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) Least Squares (LS) Approximation
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We are interested in over-constrained Lp regression problems, n »>> d.

Typically, there is no x such that Ax = b.

Want to find the "best" x such that Ax = b.

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



) Many applications of this!

* Astronomy: Predicting the orbit of the asteroid Ceres (in 1801!).
Gauss (1809) -- see also Legendre (1805) and Adrain (1808).
First application of “least squares optimization” and runs in O(nd?) time!
* Bioinformatics: Dimension reduction for classification of gene expression microarray data.
* Medicine: Inverse treatment planning and fast intensity-modulated radiation therapy.
* Engineering: Finite elements methods for solving Poisson, etc. equation.
« Control theory: Optimal design and control theory problems.
« Economics: Restricted maximum-likelihood estimation in econometrics.
* Image Analysis: Array signal and image processing.
« Computer Science: Computer vision, document and information retrieval.
* Internet Analysis: Filtering and de-noising of noisy internet data.

« Data analysis: Fit parameters of a biological, chemical, economic, social, internet, etc. model
to experimental data.



) Exact solution to LS Approximation

Cholesky Decomposition: 29

If A is full rank and well-conditioned,
decompose ATA = R'R, where R is upper triangular, and

solve the normal equations: RTRx=ATb.

QR Decomposition:
Slower but numerically stable, esp. if A is rank-deficient.

Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.

Write A=UZVT, in which case: xgpr = A*b = VE-1,UTb.

Complexity is O(nd?) for all of these, but
constant factors differ.

min ||b — Azx||»

10— Az|[2

Projection of bon
the subspace spanned
by the columns of A

[B1]2 = [[AATD]]3

Pseudoinverse



) Modeling with Least Squares

Assumptions underlying its use:

* Relationship between "outcomes” and "predictors is (approximately) linear.
* The error term ¢ has mean zero.

« The error term ¢ has constant variance.

 The errors are uncorrelated.

* The errors are normally distributed (or we have adequate sample size to rely on
large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!



) Statistical Issues and Regression Diaghostics

Model: b = Ax+e

Xopt = (ATAY1ATH
b'= Hb

e = b-b' = (I-H)b

Trace(H)=d
H=UUT
H;i = [UD],2

b = response; A®) = carriers;

e = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0
and Var(e)=0°I), uncorrelated, normally distributed

(what we computed before)

H= A(ATA)1AT = "hat" matrix

H;; - measures the leverage or influence exerted on b’; by b,
regardless of the value of b; (since H depends only on A)

vector of residuals - note: E(e')=0, Var(e')=02(I-H)

Diagnostic Rule of Thumb: Investigate if H;; > 2d/n
U is from SVD (A=UZVT), or any orthogonal matrix for span(A)

leverage scores = row “lengths” of spanning orthogonal matrix



Hat Matrix and Regression Diagnostics

See: "The Hat Matrix in Regression and ANOVA," Hoaglin and Welsch (1978)
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Examples of things to note:

* Point 4 is a bivariate outlier - and H,, is largest, just exceeds 2p/n=6/10.

* Points 1 and 3 have relatively high leverage - extremes in the scatter of points.
* H, 4 is moderately negative - opposite sides of the data band.

* H, g and H; ;o moderately positive - those points mutually reinforce.

* Hy is fairly low - point 6 is in central position.



) Statistical Leverage and Large Internet Data

"Cumulative leverage" far terms in "Enron kAatri="
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] Overview

Faster Algorithms for Least Squares Approximation:

Sampling algorithm and projection algorithm.
Gets a (1+&)-approximation in o(nd?) time.

Uses Randomized Hadamard Preprocessing from the recent "Fast" JL Lemma.

Better Algorithm for Column Subset Selection Problem:

Two-phase algorithm to approximate the CSSP.
For spectral norm, improves best previous bound (6u and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)/?) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.



