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Insider’s vs outsider’s views (1 of 2)

Ques: Genetics vs molecular biology vs biochemistry vs biophysics:
« What’ s the difference?



Insider’s vs outsider’s views (1 of 2)

Ques: Genetics vs molecular biology vs biochemistry vs biophysics:
« What’ s the difference?

Answer: Not much, (if you are a “methods” person*)

* they are all biology

* you get data from any of those areas, ignoring important domain
details, and evaluate your method qua method

* your reviewers evaluate the methods and don’ t care about the
science

*E.g., one who self-identifies as doing data analysis or machine learning or
statistics or theory of algorithms or artificial intelligence or ...



Insider’s vs outsider’s views (2 of 2)

Ques: Data analysis vs machine learning vs statistics vs theory of
algorithms vs artificial intelligence (vs scientific computing vs

computational mathematics vs databases ...):
« What's the difference?



Insider’s vs outsider’s views (2 of 2)

Ques: Data analysis vs machine learning vs statistics vs theory of
algorithms vs artificial intelligence (vs scientific computing vs

computational mathematics vs databases ...):
« What's the difference?

Answer: Not much, (if you are a “science” person*)

* they are all just tools

* you get a tool from any of those areas and bury details in a methods
section

* your reviewers evaluate the science and don’ t care about the
methods

*E.g., one who self identifies as doing genetics or molecular biology or
biochemistry or biophysics or ...



BIG data??? MASSIVE data????
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NYT, Feb 11, 2012: “The Age of Big Data”

« “What is Big Data? A meme and a marketing term, for sure, but also shorthand
for advancing trends in technology that open the door to a new approach to
understanding the world and making decisions. ...”

Why are big data big?
* Generate data at different places/times and different resolutions

* Factor of 10 more data is not just more data, but different data



BIG data??? MASSIVE data????

MASSIVE data:

* Internet, Customer Transactions, Astronomy/HEP = “Petascale”

* One Petabyte = watching 20 years of movies (HD) = listening to 20,000
years of MP3 (128 kbits/sec) = way too much to browse or comprehend

massive data:

* 10° people typed at 10° DNA SNPs; 10¢ or 10? node social network; etc.

In either case, main issues:

« Memory management issues, e.g., push computation to the data

« Hard to answer even basic questions about what data “looks like”
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Thinking about large-scale data

(

Data generation is modern version of microscope/telescope:

* See things couldn't see before: e.g., fine-scale movement of people, fine-
scale clicks and interests; fine-scale tracking of packages; fine-scale
measurements of temperature, chemicals, etc.

* Those inventions ushered new scientific eras and new understanding of the
world and new technologies to do stuff

Easy things become hard and hard things become easy:
 Easier to see the other side of universe than bottom of ocean

* Means, sums, medians, correlations is easy with small data

Our ability to generate data far exceeds our

ability to extract insight from data. G 1o




How do we view BIG data?

Can’t anybody see who
| am or want to be?

Wow. It's big.
| need fast
algorithms.

Wow. | need
a bigger
machine.

Wow. This is a
mess. | better
clean it up.

Wow. | need
to posit a
model.

Wow. It's not
smooth. | need
regularization.




Algorithmic vs. Statistical Perspectives ...

Lambert (2000), Mahoney (2010)

Computer Scientists

 Data: are a record of everything that happened.

* Goal: process the data to find interesting patterns and associations.

* Methodology: Develop approximation algorithms under different models
of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists)

e Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

e Goal: is to extract information about the world from noisy data.

* Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data around
the deterministic model.



... are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:

* Problems often involve computation, but the study of
computation per se is secondary

* Only makes sense to develop algorithms for well-posed*
problems

* First, write down a model, and think about computation later

Computer science:

e Easier to study computation per se in discrete settings, e.g.,
Turing machines, logic, complexity classes

* Theory of algorithms divorces computation from data

e First, run a fast algorithm, and ask what it means later

*Solution exists, is unique, and varies continuously with input data



Anecdote 1:
Randomized Matrix Algorithms

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010)

Mahoney “Randomized Algorithms for Matrices and Data” (2011)

Theoretical origins \

* theoretical computer science,
convex analysis, etc.

« Johnson-Lindenstrauss
 Additive-error algs

» Good worst-case analysis
* No statistical analysis

* No implementations

S/

How to “bri'dge the gap”?

/_ Practical applications

* NLA, ML, statistics, data analysis,
genetics, etc

e Fast JL transform

* Relative-error algs
* Numerically-stable algs
* Good statistical properties

* Beats LAPACK & parallel-

\ distributed implementations on
terabytes of data

* decouple (implicitly or explicitly) randomization from linear algebra

* importance of statistical leverage scores!



Anecdote 2:
Communities in large informatics graphs

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) Data are expander—like at

Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009) |arge size scales Il

People imagine social Real social networks Size-resolved conductanc
networks to look like: actually look like: (degree-weighted
expansion) plot looks likef:
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How do we know this plot is “correct”?
There do not exist good large

* (since computing conductance is intractable) clusters in these graphs !!!

