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‘ How do we view BIG data?

Can’t anybody see who
| am or want to be?

Wow. It's big.
| need fast
algorithms.

Wow. | need
a bigger
machine.

Wow. This is a
mess. | better
clean it up.

Wow. | need
to posit a
model.

Wow. It's not
smooth. | need
regularization.




Algorithmic & Statistical Perspectives ...

=3

Lambert (2000)

Computer Scientists

- Data: are a record of everything that happened.

* Goal. process the data to find interesting patterns and associations.
* Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists, etc)

* Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

* Goal. is to extract information about the world from noisy data.

* Methodology. Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.



, .. are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:
* Problems often involve computation, but the study of computation
per se is secondary

* Only makes sense to develop algorithms for well-posed™ problems
* First, write down a model, and think about computation later

Computer science:

- Easier to study computation per se in discrete settings, e.g.,
Turing machines, logic, complexity classes

* Theory of algorithms divorces computation from data

* First, run a fast algorithm, and ask what it means later

*Solution exists, is unique, and varies continuously with input data



. Anecdote 1.

, Randomized Matrix Algorithms

Mahoney "Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Mahoney "Randomized Algorithms for Matrices and Data" (2011)

Theoretical origins\ .

* theoretical computer science,
convex analysis, etc.

" Practical applications

* NLA, ML, statistics, data
analysis, genetics, etc

* Fast JL transform

« Johnson-Lindenstrauss
 Additive-error algs
* Good worst-case analysis

* No statistical analysis

* Relative-error algs

* Numerically-stable algs

* Good statistical properties
* Beats LAPACK & parallel-

* No implementations

S

\_distributed implementations

How to "bridge the gap"?
» decouple randomization from linear algebra

« importance of statistical leverage scores!



Anecdote 2:

‘ Communities in large informatics graphs

Mahoney "Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) Data are expander'-like
Leskovec, Lang, Dasgupta, & Mahoney "Community Structure in Large Networks ..." (2009) at Iar'ge size scales |l

People imagine social Real social networks Size-resolved conductange
networks to look like: actually look like: (degree-weighted
expansion) plot looks like:
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* Lower Bound Result; Structural Result; Modeling Result; Etc.

* Algorithmic Result (ensemble of sets returned by different approximation
algorithms are very different)

« Statistical Result (Spectral provides more meaningful communities than flow)



Lessons from the anecdotes

=

Mahoney "Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

We are being forced to engineer a union between two very
different worldviews on what are fruitful ways fo view the data

« in spite of our best efforts not to

Often fruitful to consider the statistical properties implicit in
worst-case algorithms

* rather that first doing statistical modeling and then doing applying a
computational procedure as a black box

« for both anecdotes, this was essential for leading to "useful theory"”

How to extend these ideas to "bridge the gap” b/w the theory
and practice of MMDS (Modern Massive Data Set) analysis.

* QUESTION: Can we identify a/the concept at the heart of
the algorithmic-statistical disconnect and then drill-down on it?



] Outline and overview

Preamble: algorithmic & statistical perspectives
General thoughts: data & algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian

* Three diffusion-based procedures (heat kernel, PageRank, truncated lazy
random walk) are implicitly solving a regularized optimization exact/y

A statistical interpretation of this result

* Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression

Spectral versus flow-based algs for graph partitioning

* Theory says each regularizes in different ways; empirical results agree!
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, Relationship b/w algorithms and data (1 of 3)

Before the digital computer:

* Natural (and other) sciences rich source of problems, Statistics invented
to solve those problems

* Very important notion: well-posed (well-conditioned) problem: solution
exists, is unique, and is continuous w.r.t. problem parameters

« Simply doesn’t make sense to solve ill-posed problems

Advent of the digital computer:
* Split in (yet-to-be-formed field of) "Computer Science”

* Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math)

« Two very different perspectives on relationship b/w algorithms and data



] Relationship b/w algorithms and data (2 of 3)

Two-step approach for "numerical/statistical” problems
« Is problem well-posed/well-conditioned?
* If no, replace it with a well-posed problem. (Regularization!)

- If yes, design a stable algorithm.

View Algorithm A as a function f

* Given x, it tries to compute y but actually computes y*
 Forward error: Ay=y*-y

 Backward error: smallest Ax s.t. f(x+Ax) = y*

* Forward error < Backward error * condition number

 Backward-stable algorithm provides accurate solution to well-posed problem!



) Relationship b/w algorithms and data (3 of 3)

One-step approach for study of computation, per se

* Concept of computability captured by 3 seemingly-different discrete
processes (recursion theory, A-calculus, Turing machine)

« Computable functions have internal structure (P vs. NP, NP-hardness, etc.)

* Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n),
or O(n3) vs. O(n log n))

Modern Theory of Approximation Algorithms
* provides forward-error bounds for worst-cast input

» worst case in two senses: (1) for all possible input & (2) i.t.0. relatively-
simple complexity measures, but independent of “structural parameters”

« get bounds by "relaxations” of IP to LP/SDP/etc., i.e., a "nicer” place



] Statistical reqularization (1 of 3)

Regularization in statistics, ML, and data analysis

* arose in integral equation theory to “solve” ill-posed problems

« computes a better or more "robust” solution, so better inference
» involves making (explicitly or implicitly) assumptions about data

* provides a trade-off between "solution quality” versus "solution
hiceness”

« often, heuristic approximation have regularization properties as a
“side effect”

* lies at the heart of the disconnect between the "algorithmic
perspective” and the "statistical perspective”



Statistical reqularization (2 of 3)

=

Usually implemented in 2 steps:

 add a norm constraint (or "geometric
capacity control function”) g(x) to
objective function f(x)

« solve the modified optimization problem
x' = argmin, f(x) + A g(x)

Often, this is a "harder” problem,

e.g., L1-reqularized L2-regression

x' = argmin, |[Ax-b[[, + A [|x]],




‘ Statistical regularization (3 of 3)

Regularization is often observed as a side-effect or
by-product of other design decisions

* "binning," "pruning,” etc.
* “truncating” small entries to zero, "early stopping” of iterations

« approximation algorithms and heuristic approximations engineers
do to implement algorithms in large-scale systems

Big question: Can we formalize the notion that/when
approximate computation can implicitly lead to "better’
or "more regular” solutions than exact computation?

[



‘ Outline and overview

Approximate first nontrivial eigenvector of Laplacian

* Three diffusion-based procedures (heat kernel, PageRank, truncated lazy
random walk) are implicitly solving a regularized optimization exact/y



‘ Notation for weighted undirected graph

e vertex set V ={1,...,n}
e edgeset ECV xV
e edge weight function w: E — Ry
e degree function d: V — Ry, d(u) =), w(u,v)
e diagonal degree matrix D € RV*V, D(v,v) = d(v)
e combinatorial Laplacian Lo =D — W

e normalized Laplacian L = D~1/2 Lo D~1/2



] Approximating the top eigenvector

Basic idea: Given a Laplacian SPSD matrix A,
« Power method starts with "any” vy, and iteratively computes
Vi = AV: 7 [AV ], > v
« Similarly for other "diffusion-based” methods
« If we truncate after (say) 3 or 10 iterations,
- we still have some admixing from other eigen-directions
* thus we approximate the exact solution!

* do we exactly solve a (reqularized) version of the problem?

What objective does the exact eigenvector optimize?

* Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x.



‘ Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. matrix):

* Heat Kernel: H, = exp(—tL) = 32, (=" 1k

k!
* PageRank: m(v,s) =vs+ (1 —vy)Mn(y,s)

Ry=y(I-(1-vy)M)"
* g-step Lazy Random Walk:

W4 = (ol + (1 — a)M)*

Ques: Do these "approximation procedures” exactly
optimizing some regularized objective?



‘ Two versions of spectral partitioning

VP:
min. ! Loz

st. 'Lk x=1

l <x,1>p=0

R-VP:
min. 2! Lgx + \f(x)

s.t. constraints



‘ Two versions of spectral partitioning

VP: +— SDP:
min. z! Lax min. LgoX
st. a2'Lg x=1 st. Lk oX =1
l <z,1>p=0 l X =0
R-VP: R-SDP:

min. 2! Loz + \f(x) min. Lgo X + AF(X)

s.t. constraints s.t. constraints



! A simple theorem

Mahoney and Orecchia (2010) /AOdificaTion of the usual
F SDP : LeX 1 F(X SDP form of spectral to
( 177)' min ¢ T+ = ( ) have regularization (buft,

U on the matrix X, not the
st. TeX =1 vector x).

X =0

Theorem: Let G be a connected, weighted, undirected graph,
with normalized Laplacian L. Then, the following conditions
are sufficient for X* to be an optimal solution to (F,n)-SDP.

e X*=(VF) ' (n-(\*I —L)), for some \* € R,
o [oe X" =1,
o X*>0.



