

Algorithmic vs. Statistical Perspectives

Computer Scientists
•  Data: are a record of everything that happened.
•  Goal: process the data to find interesting patterns and associations.
•  Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists, etc)
•  Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
•  Goal: is to extract information about the world from noisy data.
•  Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000); Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Perspectives are NOT incompatible

•  Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

•  Intractable optimization problems on graphs/networks yield to
approximation when assumptions are made about network
participants.

•  In boosting (a statistical technique that fits an additive model
by minimizing an objective function with a method such as
gradient descent), the computation parameter (i.e., the number
of iterations) also serves as a regularization parameter.

But they are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:
•  Problems often involve computation, but the study of computation
per se is secondary
•  Only makes sense to develop algorithms for well-posed* problems
•  First, write down a model, and think about computation later

Computer science:
•  Easier to study computation per se in discrete settings, e.g.,
Turing machines, logic, complexity classes
•  Theory of algorithms divorces computation from data
•  First, run a fast algorithm, and ask what it means later

*Solution exists, is unique, and varies continuously with input data

How do we view BIG data?

Anecdote 1:
Randomized Matrix Algorithms

How to “bridge the gap”?
•  decouple randomization from linear algebra

•  importance of statistical leverage scores!

Theoretical origins
•  theoretical computer
science, convex analysis, etc.

•  Johnson-Lindenstrauss

•  Additive-error algs

•  Good worst-case analysis

•  No statistical analysis

Practical applications
•  NLA, ML, statistics, data
analysis, genetics, etc

•  Fast JL transform

•  Relative-error algs

•  Numerically-stable algs

•  Good statistical properties

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)
Mahoney “Randomized Algorithms for Matrices and Data” (2011)

Anecdote 2:
Communities in large informatics graphs

People imagine social
networks to look like:

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)

How do we know this plot is “correct”?
•  (since computing conductance is intractable)
•  Algorithmic Result (ensemble of sets returned by different approximation
algorithms are very different)

•  Statistical Result (Spectral provides more meaningful communities than flow)

•  Lower Bound Result; Structural Result; Modeling Result; Etc.

Real social networks
actually look like:

Size-resolved conductance
(degree-weighted
expansion) plot looks like:

Data are expander-like
at large size scales !!!

There do not exist good large
clusters in these graphs !!!

Lessons from the anecdotes

We are being forced to engineer a union between two very
different worldviews on what are fruitful ways to view the data
•  in spite of our best efforts not to

Often fruitful to consider the statistical properties implicit in
worst-case algorithms
•  rather that first doing statistical modeling and then doing applying a
computational procedure as a black box

•  for both anecdotes, this was essential for leading to “useful theory”

How to extend these ideas to “bridge the gap” b/w the theory
and practice of MMDS (Modern Massive Data Set) analysis.

•  QUESTION: Can we identify a/the concept at the heart of
the algorithmic-statistical disconnect and then drill-down on it?

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Thoughts on models of data (1 of 2)
Data are whatever data are
•  records of banking/financial transactions, hyperspectral medical/astronomical
images, electromagnetic signals in remote sensing applications, DNA microarray/
SNP measurements, term-document data, search engine query/click logs, user
interactions on social networks, corpora of images, sounds, videos, etc.

To do something useful, you must model the data
Two criteria when choosing a data model
•  (data acquisition/generation side): want a structure that is
“close enough” to the data that you don’t do too much “damage”
to the data

•  (downstream/analysis side): want a structure that is at a
“sweet spot” between descriptive flexibility and algorithmic
tractability

Thoughts on models of data (2 of 2)
Examples of data models:
•  Flat tables and the relational model: one or more two-dimensional
arrays of data elements, where different arrays can be related by
predicate logic and set theory.

•  Graphs, including trees and expanders: G=(V,E), with a set of
nodes V that represent “entities” and edges E that represent
“interactions” between pairs of entities.

•  Matrices, including SPSD matrices: m “objects,” each of which is
described by n “features,” i.e., an n-dimensional Euclidean vector,
gives an m x n matrix A.

Much modern data are relatively-unstructured; matrices and graphs are
often useful, especially when traditional databases have problems.

