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) Models, curve fitting, and data analysis

In MANY applications (in statistical data analysis and scientific
computation), one has n observations (values of a dependent
variable y measured at values of an independent variable 1):

yi =vy(t;),i=1,...,n

Model y(t) by a linear combination of d basis functions:

y(t) = 1o (t) + - +xada(t)

A is an n x d "design matrix” with elements:
Aij = ¢5(ts)

In matrix-vector notation:

y ~ Ax



) Many applications of this!

* Astronomy: Predicting the orbit of the asteroid Ceres (in 1801!).
Gauss (1809) -- see also Legendre (1805) and Adrain (1808).
First application of “least squares optimization” and runs in O(nd?) timel!
* Bioinformatics: Dimension reduction for classification of gene expression microarray data.
* Medicine: Inverse treatment planning and fast intensity-modulated radiation therapy.
* Engineering: Finite elements methods for solving Poisson, etc. equation.
« Control theory: Optimal design and control theory problems.
« Economics: Restricted maximum-likelihood estimation in econometrics.
« Image Analysis: Array signal and image processing.
« Computer Science: Computer vision, document and information retrieval.
* Internet Analysis: Filtering and de-noising of noisy internet data.

* Data analysis: Fit parameters of a biological, chemical, economic, social, internet, etc. model
to experimental data.



) Large Graphs and Data at Yahoo

Explicit: graphs and networks
Web Graph
Internet
Yahoo! Photo Sharing (Flickr)
Yahoo! 360 (Social network)

Implicit: transactions, email, messenger
Yahoo! Search marketing
Y ahoo! mail

Y ahoo! messenger

Constructed: affinity between data points

Y ahoo! Music
Y ahoo! Movies

Yahoo! Etc.
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) Least-norm approximation problems

Recall a linear measurement model: y are the measurements

Y = Axr + ¢ <« is the unknown

€ 1S an error Process

A common optimization problem: .
Ae R n>d

min |[|Az — b|| < beRr”

|- ]| is @ norm on R"

Let y =0,
* then z* = argmin ||Axz — b|| is the "best" estimate of
T

e then Az™* is the point in R(A) “closest” to b .



) Norms of common interest

Let: r = Ax — b € R™ denote the vector of residuals.

Least-squares approximation:

minimize: |[Ax —b||3 =r% +7r5 + -+ 12

Chebyshev or mini-max approximation:

minimize: ||Az — b||o = max{|ri|,...,|rn|}

Sum of absolute residuals approximation:
minimize: |[Ax — bl|y = [ri| + |[ro| + -+ + |74



) Lp norms and their unit balls

Recall the Lp norm for z € R™:

n 1/p
2llp = (Z |zz-|P) e l,00)
i=1

Z||oo = max |z
1

z||5 = 22 =212

i
Some inequality relationships include:

< |lzlloe < ll2ll2 < ll2llx < Vnll2]]2

2z
Jn' e




) Lp regression problems

[ [
z min ||b — Az||,

p r€ERd » A

= |[b— Az,

&)
%
o

\

We are interested in over-constrained Lp regression problems, n »> d.

nxd , n>d

Typically, there is no x such that Ax = b.
Want to find the "best” x such that Ax = b.

Lp regression problems are convex programs (or betterl!).
There exist poly-time algorithms.

We want to solve them faster!



) Solution to Lp regression

Lp regression can be cast as a convex program for all p € [1,00].

For p=1, Sum of absolute residuals approximation (minimize || Ax-b||,):
Cast as an LP: minimize 17¢

such that —t < Az —b <t
For p=eo, Chebyshev or mini-max approximation (minimize || Ax-b||.):

Cast as an LP: minimize t

such that —t1 < Az —b <1

For p=2, Least-squares approximation (minimize || Ax-bl|,):
solution satisfies normal equations: AT Az = ATb

¥ = (AT AT AT, if rank(A) = n



) Solution to L2 regression

2y
Cholesky Decomposition:

If Ais full rank and well-conditioned,
decompose ATA = R'R, where R is upper triangular, and

solve the normal equations: RTRx=ATb.

QR Decomposition:
Slower but numerically stable, esp. if A is rank-deficient.

