


How do we view BIG data? 



Algorithmic & Statistical Perspectives ... 

Computer Scientists  
•  Data: are a record of everything that happened.  
•  Goal: process the data to find interesting patterns and associations. 
•  Methodology: Develop approximation algorithms under different 
models of data access since the goal is typically computationally hard. 

Statisticians (and Natural Scientists, etc) 
•  Data: are a particular random instantiation of an underlying process 
describing unobserved patterns in the world. 
•  Goal: is to extract information about the world from noisy data. 
•  Methodology: Make inferences (perhaps about unseen events) by 
positing a model that describes the random variability of the data 
around the deterministic model.  

Lambert (2000)   



... are VERY different paradigms 

Statistics, natural sciences, scientific computing, etc:  
•  Problems often involve computation, but the study of computation 
per se is secondary 
•  Only makes sense to develop algorithms for well-posed* problems 
•  First, write down a model, and think about computation later 

Computer science: 
•  Easier to study computation per se in discrete settings, e.g., 
Turing machines, logic, complexity classes  
•  Theory of algorithms divorces computation from data 
•  First, run a fast algorithm, and ask what it means later 

*Solution exists, is unique, and varies continuously with input data 



Anecdote 1:  
Randomized Matrix Algorithms 

How to “bridge the gap”? 
•  decouple randomization from linear algebra 

•  importance of statistical leverage scores! 

Theoretical origins 
•  theoretical computer science, 
convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

•  No implementations 

Practical applications 
•  NLA, ML, statistics, data 
analysis, genetics, etc 

•  Fast JL transform 

•  Relative-error algs 

•  Numerically-stable algs 

•  Good statistical properties 

•  Beats LAPACK & parallel-
distributed implementations 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Mahoney “Randomized Algorithms for Matrices and Data” (2011)   



Anecdote 2:  
Communities in large informatics graphs 

People imagine social 
networks to look like: 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)   

How do we know this plot is “correct”?  
•  (since computing conductance is intractable) 
•  Lower Bound Result; Structural Result; Modeling Result; Etc. 

•  Algorithmic Result (ensemble of sets returned by different approximation 
algorithms are very different) 

•  Statistical Result (Spectral provides more meaningful communities than flow)  

Real social networks 
actually look like: 

Size-resolved conductance 
(degree-weighted 
expansion) plot looks like: 

Data are expander-like 
at large size scales !!! 

There do not exist good large 
clusters in these graphs !!! 



Lessons from the anecdotes 

We are being forced to engineer a union between two very 
different worldviews on what are fruitful ways to view the data 
•  in spite of our best efforts not to 

Often fruitful to consider the statistical properties implicit in 
worst-case algorithms 
•  rather that first doing statistical modeling and then doing applying a 
computational procedure as a black box 

•  for both anecdotes, this was essential for leading to “useful theory” 

How to extend these ideas to “bridge the gap” b/w the theory 
and practice of MMDS (Modern Massive Data Set) analysis. 

•  QUESTION: Can we identify a/the concept at the heart of 
the algorithmic-statistical disconnect and then drill-down on it? 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)   



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data & algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three diffusion-based procedures (heat kernel, PageRank, truncated lazy 
random walk) are implicitly solving a regularized optimization exactly! 

A statistical interpretation of this result 
•  Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data & algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three diffusion-based procedures (heat kernel, PageRank, truncated lazy 
random walk) are implicitly solving a regularized optimization exactly! 

A statistical interpretation of this result 
•  Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 



Relationship b/w algorithms and data (1 of 3) 

Before the digital computer: 
•  Natural (and other) sciences rich source of problems, Statistics invented 
to solve those problems 

•  Very important notion: well-posed (well-conditioned) problem: solution 
exists, is unique, and is continuous w.r.t. problem parameters 

•  Simply doesn’t make sense to solve ill-posed problems  

Advent of the digital computer: 
•  Split in (yet-to-be-formed field of) “Computer Science”  

•  Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math) 

•  Two very different perspectives on relationship b/w algorithms and data 



Relationship b/w algorithms and data (2 of 3) 

Two-step approach for “numerical/statistical” problems 
•  Is problem well-posed/well-conditioned?  