=

Drineas, Mahoney, and Muthukrishnan (SODA, 2006)

Algorithm

1. Fix asetf of probabilities p;,
i=1,...n.

2. Pick the i-th row of A and the i-th
element of b with probability

min {1, rp;},

and rescale by (1/min{1,rp.})¥/2.

3. Solve the induced problem.

Original (expensive) sampling algorithm

Theorem:

Let: r = O (dlog(d)log(1/8)/(B€?))
If the p; satisfy:
8V :
=1 [V
for some B¢ (0,1], then w.p. > 1-§,
|AZype — b2 < (14 €)Z, and

Ve (A= 1) llzop

2 _-BHU(z')
2 d
2

T —

||‘CCOpt _-%optHQ E

* These probabilities p's are statistical leverage scores!

« "Expensive” to compute, O(nd?) time, these p/'s!



) A "fast" LS sampling algorithm

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007)

Algorithm:

1.  Pre-process A and b with a "randomized Hadamard transform”.
2. Uniformly sample r = O (dlog(n)log(dlog(n)/€)) constraints.

3. Solve the induced problem:

2y, = min [|[SH(b — Az)||s = [|[SH(b — A2)||

rERA

Main theorem:

* (1x¢)-approximation

- in O (ndlog (dlog(n)/e) + d*log(n)log(dlogn)/e) time!l



) A structural lemma

Approximate Z = min [|Az — bl[2 by solving £ = min ||X(Az — b)]|2
reRd rEeR4

where X’ is any matrix.

Let U 4 be the matrix of left singular vectors of A.

assume that y-fraction of mass of b lies in span(A).

Lemma: Assume that: Tmin (XU4) = 9/10; and
UL XT b2 < e2?)/2

Then, we get relative-error approximation:

|AZppe — bll2 < (14+€)Z, and

[Zopt = Foptlls < Ve (K(AVAYZ=1) [l |2




) Randomized Hadamard preprocessing

Facts implicit or explicit in: Ailon & Chazelle (2006), or Ailon and Liberty (2008).

Let H, be an n-by-n deterministic Hadamard matrix, and
Let D, be an n-by-n random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

Fact 1: Multiplication by H,D, doesn't change the solution:
|Ax — b||2 = ||H,,D,,Ax — H,,D,b||2 = ||[HAx — Hb||,

(since H, and D, are orthogonal matrices).

Fact 2: Multiplication by H,D, is fast - only O(n log(r)) time, where r is the number of
elements of the output vector we need to "touch”.

Fact 3: Multiplication by H,D, approximately uniformizes all leverage scores:

dlogn
U(iyp 4ll2 = [[(HUA) ||2 < O ( )

n




Fast LS via sparse projection

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007) - sparse projection matrix from Matousek's version of Ailon-Chazelle 2006

Algorithm

1. Pre-process A and b with a randomized Hadamard transform.
2. Multiply preprocessed input by sparse random k x n matrix T,

where ( 1 : 5
_|_\/% , with probability ¢/2

Tij =< _ qu , with probability ¢/2

0 , with probability 1 — g,

and where k=0(d/¢) and q=0(d log?(n)/n+d?log(n)/n) .

3. Solve the induced problem:

Z5 = min |[|[TH(b— Ax)||s = ||[TH(b — AZ)||>
' rceRd

* Dense projections will work, but it is "slow.”
* Sparse projection is "fast,” but will it work?

-> YES! Sparsity parameter q of T related to non-uniformity of leverage scores!



] Overview

Faster Algorithms for Least Squares Approximation:

Sampling algorithm and projection algorithm.
Gets a (1+&)-approximation in o(nd?) time.

Uses Randomized Hadamard Preprocessing from the recent "Fast" JL Lemma.

Better Algorithm for Column Subset Selection Problem:

Two-phase algorithm to approximate the CSSP.
For spectral norm, improves best previous bound (6u and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)/?) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.