Write A=QR, and solve Rx = Qb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.
Write A=UZVT, in which case: xgpr = A*b = V=-1,UTb.

~>

Complexity is O(nd?) for all of these, but
constant factors differ.

min ||b — Ax||s
re R4

16— Az||2

Projection of b on
the subspace
spanned by the
columns of A

b3 — [|AATD]13
At

N\

Pseudoinverse
of A



] Questions ...

Zp = min |b— Ax||, = ||b — Az|],
S 3 9t

Approximation algorithms:
Can we approximately solve general Lp regression qualitatively faster
than existing "exact” methods?

Core-sets (or induced sub-problems):
Can we find a small set of constraints s.t. solving the Lp regression on

those constraints gives an approximation?

Generalization (for machine learning):
Does the core-set or approximate answer have similar generalization
properties to the full problem or exact answer? (Still openl)



) Overview of Five Lp Regression Algorithms

Alg. 1 | Sampling p=2 (1+¢)-approx O(nd?) Drineas, Mahoney,
(core-set) Muthukrishnan (SODAO6)

Alg. 2 Projection p=2 (1+¢)-approx O(nd?) “obvious"

Alg. 3 |Projection | p=2 (1+e)-approx o(nd?) Sarlos (FOCS06)

Alg. 4 | Sampling p=2 (1+€)-approx o(nd2) DMMS07

Alg. 5 | Sampling pe[loo) | (1+e)-approx O(ndd) Dasgupta, Drineas, Harb,
(core-set) +o("exact") Kumar, Mahoney (submitted)

Note: Ken Clarkson (SODAObS) gets a (1+¢)-approximation for L1 regression in O*(d32/¢%) time.

He preprocessed [A,b] to make it "well-rounded” or “"well-conditioned” and then sampled.




) Algorithm 1. Sampling for L2 regression

\

n X d,

Zo

/

n>>d

&)

min [|b — Azl = [|b — AZ|5

reR

Q

(

\

)

Algorithm

/

1. Fix aset of probabilities p,, i=1..n,
summing up to 1.

2. Pick rindices from{l,...n}inri.id.
trials, with respect to the p's.

3. For each sampled index j, keep
the j-th row of A and the j-th
element of b; rescale both by
(1/rp;)2.

4. Solve the induced problem.



) Random sampling algorithm for L2 regression

Zps = min ||bs — Asz||2 = ||bs — AsZs][2
reR4

sampled Ag T b \ sampled

xS % A1) n
rows of A rows” of b

\ rXd )‘* :

account for
undersampling

Zo — Zp 4| <7 |Z — Zs]|o <7 |AZs — bl[5 <7



) Our results for p=2

If the p, satisfy a condition, then with probability at least 1-3,

ZQ,S <(1l+4¢) 2

Z5 < [[AZs — bllp < (1 +€) 22

S 4 < ¢
|z — Zsllp < Umm(A)ZQ

The sampling complexity is

r = O(dlog(d)log(1/5)/e?)



) Our results for p=2, cont'd

If the p, satisfy a condition, then with probability at least 1-3,

ZQ,S <(1l+4¢) 2

ZQ S HAis — bH2 S (]. —|— 6) ZQ K(A): condition
number of A

~ ~ A ~
|2 — 2sllo < e (%22) 121,

v = [Aaty||, /bl
The sampling complexity is

r = O(dlog(d)log(1/5)/e?)



) Condition on the probabilities (1 of 2)

* Important: Sampling process must NOT loose any rank of A.

(Since pseudoinverse will amplify that error!)

Ax ~ b — xopr = ATb =V, 2 ULD
SAx ~ Sb — zopr = (SA)TSb = Vga X Us 4 Sb

- Sampling with respect to row lengths will fail.
(They get coarse statistics to additive-error, not relative-error.)

* Need to disentangle "subspace info" and "size-of-A info."



) Condition on the probabilities (2 of 2)

The condition that the p. must satisfy, are, for some §,¢ (0,1]:

2 ¥~ lengths of rows of

U,
p; = B1 H Dl 5 matrix of left
Z?le Ui H2 singular vectors of A

» Using the norms of the rows of any orthonormal basis suffices, e.qg., Q from QR.

