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Models, curve fitting, and data analysis
In MANY applications (in statistical data analysis and scientific

computation), one has n observations (values of a dependent
variable y measured at values of an independent variable t):

Model y(t) by a linear combination of d basis functions:

A is an n x d “design matrix” with elements:

In matrix-vector notation:



Many applications of this!
• Astronomy: Predicting the orbit of the asteroid Ceres (in 1801!).

Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of “least squares optimization” and runs in O(nd2) time!

• Bioinformatics: Dimension reduction for classification of gene expression microarray data.

• Medicine: Inverse treatment planning and fast intensity-modulated radiation therapy.

• Engineering: Finite elements methods for solving Poisson, etc. equation.

• Control theory: Optimal design and control theory problems.

• Economics: Restricted maximum-likelihood estimation in econometrics.

• Image Analysis: Array signal and image processing.

• Computer Science: Computer vision, document and information retrieval.

• Internet Analysis: Filtering and de-noising of noisy internet data.

• Data analysis: Fit parameters of a biological, chemical, economic, social, internet, etc. model
to experimental data.



Large Graphs and Data at Yahoo

Explicit: graphs and networks
Web Graph

Internet

Yahoo! Photo Sharing (Flickr)

Yahoo! 360 (Social network)

Implicit: transactions, email, messenger
Yahoo! Search marketing

Yahoo! mail

Yahoo! messenger

Constructed: affinity between data points
Yahoo! Music

Yahoo! Movies

Yahoo! Etc.









Least-norm approximation problems

Recall a linear measurement model:

A common optimization problem:

Let           ,

• then                                           is the “best” estimate of     .

• then         is the point in           “closest” to     .



Norms of common interest

Least-squares approximation:

Chebyshev or mini-max approximation:

Sum of absolute residuals approximation:

Let:                                    denote the vector of residuals.



Lp norms and their unit balls

Recall the Lp norm for               :

Some inequality relationships include:



Lp regression problems

We are interested in over-constrained Lp regression problems, n >> d.

Typically, there is no x such that Ax = b.

Want to find the “best” x such that Ax ≈ b.

Lp regression problems are convex programs (or better!).

There exist poly-time algorithms.

We want to solve them faster!



Solution to Lp regression

For p=2, Least-squares approximation (minimize ||Ax-b||2):

For p=∞, Chebyshev or mini-max approximation (minimize ||Ax-b||∞):

For p=1, Sum of absolute residuals approximation (minimize ||Ax-b||1):

Lp regression can be cast as a convex program for all                    .



Solution to L2 regression

Cholesky Decomposition:
If A is full rank and well-conditioned,

decompose ATA = RTR, where R is upper triangular, and

solve the normal equations: RTRx=ATb.

QR Decomposition:
Slower but numerically stable, esp. if A is rank-deficient.

Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.

Write A=UΣVT, in which case: xOPT = A+b = VΣ-1
kUTb.

Complexity is O(nd2) for all of these, but
constant factors differ.

Projection of b on
the subspace

spanned by the
columns of A

Pseudoinverse
of A



Questions …

Approximation algorithms:
Can we approximately solve general Lp regression qualitatively faster
than existing “exact” methods?

Core-sets (or induced sub-problems):

Can we find a small set of constraints s.t. solving the Lp regression on
those constraints gives an approximation?

Generalization (for machine learning):
Does the core-set or approximate answer have similar generalization
properties to the full problem or exact answer? (Still open!)



Overview of Five Lp Regression Algorithms

Sarlos (FOCS06)o(nd2)(1+ε)-approxp=2ProjectionAlg. 3
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Sampling
(core-set)

Sampling

Projection

Sampling
(core-set)

Dasgupta, Drineas, Harb,
Kumar, Mahoney (submitted)

O(nd5)
+o(“exact”)

p ε [1,∞)Alg. 5

DMMS07o(nd2)p=2Alg. 4

“obvious”O(nd2)p=2Alg. 2

Drineas, Mahoney,
Muthukrishnan (SODA06)

O(nd2)p=2Alg. 1

Note: Ken Clarkson (SODA05) gets a (1+ε)-approximation for L1 regression in O*(d3.5/ε4) time.

