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Least Squares (LS) Approximation

We are interested in over-constrained Lp regression problems, n >> d.

Typically, there is no x such that Ax = b.

Want to find the “best” x such that Ax ≈ b.

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



Many applications of this!
• Astronomy: Predicting the orbit of the asteroid Ceres (in 1801!).

Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of “least squares optimization” and runs in O(nd2) time!

• Bioinformatics: Dimension reduction for classification of gene expression microarray data.

• Medicine: Inverse treatment planning and fast intensity-modulated radiation therapy.

• Engineering: Finite elements methods for solving Poisson, etc. equation.

• Control theory: Optimal design and control theory problems.

• Economics: Restricted maximum-likelihood estimation in econometrics.

• Image Analysis: Array signal and image processing.

• Computer Science: Computer vision, document and information retrieval.

• Internet Analysis: Filtering and de-noising of noisy internet data.

• Data analysis: Fit parameters of a biological, chemical, economic, social, internet, etc. model
to experimental data.



Exact solution to LS Approximation

Cholesky Decomposition:
If A is full rank and well-conditioned,

decompose ATA = RTR, where R is upper triangular, and

solve the normal equations: RTRx=ATb.

QR Decomposition:
Slower but numerically stable, esp. if A is rank-deficient.

Write A=QR, and solve Rx = QTb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.

Write A=UΣVT, in which case: xOPT = A+b = VΣ-1
kUTb.

Complexity is O(nd2) for all of these, but
constant factors differ.

Projection of b on
the subspace spanned
by the columns of A

Pseudoinverse
of A



Modeling with Least Squares

Assumptions underlying its use:
• Relationship between “outcomes” and “predictors is (approximately) linear.

• The error term ε has mean zero.

• The error term ε has constant variance.

• The errors are uncorrelated.

• The errors are normally distributed (or we have adequate sample size to rely on
large sample theory).

Should always check to make sure these assumptions have not
been (too) violated!



Statistical Issues and Regression Diagnostics

Model: b = Ax+ε b = response; A(i) = carriers;

ε = error process s.t.: mean zero, const. varnce, (i.e., E(e)=0

and Var(e)=σ2I), uncorrelated, normally distributed

xopt = (ATA)-1ATb (what we computed before)

b’ = Hb H = A(ATA)-1AT = “hat” matrix

Hij - measures the leverage or influence exerted on b’i by bj,

regardless of the value of bj (since H depends only on A)

e’ = b-b’ = (I-H)b vector of residuals - note: E(e’)=0, Var(e’)=σ2(I-H)

Trace(H)=d Diagnostic Rule of Thumb: Investigate if Hii > 2d/n

H=UUT U is from SVD (A=UΣVT), or any orthogonal matrix for span(A)

Hii = |U(i)|2
2 leverage scores = row “lengths” of spanning orthogonal matrix



Hat Matrix and Regression Diagnostics
See: “The Hat Matrix in Regression and ANOVA,” Hoaglin and Welsch (1978)

Examples of things to note:
• Point 4 is a bivariate outlier - and  H4,4 is largest, just exceeds 2p/n=6/10.

• Points 1 and 3 have relatively high leverage - extremes in the scatter of points.

• H1,4 is moderately negative - opposite sides of the data band.

• H1,8 and H1,10 moderately positive - those points mutually reinforce.

• H6,6 is fairly low - point 6 is in central position.



Statistical Leverage and Large Internet Data



Overview

Faster Algorithms for Least Squares Approximation:
Sampling algorithm and projection algorithm.

Gets a (1+ε)-approximation in o(nd2) time.

Uses Randomized Hadamard Preprocessing from the recent “Fast” JL Lemma.

Better Algorithm for Column Subset Selection Problem:
Two-phase algorithm to approximate the CSSP.

For spectral norm, improves best previous bound (Gu and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)1/2) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.