Notes:

- O(nd?) time suffices (to compute probabilities and to construct a core-set).
- Open question: Is O(nd?) necessary?
* Open question: Can we compute good probabilities, or construct a coreset, faster?

* Original conditions (DMMO6a) were stronger and more complicated.



) Interpretation of the probabilities (1 of 2)

* What do the lengths of the rows of the n x d matrix U = U, "mean"?

» Consider possible n x d matrices U of d left singular vectors:
Il = k columns from the identity
row lengths = O or 1
I |, x->x
H, |, = k columns from the n x n Hadamard (real Fourier) matrix
row lengths all equal
H,l, x -> maximally dispersed
U, = k columns from any orthogonal matrix

row lengths between O and 1

* The lengths of the rows of U = U, correspond to a notion of
information dispersal (i.e., where information is A is sent.)



) Interpretation of the probabilities (2 of 2)

F Leverage M= B3
QE}‘“ ! About noise Ievell 30 | 4] 2
* The lengths of the rows of G Reset NEXT =5 data points | 15| 1] o
U = U, also correspond to a Ralding he 162 mase ke prasced. The regreadion s i calulsted and dplayee
notion of statistical leverage ~ |™™
or statistical influence. 8.0

"pi R ||U(i)| 1,2 = (AAY),, i.e.
they equal the diagonal
elements of the "prediction”
or “hat" matrix.

oo T T T T T T T T T T T T

0.ao 20 4.0 5.0

4.0




) Critical observation

Zy = min ||b— Az|> = [[b — AZ||2
reRd
sample & el A = e~ sample &

rescale

\

n X d,

/

n>>d

Q

\

/

rescale



) Critical observation, cont'd

Zy =

sample &__y, [/

rescale
only U

min [[b — Az = [|b — AZ||>
rER4

(

\

)

/

sample
&
rescale




) Critical observation, cont'd

ZQ,S — mln HbS—AstQ — ||bS_AS£SH2
r€RA
( ) . ()
Us > V Ts | = | bs

Important observation: U, is "almost orthogonal,” i.e., we can bound the
spectral and the Frobenius norm of

U,TU, - T.
(FKV98, DKO1, DKMO4, RV04)



) Algorithm 2: Random projections for L2

(Slow Random Projection) Algorithm:
Input. Annxd matrix A, avector b e R".
Output: x' that is approximation to X p=A*b.

» Construct a random projection matrix P, e.g., entries from N(O,1).
- Solve Z' = min, ||P(Ax-b)]|.,.
* Return the solution x'.

Theorem:

* Z' < (1+e) Zppr-

 ||b-AX'| [, < (1+€) Zpr.

) I IxOPT'x'I |2 < (S/Gmin(A))l |xopT| |2-

* Running time is O(nd?) - due to PA multiplication.



. Random Projections
) and the Johnson-Lindenstrauss lemma

J-L Lemma: For every set S of n points in R? and every € > 0, there exists a
mapping f : R? — R*, where k = O(e~?logn), such that for all pairs u,v € S:

(1= e)u—vl3 < [f(w) = F0)3 < 1+ e)u—]3.
Algorithmic results for J-L:
- JL84: project to a random subspace
+ FM88: random orthogonal matrix
- DG99: random orthogonal matrix
» IM98: matrix with entries from N(O,1)
» AchlioptasO3: matrix with entries from {-1,0,+1}

» Alon03: dependence on n and ¢ (almost) optimal



) Dense Random Projections and JL

P (the projection matrix) must be dense, i.e., Q(n) honzeros per row.
* P may hit " " concentrated” vectors, i.e. ||x||./||x]|]|, * 1

 e.g. x=(1,0,0,..,0)T or U, with non-uniform row lengths.
» Each projected coordinate is linear combination of Q(n) input coordinates.

* Performing the projection takes O(nd?) time.

Note: Expensive sampling probabilities are needed for exactly the same
reason !

Ques: What if P/S hits "well rounded"” vectors, i.e., ||x||./||x|], # 1/\sqrt{n} ?