‘ Three simple corollaries
Fu(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with + = n

Fo(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with + ~ n

F.(X) = (1/p)[IX]].P (i.e., matrix p-norm, for p>1)
gives Truncated Lazy Random Walk, with A ~ n

Answer: These "approximation procedures” compute
reqgularized versions of the Fiedler vector exact/y

I.e., the exactly optimize min LeX + (1/n) F(X)



] Outline and overview

A statistical interpretation of this result

* Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression



. Statistical framework for regularized
] graph estimation

Perry and Mahoney (2011)

Question:What about a "statistical” interpretation of
this phenomenon of implicit regularization via
approximate computation?

« Issue 1: Best to think of the graph (e.g., Web graph) as a
single data point, so what is the "ensemble"?

* Issue 2: No reason to think that "easy-to-state problems” and
“easy-to-state algorithms" intersect.

* Issue 3: No reason to think that "priors"” corresponding to
what people actually do are particularly "nice."



‘ Recall reqularized linear regression

e Observe n predictor-response pairs in RP X R:
(1131, yl)a c oy (xna yn)

e Original problem: find 3 such that g'z; ~ y;;
minimize F(3) =Y. ||y; — 823

e Regularized problem:
minimize F'(3) + A||3||3 (ridge) or
minimize F'(3) + A||3]|1 (lasso)

e These can be interpreted in terms of a Gaussian
prior or a Laplace prior, respectively, on the
coefficient vector of the regression problem



Model yi|x;, B ~ Normal(x!3, o2)

/
p(y|3) exp{—2? Z - B'x;)?
Prior 3; ~ Normal(0, 72) 3; ~ Laplace(p)
L e Lan.
p(3) expi—5 5 6l2} e’(p{“,‘,"”l}
E’\tA'APt {>-regularized LS {1-regularized LS
stimate

Regularization is equivalent to “Bayesianization” in the following

sense: the solution to the regularized problem is equal to the
maximim a posteriori probability (MAP) estimate of the parameter

with a prior determined by the regularization penalty.



. Bayesian inference for the population
‘ Laplacian (broadly)

To apply the Bayesian formalism to the Laplacian eigenvector problem, we
e assume there exists a “population” Laplacian £, from prior p(L)

e construe the observed/sample Laplacian as noisy version of £, from dis-
tribution p(L | £)

e estimate £ = argmax,{p(L | L)}

e equivalently, £ = argmin,{—logp(L | £) —logp(L)}

In estimating L,

e negative log of the likelihood plays the role of optimization criterion;

e negative log of prior distribution for £ plays the role of penalty function.



. Bayesian inference for the population

! Laplacian (specifics)

e two parameters, m (scalar) and U (function)

e assume L € X', where

X={X:X>0, XD'?1 =0, rank(X) =n — 1}
e prior p(L) x exp{—-U(L)}
e model L ~ £ Wishart(£,m), i.e.

exp{—5Tr(L L")}
|£|m/2

p(L | L)



"y Heuristic justification for Wishart

1. Ly =" z;x}, where z;(u) = +1, z;(v) = —1, and (u,v) is
the ith edge in graph.

2. Approximate distribution of x; by &; ~ Normal(0, L); first
two moments of x; and x; match.

3. Y0 &) is distributd as Wishart(Lo, m).

4. Similar approximation holds for normalized Laplacian.



‘ A prior related to PageRank procedure

Perry and Mahoney (2011)

Let LT = 71OAO’ be the spectral decomposition of L1, where

T = Trace(L£") > 0 is a scale factor, O € R"*"~! is an orthogonal
matrix, and A = diag(A(1),...,A(n — 1)), where >, A(v) = 1.
(Note A is unordered.) The prior takes the form:

n—1

p(L) ccp(r) | Aw)*™

v=1

Note: p(7) is unrestricted; and A is Dirichlet distributed with
shape parameter (a, ..., ).



Main "Statistical” Result

Perry and Mahoney (2011)

Proposition If £ is the MAP estimate of £, with 7 = Trace(£") and
O = 77 1A% then O solves the Mahoney-Orecchia regularized SDP with
G(X) = —log|X| and n defined by

mT
m+2(a—1)

’]7:

That is, with this specific prior, the MAP estimate solves the
regularized SDP related to the PageRank procedure.

Note: with different choices of priors, one can recover the Heat
Kernel and Lazy Random Walk SDP solutions.



! Empirical evaluation setup

Generate a population Laplacian £ by performing s edge swaps
starting from a 2-dimensional grid with n nodes and p edges.

s=0 s=1 s=4 s=9 s=16 §=25 $=36 s$=49

4

AUAN
N
h—i/ﬁ’_‘

s=2-2

When s = 0 the population graph with Laplacian £ is a
low-dimensional grid; as s — o0, it becomes an expander-like
random graph.