Relationship b/w algorithms and data (1 of 3)

Before the digital computer:
•  Natural sciences rich source of problems, statistical methods developed
to solve those problems

•  Very important notion: well-posed (well-conditioned) problem: solution
exists, is unique, and is continuous w.r.t. problem parameters

•  Simply doesn’t make sense to solve ill-posed problems

Advent of the digital computer:
•  Split in (yet-to-be-formed field of) “Computer Science”

•  Based on application (scientific/numerical computing vs. business/
consumer applications) as well as tools (continuous math vs. discrete math)

•  Two very different perspectives on relationship b/w algorithms and data

Relationship b/w algorithms and data (2 of 3)

Two-step approach for “numerical” problems
•  Is problem well-posed/well-conditioned?

•  If no, replace it with a well-posed problem. (Regularization!)

•  If yes, design a stable algorithm.

View Algorithm A as a function f
•  Given x, it tries to compute y but actually computes y*

•  Forward error: Δy=y*-y

•  Backward error: smallest Δx s.t. f(x+Δx) = y*

•  Forward error ≤ Backward error * condition number

•  Backward-stable algorithm provides accurate solution to well-posed problem!

Relationship b/w algorithms and data (3 of 3)

One-step approach for study of computation, per se
•  Concept of computability captured by 3 seemingly-different discrete
processes (recursion theory, λ-calculus, Turing machine)

•  Computable functions have internal structure (P vs. NP, NP-hardness, etc.)

•  Problems of practical interest are “intractable” (e.g., NP-hard vs. poly(n),
or O(n3) vs. O(n log n))

Modern Theory of Approximation Algorithms
•  provides forward-error bounds for worst-cast input

•  worst case in two senses: (1) for all possible input & (2) i.t.o. relatively-
simple complexity measures, but independent of “structural parameters”

•  get bounds by “relaxations” of IP to LP/SDP/etc., i.e., a “nicer” place

Statistical regularization (1 of 3)
Regularization in statistics, ML, and data analysis
•  arose in integral equation theory to “solve” ill-posed problems

•  computes a better or more “robust” solution, so better
inference

•  involves making (explicitly or implicitly) assumptions about data

•  provides a trade-off between “solution quality” versus
“solution niceness”

•  often, heuristic approximation procedures have regularization
properties as a “side effect”

•  lies at the heart of the disconnect between the “algorithmic
perspective” and the “statistical perspective”

Statistical regularization (2 of 3)
Usually implemented in 2 steps:
•  add a norm constraint (or “geometric
capacity control function”) g(x) to
objective function f(x)

•  solve the modified optimization problem

 x’ = argminx f(x) + λ g(x)

Often, this is a “harder” problem,
e.g., L1-regularized L2-regression

 x’ = argminx ||Ax-b||2 + λ ||x||1

Statistical regularization (3 of 3)
Regularization is often observed as a side-effect or
by-product of other design decisions
•  “binning,” “pruning,” etc.

•  “truncating” small entries to zero, “early stopping” of iterations

•  approximation algorithms and heuristic approximations engineers
do to implement algorithms in large-scale systems

BIG question: Can we formalize the notion that/when
approximate computation can implicitly lead to “better”
or “more regular” solutions than exact computation?

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Notation for weighted undirected graph

Approximating the top eigenvector
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,
•  Power method starts with v0, and iteratively computes

 vt+1 = Avt / ||Avt||2 .

•  Then, vt = Σi γi
t vi -> v1 .

•  If we truncate after (say) 3 or 10 iterations, still have some mixing
from other eigen-directions

What objective does the exact eigenvector optimize?
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x.

•  But can also express this as an SDP, for a SPSD matrix X.

•  (We will put regularization on this SDP!)

Views of approximate spectral methods
Three common procedures (L=Laplacian, and M=r.w. matrix):

•  Heat Kernel:

•  PageRank:

•  q-step Lazy Random Walk:

Question: Do these “approximation procedures” exactly
optimizing some regularized objective?

Two versions of spectral partitioning

VP:

R-VP:

Two versions of spectral partitioning

VP: SDP:

R-SDP: R-VP:

A simple theorem
Modification of the usual
SDP form of spectral to
have regularization (but,
on the matrix X, not the
vector x).