Original (expensive) sampling algorithm

Algorithm

1. Fix a set of probabilities pi,
i=1,…,n.

2. Pick the i-th row of A and the i-th
element of b with probability

min {1, rpi},

and rescale by (1/min{1,rpi})1/2.

3. Solve the induced problem.

Drineas, Mahoney, and Muthukrishnan (SODA, 2006)

• These probabilities pi’s are statistical leverage scores!

• “Expensive” to compute, O(nd2) time, these pi’s!

Theorem:

Let:

If the pi satisfy:

for some β ε (0,1], then w.p. ≥ 1-δ,



A “fast” LS sampling algorithm

Algorithm:

1. Pre-process A and b with a “randomized Hadamard transform”.

2. Uniformly sample                                                                 constraints.

3. Solve the induced problem:

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007)

Main theorem:

• (1±ε)-approximation

• in                                                                                   time!!



A structural lemma

Approximate                                           by solving

where        is any matrix.

Let         be the matrix of left singular vectors of A.

assume that γ-fraction of mass of b lies in span(A).

Lemma: Assume that:

Then, we get relative-error approximation:



Randomized Hadamard preprocessing

Fact 1: Multiplication by HnDn doesn’t change the solution:

Fact 2: Multiplication by HnDn is fast - only O(n log(r)) time, where r is the number of
elements of the output vector we need to “touch”.

(since Hn and Dn are orthogonal matrices).

Fact 3: Multiplication by HnDn approximately uniformizes all leverage scores:

Let Hn be an n-by-n deterministic Hadamard matrix, and
Let Dn be an n-by-n random diagonal matrix with +1/-1 chosen u.a.r. on the diagonal.

Facts implicit or explicit in: Ailon & Chazelle (2006), or Ailon and Liberty (2008).



Fast LS via sparse projection
Algorithm

1. Pre-process A and b with a randomized Hadamard transform.

2. Multiply preprocessed input by sparse random k x n matrix T,
where

and where k=O(d/ε) and q=O(d log2(n)/n+d2log(n)/n) .

3. Solve the induced problem:

Drineas, Mahoney, Muthukrishnan, and Sarlos (2007)  - sparse projection matrix from Matousek’s version of Ailon-Chazelle 2006

• Dense projections will work, but it is “slow.”

• Sparse projection is “fast,” but will it work?

-> YES! Sparsity parameter q of T related to non-uniformity of leverage scores!



Overview

Faster Algorithms for Least Squares Approximation:
Sampling algorithm and projection algorithm.

Gets a (1+ε)-approximation in o(nd2) time.

Uses Randomized Hadamard Preprocessing from the recent “Fast” JL Lemma.

Better Algorithm for Column Subset Selection Problem:
Two-phase algorithm to approximate the CSSP.

For spectral norm, improves best previous bound (Gu and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)1/2) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.



Column Subset Selection Problem (CSSP)

PC = CC+ is the projector matrix on the subspace spanned by the columns of C.

Complexity of the problem? O(nkmn) trivially works; NP-hard if k grows as a
function of n. (NP-hardness in Civril & Magdon-Ismail ’07)

Given an m-by-n matrix A and a rank parameter k, choose exactly k columns
of A s.t. the m-by-k matrix C minimizes the error over all O(nk) choices for C:



A lower bound for the CSS problem

For any m-by-k matrix C consisting of at most k columns of A

Ak

Given Φ, it is easy to find X from standard least squares.

That we can find the optimal Φ is intriguing!

Optimal Φ = Uk, optimal X = Uk
TA.



Prior work in NLA

Numerical Linear Algebra algorithms for the CSSP

• Deterministic, typically greedy approaches.

• Deep connection with the Rank Revealing QR factorization.