" "he prior vs. the simulation procedure

Perry and Mahoney (2011)
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‘ Generating a sample

Given a population graph with Laplacian £, we generate a sample
Laplacian L by sampling m edges. In the experiments, we get to
observe L but not L.

mip=1 miu=2 mlu=5 m/u=10

o

As m/p increases, sample Laplacian L approaches the
population Laplacian L.

© o= © O 0 O




‘ Two estimators for population Laplacian

Two estimators for L:
e Unregularized: £ =L

e Regularized: £, the solution to the MO
regularized SDP with G(X) = —log | X|

Notation: 7 = Trace(L™), © :AT_1£+; 7 = Trace(LT),

b
_A—]. +. -~ — —|— _A_]_ +. — e
O = 77147, 7, = Trace( 0 ), O =17, Dn’ 7 1S mean
of 7 over all replicates.



‘ Empirical results (1 of 3)

Perry and Mahoney (2011)
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| results (2 of 3)
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Optimal v
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‘ Empirical results (3 of 3)
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The optimal n increases with m and s/u (left); this
agrees qualitatively with the Proposition (right).



‘ Outline and overview

Spectral versus flow-based algs for graph partitioning

* Theory says each regularizes in different ways; empirical results agree!



‘ Graph partitioning

A family of combinatorial optimization problems - want to
partition a graph's nodes into two sets s.t.:

* Not much edge weight across the cut (cut quality)

» Both sides contain a lot of nodes

Several standard formulations:

* Graph bisection (minimum cut with 50-50 balance)

* B-balanced bisection (minimum cut with 70-30 balance)
« cutsize/min{|A[,|B|}, or cutsize/(|A||B|) (expansion)
* cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductal

All of these formalizations of the bi-criterion are NP-hard!



] Networks and networked data

Lots of "networked” datall

* technological networks
- AS, power-grid, road networks
» biological networks
- food-web, protein networks
- social networks
- collaboration networks, friendships

- information networks

- co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

* language networks
- semantic networks...

Interaction graph model of

networks:

- Nodes represent “entities”

- Edges represent "interaction”
between pairs of entities



Social and Information Networks

e Social nets | Nodes | Edges | Description
LIVEJOURNAL | 4,843,953 | 42,845,684 | Blog friendships |4]
EPINIONS 75,877 405,739 | Who-trusts-whom [35]
FLICKR 404,733 | 2,110,078 | Photo sharing [21]
DELICIOUS 147,567 301,921 | Collaborative tagging
CA-DBLP 317,080 | 1,049,866 | Co-authorship (CA) [4]
CA-COND-MAT 21,363 91,286 | CA cond-mat [25]

e Information networks

CIT-HEP-TH 27,400 352,021 | hep-th citations [13|
Broc-Posts 437,305 565,072 | Blog post links [28]

e Web graphs

WEB-GOOGLE 855,802 4,291,352 | Web graph Google

WEB-wT10G 1,458,316 | 6,225,033 | TREC WT10G web

e Bipartite affiliation (authors-to-papers) networks

ATp-DBLP 615,678 944,456 | DBLP [25]
ATP-ASTRO-PH 54,498 131,123 | Arxiv astro-ph [25]
e Internet networks

AS 6,474 12,572 | Autonomous systems
GNUTELLA 62,561 147,878 | P2P network [36]

Table 1: Some of the network datasets we studied.



' Motivation: Sponsored (“paid”

Text based ads driven by user specified query

The process:

* Advertisers bids on query
phrases.

* Users enter query phrase.
* Auction occurs.

» Ads selected, ranked,
displayed.

* When user clicks,
advertiser pays!

Web | Images | Video | Local | Shopping | more =

barcelona chair [Searchiy| Options «

1-10 of 4,220,000 for barcelona chair (About) - 0.09 sex

Also try: barcelona style chair, knoll barcelona chair, More...

e Barcelona Chair: Sale Weekend
www.PGMod.com/Barcelona-Chair - Customer Appreciation Sale! Save 5% on Barcelona Chair +
Free S&H.

e Barcelona Chair - Free Shipping
www.moderncollections.com - Avoid cheap imitations. Our Barcelona Chair offers genuine
quality...

e Barcelona Chairs
BizRate.com - We Offer 2,500+ Chair Choices. Deals On barcelona chairs.

e Classic Barcelona Chair On Sale $899
funkysofa.com - Al colors available. The Barcelona Chair is a classic piece that...