Mahoney and Orecchia (2010)

Three simple corollaries
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

 gives scaled Heat Kernel matrix, with t = η

FD(X) = -logdet(X) (i.e., Log-determinant)
 gives scaled PageRank matrix, with t ~ η

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1)

 gives Truncated Lazy Random Walk, with λ ~ η

(F() specifies the algorithm; “number of steps” specifies the η)

Answer: These “approximation procedures” compute
regularized versions of the Fiedler vector exactly!

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization and already used in practice!

Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
•  Not much edge weight across the cut (cut quality)

•  Both sides contain a lot of nodes

Several standard formulations:
•  Graph bisection (minimum cut with 50-50 balance)

•  β-balanced bisection (minimum cut with 70-30 balance)

•  cutsize/min{|A|,|B|}, or cutsize/(|A||B|) (expansion)

•  cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!

Networks and networked data

Interaction graph model of
networks:
•  Nodes represent “entities”
•  Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
•  technological networks

–  AS, power-grid, road networks
•  biological networks

–  food-web, protein networks
•  social networks

–  collaboration networks, friendships
•  information networks

–  co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

•  language networks
–  semantic networks...

•  ...

Social and Information Networks

Motivation: Sponsored (“paid”) Search
Text based ads driven by user specified query

The process:
•  Advertisers bids on query
phrases.

•  Users enter query phrase.
•  Auction occurs.

•  Ads selected, ranked,
displayed.

•  When user clicks,
advertiser pays!

Bidding and Spending Graphs

Uses of Bidding and Spending
graphs:
•  “deep” micro-market identification.

•  improved query expansion.

More generally, user segmentation
for behavioral targeting.

A “social network” with “term-document” aspects.

Micro-markets in sponsored search

10 million keywords

1.
4

M
ill

io
n

A
dv

er
tis

er
s

Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI of sports

gambling keywords?

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

What do these networks “look” like?

The “lay of the land”

Spectral methods* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods* - single-commodity or multi-
commodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.

Comparison of “spectral” versus “flow”
Spectral:
•  Compute an eigenvector

•  “Quadratic” worst-case bounds

•  Worst-case achieved -- on “long
stringy” graphs

•  Worse-case is “local” property

•  Embeds you on a line (or Kn)

Flow:
•  Compute a LP

•  O(log n) worst-case bounds

•  Worst-case achieved -- on
expanders

•  Worst case is “global” property

•  Embeds you in L1

Two methods -- complementary strengths and weaknesses

•  What we compute is determined at least as much by as the
approximation algorithm as by objective function.

Explicit versus implicit geometry

Explicitly-
imposed
geometry
•  Traditional
regularization
uses explicit
norm constraint
to make sure
solution vector
is “small” and
not-too-complex

(X,d) (X’,d’)

x

y
d(x,y) f

f(x)

f(y)

Implicitly-imposed
geometry
•  Approximation algorithms
implicitly embed the data in a
“nice” metric/geometric place
and then round the solution.

Regularized and non-regularized communities (1 of 2)

•  Metis+MQI - a Flow-based method
(red) gives sets with better
conductance.

•  Local Spectral (blue) gives tighter
and more well-rounded sets.

External/internal conductance

Diameter of the cluster Conductance of bounding cut

Local Spectral

Connected

Disconnected

Lower is good

Regularized and non-regularized communities (2 of 2)
Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:

Outline and overview
Preamble: algorithmic & statistical perspectives

General thoughts: data, algorithms, and explicit & implicit regularization

Approximate first nontrivial eigenvector of Laplacian
•  Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a regularized optimization exactly!

Spectral versus flow-based algs for graph partitioning
•  Theory says each regularizes in different ways; empirical results agree!

Weakly-local and strongly-local graph partitioning methods
•  Operationally like L1-regularization, and already used in practice!

Computing locally-biased partitions

Often want clusters “near” a pre-specified set of nodes:
•  Large social graphs have good small clusters, don’t have good large clusters

•  Might have domain knowledge, so find “semi-supervised” clusters

•  As algorithmic primitives, e.g., to solve linear equations fast.

Recall global spectral graph partitioning

•  Relaxation of:
The basic optimization
problem:

•  Solvable via the eigenvalue
problem:

•  Sweep cut of second eigenvector
yields:

Idea to compute locally-biased partitions:
•  Modify this objective with a locality constraint
•  Show that some/all of these nice properties still hold locally

Local spectral partitioning ansatz

Primal program: Dual program:

Interpretation:
•  Find a cut well-correlated with
the seed vector s.