•  If no, replace it with a well-posed problem.  (Regularization!) 

•  If yes, design a stable algorithm.  

View Algorithm A as a function f 
•  Given x, it tries to compute y but actually computes y* 

•  Forward error: Δy=y*-y  

•  Backward error: smallest Δx s.t. f(x+Δx) = y* 

•  Forward error ≤ Backward error * condition number 

•  Backward-stable algorithm provides accurate solution to well-posed problem! 



Relationship b/w algorithms and data (3 of 3) 

One-step approach for study of computation, per se 
•  Concept of computability captured by 3 seemingly-different discrete 
processes (recursion theory, λ-calculus, Turing machine) 

•  Computable functions have internal structure (P vs. NP, NP-hardness, etc.) 

•  Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n), 
or O(n3) vs. O(n log n)) 

Modern Theory of Approximation Algorithms 
•  provides forward-error bounds for worst-cast input 

•  worst case in two senses: (1) for all possible input & (2) i.t.o. relatively-
simple complexity measures, but independent of “structural parameters” 

•  get bounds by “relaxations” of IP to LP/SDP/etc., i.e., a “nicer” place  



Statistical regularization (1 of 3) 
Regularization in statistics, ML, and data analysis 
•  arose in integral equation theory to “solve” ill-posed problems 

•  computes a better or more “robust” solution, so better inference  

•  involves making (explicitly or implicitly) assumptions about data 

•  provides a trade-off between “solution quality” versus “solution 
niceness” 

•  often, heuristic approximation have regularization properties as a 
“side effect”  

•  lies at the heart of the disconnect between the “algorithmic 
perspective” and the “statistical perspective” 



Statistical regularization (2 of 3) 
Usually implemented in 2 steps: 
•  add a norm constraint (or “geometric 
capacity control function”) g(x) to 
objective function f(x) 

•  solve the modified optimization problem 

 x’ = argminx f(x) + λ g(x) 

Often, this is a “harder” problem, 
e.g., L1-regularized L2-regression 

 x’ = argminx ||Ax-b||2 + λ ||x||1   



Statistical regularization (3 of 3) 
Regularization is often observed as a side-effect or 
by-product of other design decisions 
•  “binning,” “pruning,” etc. 

•  “truncating” small entries to zero, “early stopping” of iterations 

•  approximation algorithms and heuristic approximations engineers 
do to implement algorithms in large-scale systems 

Big question: Can we formalize the notion that/when 
approximate computation can implicitly lead to “better” 
or “more regular” solutions than exact computation? 



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data & algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three diffusion-based procedures (heat kernel, PageRank, truncated lazy 
random walk) are implicitly solving a regularized optimization exactly! 

A statistical interpretation of this result 
•  Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 



Notation for weighted undirected graph 



Approximating the top eigenvector 
Basic idea: Given a Laplacian SPSD matrix A,  
•  Power method starts with “any” v0, and iteratively computes 

 vt+1 = Avt / ||Avt||2   ->   v“1”   . 

•  Similarly for other “diffusion-based” methods 

•  If we truncate after (say) 3 or 10 iterations,  

•  we still have some admixing from other eigen-directions  

•  thus we approximate the exact solution! 

•  do we exactly solve a (regularized) version of the problem? 

What objective does the exact eigenvector optimize? 
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x. 



Views of approximate spectral methods 
Three common procedures (L=Laplacian, and M=r.w. matrix): 

•  Heat Kernel: 

•  PageRank: 

•  q-step Lazy Random Walk: 

Ques: Do these “approximation procedures” exactly 
optimizing some regularized objective? 



