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) Motivating observation

Theory of NP-completeness is a very useful theory

« captures qualitative notion of "fast,” provides an qualitative guidance
to how algorithms perform in practice, etc.

* LP, simplex, ellipsoid, etc. - the "exception that proves the rule”

Theory of Approximation Algorithms is NOT
analogously useful

* (at least for many machine learning and data analysis problems)

* bounds very weak; can't get constants; dependence on parameters not
qualitatively right; does not provide qualitative guidance w.r.t. practice;
usually want a vector/graph achieving optimum, bu don't care about the
particular vector/graph; etc.



:. Start with the conclusions

* Modern theory of approximation algorithms is often NOT a
useful theory for many large-scale data analysis problem

» Approximation algorithms and heuristics often implicitly perform
regularization, leading tfo "more robust” or "better” solutions

* Can characterize the regularization properties implicit in worst-
case approximation algorithms

Take-home message: Solutions of approximation algorithms don't
need to be something we "settle for," since they can be "better”
than the solution to the original intractable problem



) Algorithmic vs. Statistical Perspectives

Lambert (2000)

Computer Scientists

* Data: are a record of everything that happened.

* Goal: process the data to find interesting patterns and associations.
* Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists)

* Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

* Goal. is to extract information about the world from noisy data.

* Methodology. Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.



) Statistical regularization (1 of 2)

Regularization in statistics, ML, and data analysis
* arose in integral equation theory to "solve” ill-posed problems

« computes a better or more "robust” solution, so better
inference

* involves making (explicitly or implicitly) assumptions about
the data

* provides a trade-off between "solution quality” versus
“solution niceness”

- often, heuristic approximation have regularization properties
as a “side effect”



Statistical regularization (2 of 2)

Usually implemented in 2 steps:

 add a norm constraint (or "geometric
capacity control function") g(x) to
objective function f(x)

« solve the modified optimization problem
x' = argmin, f(x) + A g(x)

Often, this is a “harder” problem,

e.g., L1-reqularized L2-regression

X' = argmin, ||Ax-b||, + A ||x]],




] Two main results

Big question: Can we formalize the notion that/when
approximate computation can implicitly lead to "better’
or "more regular” solutions than exact computation?

[

Approximate first nontrivial eigenvector of Laplacian

* Three random-walk-based procedures (heat kernel, PageRank, truncated
lazy random walk) are implicitly solving a reqularized optimization exactlyl

Spectral versus flow-based approximation algorithms
for graph partitioning

* Theory suggests each should regularize in different ways, and empirical
results agreel



) Approximating the top eigenvector

Basic idea: Given a Laplacian matrix A,

« Power method starts with v,, and iteratively computes
Vi = AV, /7 || AV] ],

* Then, v, =2 yfv,->v, .

* If we truncate after (say) 3 or 10 iterations, still have some mixing
from other eigen-directions

What objective does the exact eigenvector optimize?
* Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x.
* But can also express this as an SDP, for a SPSD matrix X.

 (We will put regularization on this SDP!)



) Views of approximate spectral methods

Three common procedures (L=Laplacian, and M=r.w. ma‘rr'ix)'

* Heat Kernel: H, = exp(—tL) = 37°
* PageRank: w(v,s) =vs+ (1 — f}/)ﬂ&'ﬁ(% s)
Ry=~(I—(1—»)M)"

Lk

- g-step Lazy Random Walk: W4 = (ol + (1 — o) M )*?

Ques: Do these "approximation procedures” exactly
optimizing some reqularized objective?



) Two versions of spectral partitioning

VP:
min. z! Lax

st. 'Ly x=1

l <x,1>p=0

R-VP:
min. z! Lgx + M\f(x)

s.t. constraints



) Two versions of spectral partitioning

VP: <+ SDP:
min. z! Lax min. LgoX
st. 'Ly x=1 st. Lg oX =1
l <x,1>p=20 l X =0
R-VP: R-SDP:

min. a! Lax + \f(x) min. Lgo X + AF(X)

s.t. constraints s.t. constraints



) A simple theorem

Mahoney and Orecchia (2010)

odification of the usual
(F.7)-SDP min Le X + L F(X) 500 formr spectral to

n have regularization (but,
gt Je X =1 on the matrix X, not the
vector x).

X =0

Theorem: Let G be a connected, weighted, undirected graph,
with normalized Laplacian L. Then, the following conditions
are sufficient for X* to be an optimal solution to (F,n)-SDP.

e X*=(VF) ' (n-(\I—L)), for some \* € R,
o [o X" =1,
o X* 0.



) Three simple corollaries
Fu(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy)

gives scaled Heat Kernel matrix, with t = n

Fo(X) = -logdet(X) (i.e., Log-determinant)

gives scaled PageRank matrix, with t ~ n

F.(X) = (1/p)IIX]|p (i.e., matrix p-norm, for p>1)
gives Truncated Lazy Random Walk, with A ~ n

Answer: These "approximation procedures” compute
regularized versions of the Fiedler vector exactly



l Graph partitioning

A family of combinatorial optimization problems - want to
partition a graph's nodes into two sets s.t.: —

* Not much edge weight across the cut (cut quality)

» Both sides contain a lot of nodes

Several standard formulations:

* Graph bisection (minimum cut with 50-50 balance)

. . .. . s #. '.-fpﬂﬁ-"‘ e *
« B-balanced bisection (minimum cut with 70-30 balance) s S\ 7 W
'-‘;'!# E. Lty

- cutsize/min{|A|,|BI}, or cutsize/(|A||B|) (expansion)
« cutsize/min{Vol(A),Vol(B)}, or cutsize/(Vol(A)Vol(B)) (conductance or N-Cuts)

All of these formalizations of the bi-criterion are NP-hard!



] The “lay of the land"

Spectral methods™* - compute eigenvectors of
associated matrices

Local improvement - easily get trapped in local minima,
but can be used to clean up other cuts

Multi-resolution - view (typically space-like graphs) at
multiple size scales

Flow-based methods™* - single-commodity or multi-
commodity version of max-flow-min-cut ideas

*Comes with strong underlying theory to guide heuristics.



) Comparison of “spectral” versus "flow"

Spectral: Flow:
- Compute an eigenvector « Compute a LP
* "Quadratic” worst-case bounds « O(log n) worst-case bounds

» Worst-case achieved -- on "long + Worst-case achieved -- on
stringy” graphs expanders

* Worse-case is "local” property  « Worst case is “global” property

 Embeds you on a line (or K,) « Embeds you in L1

Two methods -- complementary strengths and weaknesses

* What we compute is determined at least as much by as the
approximation algorithm as by objective function.



) Explicit versus implicit geometry

Explicitly-

imposed
geometry

* Traditional
regularization
uses explicit
horm constraint
to make sure
solution vector
is "small” and
not-too-complex
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 Approximation algorithms
implicitly embed the data in a
"nice” metric/geometric place
and then round the solution.
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Regularized and non-regularized communities
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:. Conclusions

* Modern theory of approximation algorithms is often NOT a
useful theory for many large-scale data analysis problem

» Approximation algorithms and heuristics often implicitly perform
regularization, leading tfo "more robust” or "better” solutions

* Can characterize the regularization properties implicit in worst-
case approximation algorithms

Take-home message: Solutions of approximation algorithms don't
need to be something we "settle for," since they can be "better”
than the solution to the original intractable problem