) Column Subset Selection Problem (CSSP)

Given an m-by-n matrix A and a rank parameter k, choose exactly k columns
of A s.t. the m-by-k matrix C minimizes the error over all O(nk) choices for C:

min||A — PcAlls = minl||A— CCTA||s,

where || X || = max | Xz
rER™:|x|=1

min ||A — PcAl||lr = minl||A - CCTA||r,
where || X||% = ZX%,

tJ
P. = CC* is the projector matrix on the subspace spanned by the columns of C.

Complexity of the problem? O(nkmn) trivially works; NP-hard if k grows as a
function of n. (NP-hardness in Civril & Magdon-Ismail '07)



) A lower bound for the CSS problem

For any m-by-k matrix C consisting of at most k columns of A
|1A = Py, Alle < [|A = PeAlle

Ay

kxn F
m X n m X k

Given @, it is easy to find X from standard least squares.

That we can find the optimal @ is intriguing!
Optimal ® = U,, optimal X = U,TA. A, =U kUgA = AVng




) Prior work in NLA

Numerical Linear Algebra algorithms for the CSSP

Deterministic, typically greedy approaches.
Deep connection with the Rank Revealing QR factorization.

Strongest results so far (spectral norm): in O(mn?) time

|A = PcAll, < (-_)("31"{2("” - k)lfg) HA o P{-"rkAHQ

1

(more generally, some function p(k,n))

Strongest results so far (Frobenius norm): in O(n*) time

|A = PeAllp < VE(n—k)[|A= Py Al



. Working on p(k,n): 1965 - today

Year Reference Authors plk.n) Complexity  Sottware
1965 [23] Golub - C)('mu' ) [13, 2, 31]
1986 [19] Foster - O(mn?) [18]
1987 7] Chan V(= kW]l O(mn?) [18]
1990 8] Chan-Hansen Vn(n — k)2n—Fk O(mn?) (18]
1991 [3] Bischot-Hansen Vonln — k)2n= b ()(mu ) -
1992 27] Hong-Pan \/Jf (n —Fk)4+mmnlk,n—Fk) ()[ ") -
1994 [10] Chan-Hansen v nk2F O(mn?) [18]
1994 [11] Chandrasekaran-Ipsen vV k+1)(n—Fk) O(nk) -
1996 25 Gu-Eisenstat Vi —Fk)y+1 O(nk) -
\/l."[n —k)y+1 O(mn?) -
1995 6] Bischot-Orti - O(mn?) 4]
modification of [11] Vk+1)(n—Fk) O(mn?) [4. 20]
modification of [30] \/('J; +1)2(n — k) O(mn?) [4. 20]
1999 [30] Pan-Tang \/[L +1)(n—F) O(mn?) _
\/(L + 1)2(n — k) O(mn?) -
\/(L +1)2(n — k) O(mn?) -
2000 [29] Pan VE(m —Fk)+1 O(mn?) -




)Theore’rical computer science contributions

Theoretical Computer Science algorithms for the CSSP

1. Randomized approaches, with some failure probability.
2. More than k columns are picked, e.g., O(poly(k)) columns chosen.
3. Very strong bounds for the Frobenius norm in low polynomial time.

4. Not many spectral norm bounds.



) Prior work in TCS

Drineas, Mahoney, and Muthukrishnan 2005,2006
O(mn?) time, O(k2/¢2) columns -> (1+¢)-approximation.
O(mn?) time, O(k log k/¢?) columns -> (1¢)-approximation.
Deshpande and Vempala 2006
O(mnk?) time, O(k? log k/€?) columns  -> (1x¢)-approximation.