 Lower Bound Result; Structural Result; Modeling Result; Etc.

* Algorithmic Result (ensemble of sets returned by different approximation
algorithms are very different)

« Statistical Result (Spectral provides more meaningful communities than flow)



Anecdote 3:
Approx. comp. and implicit regularization

Mahoney “Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis” (2012)

Explicitly-imposed 4w, Implicitly-imposed regularization
regularization

> > * Binning, pruning, early stopping, etc.

AN

* Traditionally,

- » Design decisions engineers make
regularization uses

explicit norm A  Approximation algorithms implicitly
constraint to make ™ embed data in a “nice” metric/geometric
sure solution vector is \/ > place and then round the solution.
“small” and not-too-

complex

« min [Ifll+ A lig(l iy (Xd) X' d

Big question: Can we formalize the notion that/when approximate
computation in and of itself can implicitly lead to “better” or “more
regular” solutions than exact computation? (Short answer: yes!)



L essons from the anecdotes

We are being forced to engineer a union between two very aitterent
worldviews on what are fruitful ways to view the data

* in spite of our best efforts not to

The forcing function (generation of lots of valuable data) is forcing us to
revisit old methods in a new light

» often reinventing, but the forcing function makes that acceptable

Given existing forcing functions and disciplinary lines, many methods and
approaches are “undervalued” for what non-foundational people want

» and it would be good not to loose them

QUESTION: How can we bridge the gap between these two worldviews?
QUESTION: What, if anything, does biomedicine have to offer?



Application in: Human Genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the

genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases

(alleles) are observed (out of A, C, G, T).
SNPs

(_AG CTGT GG CT CC CC CC CC AG AG AG AG AG AACT AA GG GG CC GG AG CG AC CC AACCAAGG TT AG CT|
...GGTTTTGG TT CC CC CC CC GG AA AG AG AG AACT AAGG GG CC GG AAGG AACCAACCAAGGTTAAT
...GGTTTTGG TT CC CC CC CC GG AA AG AG AAAG CT AAGG GG CCAGAGCGACCCAACCAAGGTTAGLCT
..GGTTTTGG TT CC CC CC CC GG AA AG AG AG AA CC GG AACC CC AG GG CC ACCCAACGAAGGTTAG|CT
..GGTTTTGG TT CC CC CC CC GG AA GG GG GG AACTAAGG GG CTGGAACCACCGAACCAAGGTTGGI|CC
..GGTTTTGG TT CC CC CG CC AG AG AG AG AG AACTAAGG GG CTGGAG CCCCCGAACCAAGTTTAGLCT

individuals

CGCGCG
5G GG GG
CG CG CG
CG CG CG
CG CG CG
CGCGCG
GG GG GG

&GG TTTT GG TT CC CC CC CC GG AAAG AG AG AATT AAGG GG CC AG AG CGAACC AACGAAGGTT AA[TT

TTCCGGTT GG GG TT GG AA ...

CTCTAGCTAGGGTT GG AA ...
TTCCGGTT GG GTTT GG AA ...

CTCTAG CTAG GG GT GAAG ..

CT CT AG CT AG GG GT GAAG ...
CTCTAGCTAGGTGTGAAG ...
CTCTAGCTAGGGTT GG AA ...

™

_

Matrices including thousands of individuals and hundreds of thousands or millions
(large for some people, small for other people) if SNPs are available.

This can be written as a “matrix,” assume it’ s been preprocessed properly, so let’s

call black box matrix algorithms.



Two copies of a chromosome
(father, mother)

%{> Focus at a specific locus and assay the

observed nucleotide bases (alleles).

/ SNP: exactly two alternate alleles

appear.




%> Focus at a specific locus and
)‘ assay the observed alleles.
A/‘ SNP: exactly two alternate
alleles appear.
C T PP

Two copies of a chromosome
(father, mother)

An individual could be:
- Heterozygotic (in our study, CT = TC)

SNPs l
. AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC A CC A GG TT AG CT (G CG CG AT CT CT AG CT AG GG GT GAAG ... )
GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT GG GG TT TT CC GG TT GG GG TT GG AA ...
GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT A CG CG AT CT CT AG CT AG GG GT GA AG ...
" GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT A CG CG AT CT CT AG CT AG GT GT GA AG ...

