |1 < Ka|lyll2, V.

time K1 passes
Léwner-John ellipsoid (exists) n1/?
Clarkson 2005 (tovssz 1086) | O(mn® log m) n multiple
Meng and Mahoney 2012 | O(mn® log m) 2n multiple
O(mn?log ) 2n° single
O(mnlog %) O(n*/? log'/? n)  single




Fast ellipsoidal rounding

@ Partition A into sub-matrices A1, Ay, ..., Ap of size O(n®logn) x n.
@ Compute A; € RO(nlogn)xn _ FILT(A;), fori=1,..., M.

© Compute an ellipsoid £, which gives a 2n-rounding of
~ M ~
C = {x| Xiz1 [l Aix]|2 < 1}.
— By a proper scaling, &€ gives an O(n°/? log1/? n)-rounding of C.

Can use this to get a “one-pass conditioning’” algorithm!



A MapReduce implementation

@ Inputs: A € R™*" and k1 such that
Ix[l2 < |Ax][1 < Kallx|l2,  Vx,

c € R", sample size s, and number of subsampled solutions n, .

o Mapper:
@ For each row a; of A, let p; = min{s| a;||1/(k1n*/?), 1}.
@ For k=1,...,ny, emit (k,a;/pj) with probability p;.

e Reducer:

Q@ Collect row vectors associated with key k and assemble Ay.
@ Compute X = argmin.r,_; ||Axx||1 using interior-point methods.
© Return Xg.

Note that multiple subsampled solutions can be computed in a single pass.



lteratively solving

If we want to have a few more accurate digits from the subsampled
solutions, we may consider iterative methods.

passes extra work per pass
subgradient (Clarkson 2005) O(n*/e%)
gradient (Nesterov 2000) O(ml/? /€)

e|||p50|d (Nemirovski and Yudin 1972)

inscribed ellipsoids
(Tarasov, Khachiyan, and Erlikh 1988)

C')(n2 log(x1/€))
O(nlog(ky/€))

O(n"/? log n)




The Method of Inscribed Ellipsoids (MIE)

MIE works similarly to the bisection method, but in a higher dimension.

It starts with a search region S = {x | Sx < t} which contains a ball of
desired solutions described by a separation oracle. At step k, we first
compute the maximum-volume ellipsoid &, inscribing Si. Let y, be the
center of £. Send yi to the oracle, if y, is not a desired solution, the
oracle returns a linear cut that refines the search region Sy — Sk1.

Why do we choose MIE?
@ Least number of iterations

@ Initialization using all the subsampled solutions

@ Multiple queries per iteration



Constructing the initial search region

Given any feasible &, let f = ||A%||; and & = ATsign(A%). we have
x* = Rll2 < JJAG* = )llx < [|AX*|1 + [|AR]|x < 2F,
and, by convexity,

Al > [|AR]l + &7 (x* - %),
which implies 7 x* < gT%.

Hence, for each subsampled solution, we have a hemisphere that contains
the optimal solution.

We use all these hemispheres to construct the initial search region Sp.



Computing multiple f and g in a single pass

On MapReduce, the cost of input/output may dominate the cost of the
actual computation, which requires us to design algorithms that could do
more computations in a single pass.

o A single query:
f(x) = |Ax|l1, &(x) = ATsign(Ax).
@ Multiple queries:
F(X) = sum(]AX],0), G(X)= ATsign(AX).

An example on a 10-node Hadoop cluster:
o A:10® x 50, 118.7GB.
@ A single query: 282 seconds.

@ 100 queries in a single pass: 328 seconds.



MIE with sampling initialization and multiple queries
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MIE with sampling initialization and multiple queries
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Figure: Comparing different MIEs on an ¢; regression problem of size 5.24e9 x 15.



) Dealing with sparse matrices

Many matrices are "sparse,” i.e., have very few nonzeros:

« Scientific computing - nonzeros often structured, e.g., can apply
fast to arbitrary vector

* Informatics graphs - nonzeros very unstructured, e.g., can have no
good large partitions

Problem: Projections, etc. typically densify matrices, so can
perform very poorly on sparse matrices.

Solution 1: If the sparse matrix is "structured,” can often quickly
apply a dense Gaussian projection.

Solution 2: Try to get embeddings and/or solution to regression,
etc. problems in O(nnz(A)) + poly(n/€)) time, if m>>n, i.e., “input
sparsity” time.



) Dealing with sparse matrices, cont

Clarkson and Woodruff (arXiv 2012)

Thm: (Clarkson&Woodruff-12) Can find L2 embedding matrix
and compute solution to L2 regression, low-rank approximation,
leverage score computation, etfc., in input sparsity time.

Pf: Decompose space into high-leverage and low-leverage parts.
High-leverage rows are heavy hitters.

Extension 1: (Meng-Mahoney12) Don't need leverage decomposition for
L2; improved direct proof that uses Gershgorin discs.

Extension 2a: (MM12) Use CW12 decomposition ideas extend to Lp
input-sparsity time embeddings and apply to Lp regression.

Extension 2b: (CW12) Can get Lp regression with direct proof with L2
ideas and L1-FCT.

Fruitful interplay between TCS data streaming and NLA structural ideas; see David's talk for more details!



) Future directions?

Lots of them:

 Other traditional NLA and large-scale optimization problems
* Parallel and distributed computational environments

* Sparse graphs, sparse matrices, and sparse projections

* Laplacian matrices and large informatics graphs

 Randomized algorithms and implicit regularization

“New data and new problems are forcing us to reconsider the
algorithmic and statistical basis of large-scale data analysis.”



) For more info ...

Two very good recent reviews:

* "Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions,” by N.
Halko, P. G. Martinsson, J. Tropp, SIAM Review, 53(2), 2011.
(Also available at arXiv:0909.4061).

* "Randomized Algorithms for Matrices and Data,”" M. W.
Mahoney, NOW Publishers’ Foundations and Trends in

Machine Learning series, 2011. (Also available at arXiv:
1104.5557).

And no doubt more to come ...