Two versions of spectral partitioning 

VP: 

R-VP: 



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Three simple corollaries 
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy) 

 gives scaled Heat Kernel matrix, with t = η 

FD(X) = -logdet(X) (i.e., Log-determinant) 
 gives scaled PageRank matrix, with t ~ η 

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1) 

 gives Truncated Lazy Random Walk, with λ ~ η 

Answer: These “approximation procedures” compute 
regularized versions of the Fiedler vector exactly! 
I.e., the exactly optimize min LX + (1/η) F(X) 



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data & algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three diffusion-based procedures (heat kernel, PageRank, truncated lazy 
random walk) are implicitly solving a regularized optimization exactly! 

A statistical interpretation of this result 
•  Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 



Statistical framework for regularized 
graph estimation 

Question:What about a “statistical” interpretation of 
this phenomenon of implicit regularization via 
approximate computation? 
•  Issue 1: Best to think of the graph (e.g., Web graph) as a 
single data point, so what is the “ensemble”? 

•  Issue 2: No reason to think that “easy-to-state problems” and 
“easy-to-state algorithms” intersect. 

•  Issue 3: No reason to think that “priors” corresponding to 
what people actually do are particularly “nice.” 

Perry and Mahoney  (2011)   



Recall regularized linear regression 



Bayesianization 



Bayesian inference for the population 
Laplacian (broadly) 



Bayesian inference for the population 
Laplacian (specifics) 



Heuristic justification for Wishart 



A prior related to PageRank procedure 
Perry and Mahoney  (2011)   



Main “Statistical” Result 
Perry and Mahoney  (2011)   



Empirical evaluation setup 



The prior vs. the simulation procedure 

The similarity suggests that the prior qualitatively matches 
simulation procedure, with α parameter analogous to sqrt(s/µ). 

Perry and Mahoney  (2011)   



Generating a sample 



Two estimators for population Laplacian 



Empirical results (1 of 3) 
Perry and Mahoney  (2011)   



Empirical results (2 of 3) 

The optimal regularization η depends on m/µ and s. 



Empirical results (3 of 3) 

The optimal η increases with m and s/µ (left); this 
agrees qualitatively with the Proposition (right). 



Outline and overview 
Preamble: algorithmic & statistical perspectives 

General thoughts: data & algorithms, and explicit & implicit regularization 

Approximate first nontrivial eigenvector of Laplacian 
•  Three diffusion-based procedures (heat kernel, PageRank, truncated lazy 
random walk) are implicitly solving a regularized optimization exactly! 

A statistical interpretation of this result 
•  Analogous to Gaussian/Laplace interpretation of Ridge/Lasso regression 

Spectral versus flow-based algs for graph partitioning 
•  Theory says each regularizes in different ways; empirical results agree! 



Graph partitioning 
A family of combinatorial optimization problems - want to 
partition a graph’s nodes into two sets s.t.: 
•  Not much edge weight across the cut (cut quality) 

•  Both sides contain a lot of nodes 

Several standard formulations: 
•  Graph bisection (minimum cut with 50-50 balance) 

•  β-balanced bisection (minimum cut with 70-30 balance) 

•  cutsize/min{|A|,|B|}, or cutsize/(|A||B|)  (expansion) 

•  cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B))  (conductance or N-Cuts) 

All of these formalizations of the bi-criterion are NP-hard! 



Networks and networked data 

Interaction graph model of 
networks:   
•  Nodes represent “entities” 
•  Edges represent “interaction” 
between pairs of entities 

Lots of “networked” data!! 
•  technological networks 

–  AS, power-grid, road networks 
•  biological networks 

–  food-web, protein networks 
•  social networks 

–  collaboration networks, friendships 
•  information networks 

–  co-citation, blog cross-postings, 
advertiser-bidded phrase graphs... 

•  language networks 
–  semantic networks... 

•  ... 



Social and Information Networks 



Motivation: Sponsored (“paid”) Search 
Text based ads driven by user specified query 

The process: 
•  Advertisers bids on query 
phrases.  