• Strongest results so far (spectral norm): in O(mn2) time

(more generally, some function p(k,n))

• Strongest results so far (Frobenius norm): in O(nk) time



Working on p(k,n): 1965 – today



Theoretical computer science contributions

Theoretical Computer Science algorithms for the CSSP

1. Randomized approaches, with some failure probability.

2. More than k columns are picked, e.g., O(poly(k)) columns chosen.

3. Very strong bounds for the Frobenius norm in low polynomial time.

4. Not many spectral norm bounds.



Prior work in TCS
Drineas, Mahoney, and Muthukrishnan 2005,2006

• O(mn2) time, O(k2/ε2) columns -> (1±ε)-approximation.

• O(mn2) time, O(k log k/ε2) columns  -> (1±ε)-approximation.

Deshpande and Vempala 2006

• O(mnk2) time, O(k2 log k/ε2) columns  -> (1±ε)-approximation.

•              They also prove the existence of k columns of A forming a matrix C, s.t.

•     Compare to prior best existence result:



The strongest Frobenius norm bound

Theorem:

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks

at most O( k log k / ε2 ) columns of A

such that with probability at least 1-10-20

Algorithm:

Use subspace sampling probabilities to sample O(k log k / ε2 ) columns.

Drineas, Mahoney, and Muthukrishnan (2006)



Subspace sampling probabilities

NOTE: Up to normalization, these are just statistical leverage scores!

Remark: The rows of Vk
T are orthonormal, but its columns (Vk

T)(i) are not.

Subspace sampling probs:

in O(mn2) time, compute:

Vk: orthogonal matrix containing the top
k right singular vectors of A.

Σ k: diagonal matrix containing the top k
singular values of A.

Normalization s.t. the pj sum up to 1



Prior work bridging NLA/TCS

Woolfe, Liberty, Rohklin, and Tygert 2007

(also Martinsson, Rohklin, and Tygert 2006)

• O(mn log k) time, k columns

• Same spectral norm bounds as prior work

• Application of the Fast Johnson-Lindenstrauss transform of Ailon-Chazelle

• Nice empirical evaluation.

How to improve bounds for CSSP?

• Not obvious that bounds improve if allow NLA to choose more columns.

• Not obvious how to get around TCS need to over-sample to O(k log(k)) to
preserve rank.



Given an m-by-n matrix A (assume m ¸ n for simplicity):

• (Randomized phase) Run a randomized algorithm to pick c = O(k logk) columns.

• (Deterministic phase) Run a deterministic algorithm on the above columns* to pick
exactly k columns of A and form an m-by-k matrix C.

Our algorithm runs in O(mn2) and satisfies, with probability at least 1-10-20,

* Not so simple …

A hybrid two-stage algorithm
Boutsidis, Mahoney, and Drineas (2007)



Randomized phase: O(k log k) columns

Randomized phase: c = O(k log k) via “subspace sampling” .

• Compute probabilities pj (below) summing to 1

• Pick the j-th column of Vk
T with probability min{1,cpj}, for each j = 1,2,…,n.

• Let (Vk
T)S1 be the (rescaled) matrix consisting of the chosen columns from Vk

T .

(At most c columns of Vk
T - in expectation, at most 10c w.h.p. - are chosen.)

Subspace sampling: in O(mn2) time, compute:

Vk: orthogonal matrix containing the top
k right singular vectors of A.

Σ k: diagonal matrix containing the top k
singular values of A.



Deterministic phase: exactly k columns

Deterministic phase

• Let S1 be the set of indices of the columns selected by the randomized phase.

• Let (Vk
T)S1 denote the set of columns of Vk

T with indices in S1,

(Technicality: the columns of (Vk
T)S1 must be rescaled.)

• Run a deterministic NLA algorithm on (Vk
T)S1 to select exactly k columns.

(Any algorithm with p(k,n) = k1/2(n-k)1/2 will do.)

• Let S2 be the set of indices of the selected columns.

(The cardinality of S2 is exactly k.)

• Return AS2 as the final ourput.

(That is, return the columns of A corresponding to indices in S2.)