They also prove the existence of k columns of A forming a matrix C, s.t.

|A = PeAlly < VKA - Py Al

Compare to prior best existence result:

|A— PeAll < Vi1 — k |A — Axll5



) The strongest Frobenius norm bound

Drineas, Mahoney, and Muthukrishnan (2006)

Theorem:
Given an m-by-n matrix A, there exists an O(mn?) algorithm that picks
at most O( k log k / €2 ) columns of A
such that with probability at least 1-10-20

|4~ PeAlp < @ +eo)|A-Ppa|

Algorithm:

Use subspace sampling probabilities to sample O(k log k / €2 ) columns.



) Subspace sampling probabilities

Subspace sampling probs:

in O(mn?) time, compute: p; =

\Normaliza‘rion s.t. the p; sum up to 1

NOTE: Up to normalization, these are just statistical leverage scores!

Remark: The rows of V,T are orthonormal, but its columns (V,T)® are not.

Vi orthogonal matrix containing the top
Uy : 25 : VkT k right singular vectors of A.

= diagonal matrix containing the top k

singular values of A.

N
S
|

m X n m X k kX k kXxXn



] Prior work bridging NLA/TCS

Woolfe, Liberty, Rohklin, and Tygert 2007
(also Martinsson, Rohklin, and Tygert 2006)
* O(mn log k) time, k columns
- Same spectral norm bounds as prior work
» Application of the Fast Johnson-Lindenstrauss transform of Ailon-Chazelle

* Nice empirical evaluation.

How to improve bounds for CSSP?
* Not obvious that bounds improve if allow NLA to choose more columns.

* Not obvious how to get around TCS need to over-sample to O(k log(k)) to
preserve rank.



) A hybrid two-stage algorithm

Boutsidis, Mahoney, and Drineas (2007)

Given an m-by-n matrix A (assume m , n for simplicity):
(Randomized phase) Run a randomized algorithm to pick ¢ = O(k logk) columns.

(Deterministic phase) Run a deterministic algorithm on the above columns™* to pick

exactly k columns of A and form an m-by-k matrix C. _
* Not so simple ...

Our algorithm runs in O(mn?) and satisfies, with probability at least 1-10-29,

|A—P-All- < O (L: logt/? kr) |A = P Al -

|A—PeAl, < O (K log2k(n — £)Y4) A = Pu, Al



andomized phase: O(k log k) columns

Randomized phase: ¢ = O(k log k) via "subspace sampling” .

- Compute probabilities p; (below) summing to 1

* Pick the j-th column of V,T with probability min{1,cp}, for each j=12,..n.

- Let (V, 7)., be the (rescaled) matrix consisting of the chosen columns from V,T.

(At most c columns of V,T - in expectation, at most 10c w.h.p. - are chosen.)

m X n m X k k xk kxXn

Subspace sampling: in O(mn?) time, compute:

Vi orthogonal matrix containing the top
k right singular vectors of A.

= diagonal matrix containing the top k
singular values of A.

i (‘(A“)”’:'

2 o
— ‘ (Ag)™

)

‘ (V)

! J_?. - \“



) Deterministic phase: exactly k columns

Deterministic phase

* Let S, be the set of indices of the columns selected by the randomized phase.
* Let (V| ")s, denote the set of columns of V,T with indices in S,
(Technicality: the columns of (V, "), must be rescaled.)
* Run a deterministic NLA algorithm on (V,T), to select exactly k columns.
(Any algorithm with p(k,n) = k2(n-k)"? will do.)
‘- Let S, be the set of indices of the selected columns.
(The cardinality of S, is exactly k.)
* Return A, as the final ourpuft.

(That is, return the columns of A corresponding to indices in S,.)



] Analysis of the two-stage algorithm

Lemma 1: 6,(V,TS,D,) 2 1/2.

(By matrix perturbation lemma, subspace sampling, and since c=O(k log(k).)
Lemma 2: ||A-P Al < [|A-Al e+ 0, /(VTSDS)IIZ, V., TSiDy |,

Lemma 3: 0, 1(V,TS;D;S,) < 2(k(c-k+1))1/2,

(Combine Lemma 1 with the NLA bound from the deterministic phase on the c - not n
- columns of VkT51D1.)