He preprocessed [A,b] to make it “well-rounded” or “well-conditioned” and then sampled.



Algorithm 1: Sampling for L2 regression

Algorithm

1. Fix a set of probabilities pi, i=1…n,
summing up to 1.

2. Pick r indices from {1,…,n} in r i.i.d.
trials, with respect to the pi’s.

3. For each sampled index j, keep
the j-th row of A and the j-th
element of b; rescale both by
(1/rpj)1/2.

4. Solve the induced problem.



sampled
“rows” of b

sampled
rows of A

scaling to
account for

undersampling

Random sampling algorithm for L2 regression



Our results for p=2

If the pi satisfy a condition, then with probability at least 1-δ,

The sampling complexity is



Our results for p=2, cont’d

If the pi satisfy a condition, then with probability at least 1-δ,

The sampling complexity is

κ(A): condition
number of A



Condition on the probabilities (1 of 2)

• Sampling with respect to row lengths will fail.

(They get coarse statistics to additive-error, not relative-error.)

• Need to disentangle “subspace info” and “size-of-A info.”

• Important: Sampling process must NOT loose any rank of A.

(Since pseudoinverse will amplify that error!)



Condition on the probabilities (2 of 2)

The condition that the pi must satisfy, are, for some β1 ε (0,1] :

lengths of rows of
matrix of left
singular vectors of A

Notes:

• Using the norms of the rows of any orthonormal basis suffices, e.g., Q from QR.

• O(nd2) time suffices (to compute probabilities and to construct a core-set).

• Open question: Is O(nd2) necessary?

• Open question: Can we compute good probabilities, or construct a coreset, faster?

• Original conditions (DMM06a) were stronger and more complicated.



Interpretation of the probabilities (1 of 2)

• What do the lengths of the rows of the n x d matrix U = UA “mean”?

• Consider possible n x d matrices U of d left singular vectors:
In|k = k columns from the identity

row lengths = 0 or 1

 In|k x -> x

 Hn|k = k columns from the n x n Hadamard (real Fourier) matrix

row lengths all equal

 Hn|k x -> maximally dispersed

Uk = k columns from any orthogonal matrix

row lengths between 0 and 1

• The lengths of the rows of U = UA correspond to a notion of
information dispersal (i.e., where information is A is sent.)



Interpretation of the probabilities (2 of 2)

• The lengths of the rows of
U = UA also correspond to a
notion of statistical leverage
or statistical influence.

• pi ≈ ||U(i)||2
2 = (AA+)ii, i.e.

they equal the diagonal
elements of the “prediction”
or “hat” matrix.



Critical observation

sample &
rescale

sample &
rescale



Critical observation, cont’d

sample &
rescale
only U

sample
&
rescale



Critical observation, cont’d

Important observation: Us is “almost orthogonal,” i.e., we can bound the
spectral and the Frobenius norm of

Us
T Us – I.

(FKV98, DK01, DKM04, RV04)



Algorithm 2: Random projections for L2

(Slow Random Projection) Algorithm:
Input: An n x d matrix A, a vector b ε Rn.
Output: x’ that is approximation to xOPT=A+b.

• Construct a random projection matrix P, e.g., entries from N(0,1).
• Solve Z’ = minx ||P(Ax-b)||2.
• Return the solution x’.

Theorem:
• Z’ ≤ (1+ε) ZOPT.
• ||b-Ax’||2 ≤ (1+ε) ZOPT.
• ||xOPT-x’||2 ≤ (ε/σmin(A))||xOPT||2.
• Running time is O(nd2) - due to PA multiplication.



Random Projections
and the Johnson-Lindenstrauss lemma

Algorithmic results for J-L:

• JL84: project to a random subspace

• FM88: random orthogonal matrix

• DG99: random orthogonal matrix

• IM98: matrix with entries from N(0,1)

• Achlioptas03: matrix with entries from {-1,0,+1}

• Alon03: dependence on n and ε (almost) optimal



Dense Random Projections and JL

P (the projection matrix) must be dense, i.e., Ω(n) nonzeros per row.

• P may hit ``concentrated’’ vectors, i.e. ||x||∞/||x||2 ≈ 1

• e.g. x=(1,0,0,...,0)T or UA with non-uniform row lengths.