Analysis of the two-stage algorithm

Lemma 1: σk(Vk
TS1D1) ≥ 1/2.

(By matrix perturbation lemma, subspace sampling, and since c=O(k log(k).)

Lemma 2: ||A-PCA||ξ ≤ ||A-Ak||ξ+ σk
-1(Vk

TS1D1S2)||Σρ-kVρ-k
TS1D1||ξ.

Lemma 3: σk
-1(Vk

TS1D1S2) ≤ 2(k(c-k+1))1/2.

(Combine Lemma 1 with the NLA bound from the deterministic phase on the c - not n
- columns of Vk

TS1D1.)

Lemma 4&5: ||Σρ-kVρ-k
TS1D1||ξ ≈ ||A-Ak||ξ, for ξ=2,F.



Comparison: spectral norm

1. Our running time is comparable with NLA algorithms for this problem.

2. Our spectral norm bound grows as a function of (n-k)1/4 instead of (n-k)1/2!

3. Do notice that with respect to k our bound is k1/4log1/2k worse than previous work.

4. To the best of our knowledge, our result is the first asymptotic improvement of
the work of Gu & Eisenstat 1996.

Our algorithm runs in O(mn2) and satisfies, with probability at least 1-10-20,



Comparison: Frobenius norm

1. We provide an efficient algorithmic result.

2. We guarantee a Frobenius norm bound that is at most (k logk)1/2 worse than the
best known existential result.

Our algorithm runs in O(mn2) and satisfies, with probability at least 1-10-20,



Overview

Faster Algorithms for Least Squares Approximation:
Sampling algorithm and projection algorithm.

Gets a (1+ε)-approximation in o(nd2) time.

Uses Randomized Hadamard Preprocessing from the recent “Fast” JL Lemma.

Better Algorithm for Column Subset Selection Problem:
Two-phase algorithm to approximate the CSSP.

For spectral norm, improves best previous bound (Gu and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)1/2) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation -- Tygert and Rohklin 2008!



Empirical Evaluation: Data Sets

S&P 500 data:
• historical stock prices for ≈500 stocks for ≈1150 days in 2003-2007

• very low rank (so good methodological test), but doesn’t classify so well in low-dim space

TechTC term-document data:
• benchmark term-document data from the Open Directory Project (ODP)

• hundreds of matrices, each ≈200 documents from two ODP categories and ≥10K terms

• sometimes classifies well in low-dim space, and sometimes not

DNA SNP data from HapMap:
• Single nucleotide polymorphism (i.e., genetic variation) data from HapMap

• hundreds of individuals and millions of SNPs - often classifies well in low-dim space



Empirical Evaluation: Algorithms

• Empirical Evaluation Goal: Unsupervised Feature Selection



S&P 500 Financial Data

• S&P data is a test - it’s low rank but doesn’t cluster well in that space.



TechTC Term-document data

• Representative examples that cluster well in the low-dimensional space.



TechTC Term-document data

• Representative examples that cluster well in the low-dimensional space.



TechTC Term-document data



DNA HapMap SNP data

• Most NLA codes don’t even run on this 90 x 2M matrix.

• Informativeness is a state of the art supervised technique in genetics.



DNA HapMap SNP data



Conclusion

Faster Algorithms for Least Squares Approximation:
Sampling algorithm and projection algorithm.

Gets a (1+ε)-approximation in o(nd2) time.

Uses Randomized Hadamard Preprocessing from the recent “Fast” JL Lemma.

Better Algorithm for Column Subset Selection Problem:
Two-phase algorithm to approximate the CSSP.

For spectral norm, improves best previous bound (Gu and Eisenstat, etc. and the RRQR).

For Frobenius norm, O((k log k)1/2) worse than best existential bound.

Even better, both perform very well empirically!
Apply algorithm for CSSP to Unsupervised Feature Selection.

Application of algorithm for Fast Least Squares Approximation.