•  If s is a single node, this relaxes:

Interpretation:
•  Embedding a combination of
scaled complete graph Kn and
complete graphs T and T (KT and
KT) - where the latter encourage
cuts near (T,T).

Mahoney, Orecchia, and Vishnoi (2010)

Main theoretical results

Theorem: If x* is an optimal solution to LocalSpectral,

(*) it is a Generalized Personalized PageRank vector, and
can be computed as solution to a set of linear equations;

(*) one can find a cut of conductance ≤ 8λ(G,s,κ) in time
O(n lg n) with sweep cut of x*;

(*) For all sets of nodes T s.t. κ’ :=<s,sT>D
2 , we have: φ(T)

≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) if κ’ ≤ κ .

Mahoney, Orecchia, and Vishnoi (2010)

Lower bound: Spectral
version of flow-
improvement algs.

Upper bound, as usual from
sweep cut & Cheeger.

Fast running time
guarantee.

Illustration on small graphs
•  Similar results if
we do local random
walks, truncated
PageRank, and heat
kernel diffusions.

•  Often, it finds
“worse” quality but
“nicer” partitions
than flow-improve
methods. (Tradeoff
we’ll see later.)

Mahoney, Orecchia, and Vishnoi (2010)

A somewhat different approach

Strongly-local spectral methods
 ST04: truncated “local” random walks to compute locally-biased cut

 ACL06: approximate locally-biased PageRank vector computations

 Chung08: approximate heat-kernel computation to get a vector

These are the diffusion-based procedures
 that we saw before

 except truncate/round/clip/push small things to zero
 starting with localized initial condition

Also get provably-good local version of global spectral

What’s the connection?

“Optimization” approach:

•  Well-defined objective f

•  Weakly local (touch all
nodes), so good for medium-
scale problems

•  Easy to use

“Operational” approach*:

•  Very fast algorithm

•  Strongly local (clip/truncate
small entries to zero), good
for large-scale

•  Very difficult to use

* Informally, optimize f+λg (... almost formally!): steps are structurally-similar to the
steps of how, e.g., L1-regularized L2 regression algorithms, implement regularization

More importantly,

•  This “operational” approach is already being adopted in PODS/
VLDB/SIGMOD/KDD/WWW environments!

•  Let’s make the regularization explicit—and know what we compute!

Looking forward ...

A common modus operandi in many (really*) large-scale applications is:
•  Run a procedure that bears some resemblance to the procedure you
would run if you were to solve a given problem exactly

•  Use the output in a way similar to how you would use the exact solution,
or prove some result that is similar to what you could prove about the
exact solution.

BIG Question: Can we make this more principled? E.g., can we
“engineer” the approximations to solve (exactly but implicitly) some
regularized version of the original problem---to do large scale
analytics in a statistically more principled way?

*e.g., industrial production, publication venues like WWW, SIGMOD, VLDB, etc.

Conclusions

Regularization is:
•  absent from CS, which historically has studied computation per se

•  central to nearly area that applies algorithms to noisy data

•  gets at the heart of the algorithmic-statistical “disconnect”
Approximate computation, in and of itself, can implicitly regularize:

•  Theory & the empirical signatures in matrix and graph problems

•  Solutions of approximation algorithms don’t need to be something we
“settle for,” they can be “better” than the “exact” solution

In very large-scale analytics applications:
•  Can we “engineer” database operations so “worst-case” approximation
algorithms exactly solve regularized versions of original problem?

•  I.e., can we get best of both worlds for very large-scale analytics?

MMDS Workshop on
“Algorithms for Modern Massive Data Sets”

(http://mmds.stanford.edu)

at Stanford University, July 10-13, 2012

Objectives:

-  Address algorithmic, statistical, and mathematical challenges in modern statistical
data analysis.

-  Explore novel techniques for modeling and analyzing massive, high-dimensional, and
nonlinearly-structured data.

- Bring together computer scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.

Organizers: M. W. Mahoney, A. Shkolnik, G. Carlsson, and P. Drineas,

Registration is available now!