Yahoo!s: Report kad results or ads. Bucket test: F655

1.Barcelona Chair - Volo Leather
Ludwig Mies van der Rohe's Barcelona Chair and Stool (1929), originally created to furnish his
German Pavilion at :he International Exhibition in Barcelona, have come...
www.dwr.com/productdetail.cfm?id=7200 - 17k

2. Barcelona chair - Wikipedia, the free encyclopedia
The Barcelona chair and ottoman was designed by Mies van der Rohe for ... Barcelona Chair,
inspired by its predecessors, the campaign and folding chairs ...

Search

YaHoOO!

Barcelona Chair Direct from
Importer

Barcelona Sofa, Barcelona Chair
and more Barcelona fumniture
designs.

www. WickedElements.com

Barcelona Chairs

Chairs & Seats from 152+ Shops.
Barcelona Chairs on Sale.
www.Calibex.com

Barcelona Chair - $659.99
Free Shipping

Loveseat, daybed, ottoman. Free
shipping. Up to 60% off.
www.modabode.com

Buy Barcelona Chairs
We Have 13,000+ Sofas.
Barcelona Chairs on Sale.
www. NexTag.com/sofas

Barcelona Chair

The Right Style For Your Space.
Barcelona chair From $20.
Shopzilla.com/chairs

1



] Bidding and Spending Graphs
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A "social network" with "term-document” aspects.
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Uses of Bidding and Spending
graphs:

* "deep” micro-market identification.

* improved query expansion.

More generally, user segmentation
for behavioral targeting.



] Micro-markets in sponsored search

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

What is the CTR and
advertiser ROl of sports

gambling keywords?

Movies Media

Gambling \ Sport
Ny videos

1.4 Million Advertisers

10 million keywords



g What do these networks "look" like?




, The "lay of the land”

Spectral methods* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods™* - single-commodity or multi-
commodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.



Comparison of “spectral” versus "flow"

Spectral: Flow:
- Compute an eigenvector  Compute a LP
* "Quadratic” worst-case bounds + O(log n) worst-case bounds

« Worst-case achieved -- on “long + Worst-case achieved -- on
stringy” graphs expanders

* Worse-case is “local” property  « Worst case is "global" property

 Embeds you on a line (or K,) « Embeds you in L1

Two methods -- complementary strengths and weaknesses

* What we compute is determined at least as much by as the
approximation algorithm as by objective function.



) Explicit versus implicit geometry

Explicitly- . Implicitly-imposed

' eomet

imposed AR geometry

geometry N - Approximation algorithms

e Traditional implicitly embed the data in a
regularization A "nice"” metric/geometric place
uses explicit /\ and then round the solution.
norm constraint >

to make sure N

solution vector . (Xd) (X' d")

is “small” and - ‘ f o f{y)
not-too-complex — .
> N £(x)




? Regularized and non-regularized communities (1 of 2)

Conductance of bounding cut s —  Diameter of the cluster
Local Spectrdl E
E Disconnected o
0.001 . e ol 3 A M PO gl i s 1 . P B R M i i s
10 100 1000 10000 100000 1e+06 10 100 1000 10000 100000 le+06
k {number of nodes in the cluster> k {number of nodes in the cluster>

a0e|  External/internal conductance

KR ‘.—

* Metis+MQT - a Flow-based method - 1 O
(red) gives sets with better : S
s , ¥ )

conductance. S o L % -
* Local Spectral (blue) gives tighter <~ 1 w0
and more well-rounded sets. : Lg
0.1 e <:>
0.01 T Q—

10 100 1000 10000 100000 le+06

k {number of nodes in the cluster>



‘ Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:




] Looking forward ...

A common modus operandi in many (really*) large-scale applications is:

* Run a procedure that bears some resemblance to the procedure you
would run if you were to solve a given problem exactly

* Use the output in a way similar to how you would use the exact solution,
or prove some result that is similar to what you could prove about the

exact solution.

BIG Question: Can we make this more statistically principled? E.g.,
can we “engineer” the approximations to solve (exactly but implicitly)
some reqularized version of the original problem---to do large scale
analytics in a statistically more principled way?

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, eftc.



Conclusions

Regularization is:
« central fo Stats & nearly area that applies algorithms to noisy data
» absent from CS, which historically has studied computation per se
« gets at the heart of the algorithmic-statistical "disconnect”
Approximate computation, in and of itself, can implicitly regularize
* theory & the empirical signatures in matrix and graph problems
In very large-scale analytics applications:

* can we “engineer” database operations so "worst-case"” approximation
algorithms exactly solve regularized versions of original problem?

* I.e., can we get best of both worlds for more statistically-principled
very large-scale analytics?