•  Users enter query phrase. 
•  Auction occurs. 

•  Ads selected, ranked, 
displayed. 

•  When user clicks, 
advertiser pays! 



Bidding and Spending Graphs 

Uses of Bidding and Spending 
graphs: 
•  “deep” micro-market identification. 

•  improved query expansion. 

More generally, user segmentation 
for behavioral targeting.  

A “social network” with “term-document” aspects.  



Micro-markets in sponsored search 

10 million keywords 

1.
4 

M
ill

io
n 

A
dv

er
tis

er
s 

Gambling 

Sports 

Sports 
Gambling 

Movies Media 

Sport 
videos 

What is the CTR and 
advertiser ROI  of sports 

gambling keywords?  

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.  
Ques: Is this even possible? 



What do these networks “look” like?  



The “lay of the land” 

Spectral methods* - compute eigenvectors of 
associated matrices 

Local improvement - easily get trapped in local minima, 
but can be used to clean up other cuts 

Multi-resolution - view (typically space-like graphs) at 
multiple size scales 

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas 

*Comes with strong underlying theory to guide heuristics. 



Comparison of “spectral” versus “flow” 
Spectral: 
•  Compute an eigenvector 

•  “Quadratic” worst-case bounds 

•  Worst-case achieved -- on “long 
stringy” graphs 

•  Worse-case is “local” property 

•  Embeds you on a line (or Kn) 

Flow: 
•  Compute a LP 

•  O(log n) worst-case bounds 

•  Worst-case achieved -- on 
expanders 

•  Worst case is “global” property 

•  Embeds you in L1 

Two methods -- complementary strengths and weaknesses 

•  What we compute is determined at least as much by as the 
approximation algorithm as by objective function. 



Explicit versus implicit geometry 

Explicitly-
imposed 
geometry 
•  Traditional 
regularization 
uses explicit 
norm constraint 
to make sure 
solution vector 
is “small” and 
not-too-complex  

(X,d) (X’,d’) 

x 

y 
d(x,y) f 

f(x) 

f(y) 

Implicitly-imposed 
geometry 
•  Approximation algorithms 
implicitly embed the data in a 
“nice” metric/geometric place 
and then round the solution. 



Regularized and non-regularized communities (1 of 2)  

•  Metis+MQI - a Flow-based method 
(red) gives sets with better 
conductance. 

•  Local Spectral (blue) gives tighter 
and more well-rounded sets. 

External/internal conductance 

Diameter of the cluster Conductance of  bounding cut 

Local Spectral 

Connected 

Disconnected 

Lower is good 



Regularized and non-regularized communities (2 of 2)  
Two ca. 500 node communities from Local Spectral Algorithm:  

Two ca. 500 node communities from Metis+MQI:  



Looking forward ... 

A common modus operandi in many (really*) large-scale applications is: 
•  Run a procedure that bears some resemblance to the procedure you 
would run if you were to solve a given problem exactly 

•  Use the output in a way similar to how you would use the exact solution, 
or prove some result that is similar to what you could prove about the 
exact solution.  

BIG Question: Can we make this more statistically principled?  E.g., 
can we “engineer” the approximations to solve (exactly but implicitly) 
some regularized version of the original problem---to do large scale 
analytics in a statistically more principled way? 

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, etc. 



Conclusions 

Regularization is: 
•  central to Stats & nearly area that applies algorithms to noisy data 

•  absent from CS, which historically has studied computation per se  

•  gets at the heart of the algorithmic-statistical “disconnect” 

Approximate computation, in and of itself, can implicitly regularize 
•  theory & the empirical signatures in matrix and graph problems 

In very large-scale analytics applications: 
•  can we “engineer” database operations so “worst-case” approximation 
algorithms exactly solve regularized versions of original problem? 
•  I.e., can we get best of both worlds for more statistically-principled 
very large-scale analytics? 