Lemma 4&5: [[2 .V, TS\Dy|l. ® ||A-A]l., for E=2,F.



) Comparison: spectral norm

H w N

Our algorithm runs in O(mn?) and satisfies, with probability at least 1-10-29,

|A—PeAl, < O (K log2k(n — £)Y4) A = Pu, Al

Our running time is comparable with NLA algorithms for this problem.
Our spectral horm bound grows as a function of (n-k)# instead of (n-k)¥2l
Do notice that with respect to k our bound is k'/#log!/?k worse than previous work.

To the best of our knowledge, our result is the first asymptotic improvement of
the work of Gu & Eisenstat 1996.



) Comparison: Frobenius norm

Our algorithm runs in O(mn?) and satisfies, with probability at least 1-10-29,

|A—PcAll < O (1,; logt/? k) A — P, Al -

1.  We provide an efficient algorithmic result.

2. We guarantee a Frobenius norm bound that is at most (k logk)/? worse than the
best known existential result.



] Overview

Faster Algorithms for Least Squares Approximation:

Sampling algorithm and projection algorithm.
Gets a (1+&)-approximation in o(nd?) time.

Uses Randomized Hadamard Preprocessing from the recent "Fast" JL Lemma.

Better Algorithm for Column Subset Selection Problem:

Two-phase algorithm to approximate the CSSP.
For spectral norm, improves best previous bound (6u and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)/?) worse than best existential bound.

Even better, both perform very well empirically!

Apply algorithm for CSSP to Unsupervised Feature Selection.
Application of algorithm for Fast Least Squares Approximation -- Tygert and Rohklin 2008!



) Empirical Evaluation: Data Sets

S&P 500 data:
. historical stock prices for #500 stocks for #1150 days in 2003-2007

. very low rank (so good methodological test), but doesn't classify so well in low-dim space

TechTC term-document data:

. benchmark term-document data from the Open Directory Project (ODP)
. hundreds of matrices, each #200 documents from two ODP categories and 210K terms
. sometimes classifies well in low-dim space, and sometimes not

DNA SNP data from HapMap:

. Single nucleotide polymorphism (i.e., genetic variation) data from HapMap

. hundreds of individuals and millions of SNPs - often classifies well in low-dim space



. Empirical Evaluation: Algorithms

Method Reference |4 — Fod||= < Tome= = | Ewnl
Fivoted QR [Galuk, 1065] o R — k12| |4 — Ag||= Oimnk) | «
High RROR [Faster, 105 yWnin— k2" 4 — Aglh Olmn’)
High REQR [Chan, 1057] ynin— K27 E|| A — Aglh Oimn?) | &
RRGR [Hong and Pan, 1002] e — k] + &fld — A, Oin®)

Low RRQR [Chan snd Haosen, 1004 o [E+ 1) n2=+Y[ |4 — Ag||s Oimn?) | &
Hybrid I RROR [Chandrasskaran and [psen, 1004 | 716+ 1)[n — &)[[4 — A,k Oin®)
Hybeid 11 RRQR JIE+ 1R — k)4 —AL b Oin*)
Hybeid 111 RROR kT 1R — k)4 —AL Oin*)
%rong RRGR [Gu and Eisenstat, 1906 R — K]+ 1[4 — Ag||2 Oin®)
Strong RRQR Ok — k] + 1)||4 — Ax||a O{mn®)
DGEQFY [LAPACK) | [Bischof acd Orti, 199E] O E+ 1P — k][4 — Agfz | - ¥
DGEQPE [LAPACK) O T+ 1in— k|14 — dg|lz | Oim s
AP OR [Stewart, 1000 L 3 v
PT Algorithm 1 [Pan and Tang, 1999] O [+ Li[n — &[4 — Ag|=