• Each projected coordinate is linear combination of Ω(n) input coordinates.

• Performing the projection takes O(nd2) time.

Note: Expensive sampling probabilities are needed for exactly the same
reason !

Ques: What if P/S hits “well rounded” vectors, i.e., ||x||∞/||x||2 ≈ 1/\sqrt{n} ?



Fast Johnson-Lindenstrauss lemma (1 of 2)
Ailon and Chazelle (STOC06)

Let                      : be a “preprocessed” projection:



Fast Johnson-Lindenstrauss lemma (2 of 2)
Ailon and Chazelle (STOC06)

Notes:
• P - does the projection;
• H - “uniformizes” or “densifies” sparse vectors;
• D - ensures that wph dense vectors are not sparsified.

Multiplication is “fast”
• by D - since D is diagonal;
• by H - use Fast Fourier Transform algorithms;
• by P - since it has O(log2n) nonzeros per row.



Algorithm 3: Faster Projection for L2

(Fast Random Projection) Algorithm:
Input: An n x d matrix A, a vector b ε Rn.
Output: x’ that is approximation to xOPT=A+b.

• Preprocess [A b] with randomized Hadamard rotation HnD.
• Construct a sparse projection matrix P (with O(log2n) nonzero/row).
• Solve Z’ = minx ||Φ(Ax-b)||2 (with Φ=PHnD).
• Return the solution x’.

Theorem:
• Z’ ≤ (1+ε) ZOPT.
• ||b-Ax’||2 ≤ (1+ε) ZOPT.
• ||xOPT-x’||2 ≤ (ε/σmin(A))||xOPT||2.
• Running time is O(nd log n) = o(nd2) since projection is sparse!!

Sarlos (FOCS06)



Algorithm 4: Faster Sampling for L2

(Fast Random Sampling) Algorithm:
Input: An n x d matrix A, a vector b ε Rn.
Output: x’ that is approximation to xOPT=A+b.

• Preprocess [A b] with randomized Hadamard rotation HnD.
• Construct a uniform sampling matrix S (with O(d log d log2n/ε2) samples).
• Solve Z’ = minx ||Φ(Ax-b)||2 (with Φ=SHnD).
• Return the solution x’.

Theorem:
• Z’ ≤ (1+ε) ZOPT.
• ||b-Ax’||2 ≤ (1+ε) ZOPT.
• ||xOPT-x’||2 ≤ (ε/σmin(A))||xOPT||2.
• Running time is O(nd log n) = o(nd2) since sampling is uniform!!

Drineas, Mahoney, Muthukrishnan, and Sarlos 07



Proof idea for o(nd2) L2 regression

Zexact = minx||Ax-b||2
• Sample w.r.t. pi = ||UA,(i)||22/d -- the “right” probabilities.
• Projection must be dense since pi may be very non-uniform.

Zrotated = minx||HD(Ax-b)||2
• HDA = HDUAΣAVA

T

• pi =||UHDA,(i)||2
2 are approximately uniform (up to log2n factor)

Zsampled/projected = = minx||(S/P)HD(Ax-b)||2
• Sample a “small” number of constraints and solve sub-problem;

• “small” is O(log2n) here versus constant w.r.t n before.
• Do “sparse” projection and solve sub-problem;

• “sparse means O(log2n) non-zeros per row.

Sarlos (FOCS06) and Drineas, Mahoney, Muthukrishnan, and Sarlos 07



What made the L2 result work?

The L2 sampling algorithm worked because:

• For p=2, an orthogonal basis (from SVD, QR, etc.) is a “good” or “well-
conditioned” basis.

(This came for free, since orthogonal bases are the obvious choice.)

• Sampling w.r.t. the “good” basis allowed us to perform “subspace-
preserving sampling.”

(This allowed us to preserve the rank of the matrix.)

Can we generalize these two ideas to p≠2?



p-well-conditioned basis (definition)

Let A be an n x m matrix of rank d<<n, let p ε [1,∞), and q its dual.