) Fast Johnson-Lindenstrauss lemma (1 of 2)

Ailon and Chazelle (STOCO06)

Let & = PHD : bea"preprocessed” projection:

/‘

P;; ~ N(0,1/q), with prob. g, where ¢ = O(
P;; =0, with prob. 1 —g¢q

-

log?n

)

P e RF*d g t.<

H ¢ R*d 1s a normalized Hadamard matrix:
—1/2 —1.7—1
Hz'j _— d / (_1)<z J >

D € R4xd is a diagonal matrix:
D;; drawn from +1,-1 w.p. 1/2



) Fast Johnson-Lindenstrauss lemma (2 of 2)

Ailon and Chazelle (STOCO06)

Fast J-L Lemma: Let ® = PHD € R¥*4 be the sparse random projection as
above. Given a set S of n points in R? and an € > 0, for all pairs u,v € S:

(1 —€)|u—v|5 < |Pu — Pv|z < (1 + €)|lu —vl|3.

Notes:

* P - does the projection;

* H - "uniformizes” or "densifies" sparse vectors;

* D - ensures that wph dense vectors are not sparsified.

Multiplication is "fast”

* by D - since D is diagonal;

* by H - use Fast Fourier Transform algorithms;
» by P - since it has O(log?n) nonzeros per row.



) Algorithm 3: Faster Projection for L2

Sarlos (FOCS06)

(Fast Random Projection) Algorithm:

Input. Annxd matrix A, avector b e R".
Output: x' that is approximation to X p=A*b.

* Preprocess [A b] with randomized Hadamard rotation H D.

» Construct a sparse projection matrix P (with O(log?n) nonzero/row).
» Solve Z' = min, ||®(Ax-b)||, (with ®=PH,D).

* Return the solution x'.

Theorem:

* Z' < (1+e) Zppr-

 ||b-AX'| [, < (1+€) Zpr.

| IxOPT'x'I |2 < (S/Gmin(A))l |xopT| |2-

* Running time is O(nd log n) = o(nd?) since projection is sparsell



) Algorithm 4: Faster Sampling for L2

Drineas, Mahoney, Muthukrishnan, and Sarlos 07

(Fast Random Sampling) Algorithm:
Input. Annxd matrix A, avector b e R".
Output: x' that is approximation to X p=A*b.

* Preprocess [A b] with randomized Hadamard rotation H D.

» Construct a uniform sampling matrix S (with O(d log d log?n/¢2) samples).
* Solve Z' = min, ||®(Ax-b)||, (with ®=SH D).

* Return the solution X'

Theorem:

* Z' < (1+e) Zppr-

 ||b-AX'| [, < (1+€) Zpr.

| IxOPT'x'I |2 < (S/Gmin(A))l |xopT| |2-

* Running time is O(nd log n) = o(nd?) since sampling is uniform!!



l Proof idea for o(nd?) L2 regression

Sarlos (FOCS06) and Drineas, Mahoney, Muthukrishnan, and Sarlos 07

ZexacT = minx| |AX—b| |2

* Sample w.r.t. p; = [[U, | |,2/d -- the "right" probabilities.
* Projection must be dense since p, may be very non-uniform.

Zr‘ofa‘red = minx| |HD(AX-b)| |2
* HDA = HDU,2,V,7
* i = 1Uppa iyl |22 are approximately uniform (up to log2n factor)

Zsampled/pr'ojecfed == minx| l(S/P)HD(AX'b)I |2
- Sample a "small” number of constraints and solve sub-problem;
» "small” is O(log®n) here versus constant w.r.t n before.
» Do "sparse” projection and solve sub-problem;

- "sparse means O(log2n) non-zeros per row.



l What made the L2 result work?

The L2 sampling algorithm worked because:

For p=2, an orthogonal basis (from SVD, QR, etc.) is a "good"” or "well-
conditioned"” basis.

(This came for free, since orthogonal bases are the obvious choice.)

Sampling w.r.t. the "good" basis allowed us to perform "subspace-
preserving sampling.”

(This allowed us to preserve the rank of the matrix.)

Can we generalize these two ideas to p=2?



) p-well-conditioned basis (definition)

Let A be an h x m matrix of rank d«n, let p ¢ [1,9), and q its dual.