PT Algorithm 2 O TR+ 1PIn — k1|4 — Ag||z

PT Algorithm 3 O E+1Pn—k1)||A—A&|lz | -

Gouss RROR [Pan, 2008] O/ ®n — k] + 1[[A — Al OimnT)

» Empirical Evaluation Goal: Unsupervised Feature Selection




S&P 500 Financia

—— Pivoted QR
—#— 2-phase algorithm
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Stock symbol Stock Name Sector
TE TECO Energy  Utilities
RDC Rowan Cos. Energy
CTXS Citrix Systems  Inf. Tech.
AFL AFLAC Inec. Financials
TER Teradyne Inc. Int. Tech.
PCAR PACCAR Inc.  Industrials
TYC Tyeo Industrials
CHREW C.H. Robinson  Industrials
CAT Caterpillar Inc.  Industrials
SWIK Stanley Works  Consumer Disc

il W (2 SWD

0 50 100 150 200 250 300 350 400
number of columns kept in the randomized phase

s 3r
E —%— Low RRQR
g —*— 2-phase algorithm
2ot —&— SVD
o
E
21t
8
8
20 . . . . . . . )

0 50 100 150 200 250 300 350 400

number of columns kept in the randomized phase

 S&P data is a test - it's low rank but doesn't cluster well in that space.



TechTC Term-document data

id1 id2 #docs x F#terms

() 10567 T 113462 139 x 15170

(1i) 10567 T 12121 ° 138 x 11859

(iii) 113462 22294 % 125 x 14392

(iv)  11498° 14517 % 125 x 15485

(v) 14517 % 186330 7 130 x 18289

(vii) 22294% 255759 127 x 10012

(viii) 332386 " 61792 1T 150 x 15860

(1x) 61792 M 814096 = 159 x 16066

X
X
X
X
(vi) 20186 3 22204 * 130 x 12708
X
X
X
X

(x) 85480 1 90753 14 154 x 14780

1 US: Indiana: Evansville

? US: Florida

* California: San Diego: Business, economy

! Canada: British Columbia: Nanaimo

® California: Politics: Candidates, campaigns
6 US: Arkansas

7 US: llinois

8 US: Texas: Dallas

 Asia: Taiwan: Business and Economy

" Shopping: Vehicles

11 17S: California

12 Burope: Ireland: Dublin

¥ Canada: Business and Economy: Industries
1 Materials and Supplies: Masonry and Stone

(1) florida, evansville, their, consumer, reports

(i) diego, evansville, pianos, which, services

(iii) Horida, nanaimo, served, expensive, other

(iv) eureka, california, cobbler, which, insurance

(v) eureka, reliable, coldwell, rozewood, information

(vi) dallas, nanaimo, untitled, butfet, included

(vii) nanaimo, taiwan, megahome, great, states

(viii) agent, topframe, spacer, order, during

(ix) dublin, beach, estate, spacer, which

(x) canada, stone, mainframe, spacer, other

* Representative examples that cluster well in the low-dimensional space.




TechTC Term-document data
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" X id1 =11346
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-0.15 x * :
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X X X i~
_02_ X —
x x «
x X
x 'S
-0.25+ B
X
_03 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Top singular vector

* Representative examples that cluster well in the low-dimensional space.



TechTC Term-documen

Leverage
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Top singular vector

DNA HapMap SNP data

Separating CHB and JPT using the top singular vector
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- Most NLA codes don't even run on this 90 x 2M matrix.

* Informativeness is a state of the art supervised technique in genetics.



DNA HapMap SNP data
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] Conclusion

Faster Algorithms for Least Squares Approximation:

Sampling algorithm and projection algorithm.
Gets a (1+&)-approximation in o(nd?) time.

Uses Randomized Hadamard Preprocessing from the recent "Fast" JL Lemma.

Better Algorithm for Column Subset Selection Problem:

Two-phase algorithm to approximate the CSSP.
For spectral norm, improves best previous bound (6u and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)/?) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.