Definition:  An n x d matrix U is an (α,β,p)-well-conditioned basis for
span(A) if:

(1) |||U|||p ≤ α, (where |||U|||p = (Σij|Uij|p)1/p )

(2) for all z ε Rd, ||z||q ≤ β ||Uz||p.
U is a p-well-conditioned basis if α,β=dO(1), independent of m,n.



p-well-conditioned basis (existence)

Let A be an n x m matrix of rank d<<n, let p ε [1,∞), and q its dual.

Theorem: There exists an (α,β,p)-well-conditioned basis U for span(A)
s.t.:

if p < 2, then α = d1/p+1/2 and β = 1,
if p = 2, then α = d1/2     and β = 1,
if p > 2, then α = d1/p+1/2 and β = d1/q-1/2.

U can be computed in O(nmd+nd5log n) time (or just O(nmd) if p = 2).



p-well-conditioned basis (construction)

Algorithm:

• Let A=QR be any QR decomposition of A.

(Stop if p=2.)

• Define the norm on Rd by ||z||Q,p ≡ ||Qz||p.

• Let C be the unit ball of the norm ||•||Q,p.

• Let the d x d matrix F define the Lowner-John ellipsoid of C.

• Decompose F=GTG,

where G is full rank and upper triangular.

• Return U = QG-1

as the p-well-conditioned basis.



Subspace-preserving sampling

Let A be an n x m matrix of rank d<<n, let p ε [1,∞).

Let U be an (α,β,p)-well-conditioned basis for span(A),

Theorem: Randomly sample rows of A according to the probability
distribution:

where:

Then, with probability 1- δ, the following holds for all x in Rm:



Algorithm 5: Approximate Lp regression

Input: An n x m matrix A of rank d<<n, a vector b ε Rn, and p ε [1,∞).
Output: x’’ (or x’ if do only Stage 1).

• Find a p-well-conditioned basis U for span(A).

• Stage 1 (constant-factor):
• Set pi ≈ ||U(i)||r1, where r1 = O(36pdk+1) and k=max{p/2+1, p}.
• Generate (implicitly) a sampling matrix S from {pi}.
• Let x’ be the solution to: minx ||S(Ax-b)||p.

• Stage 2 (relative-error):
• Set qi ≈ min{1,max{pi,Ax’-b}}, where r2 = O(r1/ε2).
• Generate (implicitly, a new) sampling matrix T from {qi}.
• Let x’’ be the solution to: minx ||T(Ax-b)||p.



Theorem for approximate Lp regression

Constant-factor approximation:
• Run Stage 1, and return x’.  Then w.p. ≥ 0.6:

||Ax’-b||p ≤ 8 ||Axopt-b||p.

Relative-error approximation:
• Run Stage 1 and Stage 2, and return x’’.  Then w.p. ≥ 0.5:

||Ax’’-b||p ≤ (1+ε) ||Axopt-b||p.

Running time:
•The ith (i=1,2) stage of the algorithm runs in time:

O(nmd + nd5 log n + φ(20ri,m)),
where φ(s,t) is the time to solve an s-by-t Lp regression problem.



Extensions and Applications

(Theory:) Relative-error CX and CUR low-rank matrix approximation.

• ||A-CC+A||F ≤ (1+ε) ||A-Ak||F

• ||A-CUR||F ≤ (1+ε) ||A-Ak||F

(Theory:) Core-sets for Lp regression problems, p ε [1,∞).

(Application:) DNA SNP and microarray analysis.

• SNPs are “high leverage” data points.

(Application:) Feature Selection and Learning in Term-Document matrices.

• Regularized Least Squares Classification.

• Sometimes performs better than state of the art supervised methods.



Conclusion

Fast Sampling Algorithm for L2 regression:
Core-set and (1+ε)-approximation in O(nd2) time.

Expensive but Informative sampling probabilities.

Runs in o(nd2) time after randomized Hadamard preprocessing.

Fast Projection Algorithm for L2 regression:
Gets a (1+ε)-approximation in o(nd2) time.

Uses the recent “Fast” Johnson-Lindenstrauss Lemma.

Sampling algorithm for Lp regression, for p ε [1,∞):
Core-set and (1+ε)-approximation in o(exact) time (Θ(exact) time for p=2).

Uses p-well-conditioned basis and subspace-preserving sampling.