Definition: Ann x d matrix U is an (o, f,p)-well-conditioned basis for
span(A) if:

() [HUI], < o, (where [[|U]]], = (;U;51P)P)

(2) forall ze RY, [|z][, < B [|Uz]],.
U is a p-well-conditioned basis if o,p=d°(), independent of m,n.



) p-well-conditioned basis (existence)

Let A be an h x m matrix of rank d«n, let p ¢ [1,9), and q its dual.

Theorem: There exists an («,f,p)-well-conditioned basis U for span(A)
s.t.

if p<2,thena=drl/2and g = 1,

ifp=2,thena=d"2 andp =1,

if p>2, then a = d/r*1/2 and g = dV/a-1/2,
U can be computed in O(nmd+nd>log n) time (or just O(nmd) if p = 2).



) p-well-conditioned basis (construction)

Algorithm:
* Let A=QR be any QR decomposition of A.
(Stop if p=2.)
- Define the norm on Rd by ||z| IQ,p = ||Qz]| Ip.
- Let C be the unit ball of the norm ||| Ile.
* Let the d x d matrix F define the Lowner-John ellipsoid of C.
- Decompose F=G6,
where G is full rank and upper triangular.
* Return U = Q6!

as the p-well-conditioned basis.



) Subspace-preserving sampling

Let A be an h x m matrix of rank d«n, let p ¢ [1,%).

Let U be an («,3,p)-well-conditioned basis for span(A),

Theorem: Randomly sample rows of A according to the probability
distribution:
p; > min {1 ”U(”ng}
N U

where:
T e arerantd) 1 w)/ete)

€
Then, with probability 1- 3, the following holds for all x in R™:

1S Az[|, = [|Az|[,] < e|[Az]],




l Algorithm 5: Approximate Lp regression

Input:  Ann x m matrix A of rank d«n, a vector b ¢ R", and p ¢ [1,).
Output: x" (or X' if do only Stage 1).

* Find a p-well-conditioned basis U for span(A).

+ Stage 1 (constant-factor):
- Set p, ® ||Ug||ry, where r; = O(36rdk*!) and k=max{p/2+1, p}.
* Generate (implicitly) a sampling matrix S from {p}.
- Let x' be the solution to: min, || S(Ax-b)| Ip.

- Stage 2 (relative-error):
+ Set q; ® min{1,max{p, Ax'-b}}, where r, = O(r,/¢2).
* Generate (implicitly, a new) sampling matrix T from {q.}.
- Let x" be the solution to: min, || T(Ax-b)| Ip.



] Theorem for approximate Lp regression

Constant-factor approximation:

* Run Stage 1, and return x'. Then w.p. 2> 0.6:
||Ax'-b]| |p <8 IIAxopT-bI Ip.

Relative-error approximation:

* Run Stage 1 and Stage 2, and return x". Then w.p. > 0.5:
[AX"-b[], < (1+e) [|Ax,p4-bl |,

Running time:

*The ith (i=1,2) stage of the algorithm runs in time:
O(nmd + nd® log n + ¢(20r;,m)),

where ¢(s,t) is the time to solve an s-by-t Lp regression problem.



) Extensions and Applications

(Theory:) Relative-error CX and CUR low-rank matrix approximation.
' [|A-CCA| g < (1+e) [|A-AK] [
- [|A-CURI | < (1+¢) || A-AK| |¢

(Theory:) Core-sets for Lp regression problems, p ¢ [1,).

(Application:) DNA SNP and microarray analysis.
* SNPs are “high leverage” data points.

(Application:) Feature Selection and Learning in Term-Document matrices.
* Regularized Least Squares Classification.

- Sometimes performs better than state of the art supervised methods.



) Conclusion

Fast Sampling Algorithm for L2 regression:

Core-set and (1+&)-approximation in O(nd?) time.
Expensive but Informative sampling probabilities.

Runs in o(ndZ2) time after randomized Hadamard preprocessing.

Fast Projection Algorithm for L2 regression:
Gets a (1+&)-approximation in o(nd?) time.

Uses the recent "Fast" Johnson-Lindenstrauss Lemma.

Sampling algorithm for Lp regression, for p ¢ [1,):
Core-set and (1+&)-approximation in o(exact) fime (@(exact) time for p=2).

Uses p-well-conditioned basis and subspace-preserving sampling.