::.GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGG'I'I'GGCCCGCGCGATCTCTAGCTAGGGTI'GGAA.4.
...GGTTTTGGTT CCCCCGCCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAGCTCGCGCGATCTCTAGCTAGGGTT GG AA ...
.GGTTTTGGTT CC CCCC CC GG AAAGAGAGAATT AAGGGGCCAGAGCGAACCAACGAAGGTTAATTGGGGGGTTTTCCGGTT GG GT TT GG AA ...

individuals




‘ %> Focus at a specific locus and
)

assay the observed alleles.
A/‘ SNP: exactly two alternate
alleles appear.
C

Two copies of a chromosome
(father, mother)

An individual could be:
- Heterozygotic (in our studies, CT = TC)
- Homozygotic at the first allele, e.g., C

SNPs l

/T..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTI'AGCTCGCGCGATCTCTAGCTAGGGGTGAAG
...GGTTTT GG TT CC CC CC CC GG AA AG AG AG AACT AAGG GGCCGGAAGGAACCAACCAAGGTTAATTGGGGGGTT TT CCGG TT GG GG TT GG AA ...
...GGTTTT GG TT CC CC CC CC GG AA AG AG AAAG CT AAGG GGCCAGAGCGACCCAACCAAGGTTAGCTCGCGCGATCTCTAGCTAGGGGT GAAG ...
..GGTTTTGG TT CC CC CC CC GG AA AGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTTA CG CG AT CT CT AG CT AG GT GT GAAG ...
...GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGG'ITGEGCGCGATCTCTAGCTAGGG'I'I'GGAA...
...GGTTTTGGTT CCCCCG CCAGAGAGAGAGAACTAAGGGGCT GGAGCCCCCGAACCAAGTTTA CGCGATCTCTAGCTAGGG TT GG AA ...
.GGTTTTGGTT CC CCCC CC GG AAAGAGAGAATT AAGGGGCCAGAGCGAACCAACGAAGGTTAATTGGGGGGTTTTCCGGTT GG GT TT GG AA ...

individuals




%> Focus at a specific locus and

)‘ assay the observed alleles.
SNP: exactly two alternate

,/‘ alleles appear.

Two copies of a chromosome
(father, mother)

An individual could be:

- Heterozygotic (in our studies, CT = TC) > Encode as 0

- Homozygotic at the first allele, e.g., C - Encode as +1
- Homozygotic at the second allele, e.g., T = Encode as -1

SNPs l

/T..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTI'AGCTCGCGCGATCTCTAGCTAGGGGTGAAGm
...GGTTTT GG TT CC CC CC CC GG AA AG AG AG AACT AAGG GGCCGGAAGGAACCAACCAAGGTTAATTGGGGGGTT TT CCGG TT GG GG TT GG AA ...
...GGTTTT GG TT CC CC CC CC GG AA AG AG AAAG CT AAGG GGCCAGAGCGACCCAACCAAGGTTAGCTCGCGCGATCTCTAGCTAGGGGT GAAG ...
..GGTTTTGG TT CC CC CC CC GG AAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTTAGCTCGCGCGATCTCT AGCTAGGTGTGAAG ...
...GGTTTT GG TT CC CC CC CC GG AA GG GG GG AA CT AAGG GG CT GGAACCACCGAACCAAGGTTGGCCCGCGCGATCTCTAGCTAGGGTT GG AA ...
...GGTTTTGGTT CCCCCG CCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGT TT Agee™=§G CG CGATCTCTAGCTAG GG TT GG AA ...
..GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAA'I'I'AAGGGGCCAGAGCGAACCAACGAAGG'I'I'GGGG'I'I"I'I'CCGG'I'I'GGGT'I'I'GGAA...

individuals




Individuals

Our SNP data as a matrix

SNPs

/.—..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGGTI'AGCTCGCGCGATCTCTAGCTAGGGGTGAAG...

. GGTTTT GG TT CCCCCCCCGGAAAGAGAGAACTAAGGGGCCGGAAGGAACCAACCAAGGTTAATTGGGGGGTTTTCCGG TT GG GG TT GG AA ...

..GGTTTT GG TT CC CC CC CC GG AA AG AG AAAG CT AA GG GGCCAGAG CGACCCAACCAAGGTT AG CT CG CG CG AT CT CT AG CT AG GG GT GAAG ...
...GGTTTT GG TT CC CC CC CC GG AA AG AG AGAACCGGAACCCCAGGGCCACCCAACGAAGGTT AG CT CG CG CG AT CT CT AG CT AG GT GT GAAG ...
..GGTTTTGGTT CCCC CC CC GG AA GG GG GGAACTAAGGGGCTGGAACCACCGAACCAAGGTTGGCCCGCGCGATCTCTAGCTAGGGTT GG AA ...
..GGTTTTGGTTCCCCCGCCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAGCTCGCGCGATCTCTAGCTAGGGTT GGAA ...
. GGTTTT GG TT CCCCCCCCGGAAAGAGAGAATT AAGG GGCCAGAGCGAACCAACGAAGGTTAATTGGGGGGTTTTCCGG TT GG GT TT GG AA ...

SNPs

/—00010-111100000101-1-11-10001111-1-1000000000001000 Y
L” -1-1-11-1-1111-11000101-17-11-11-111111-1-11-1-1-1-1-1-11-1-1-11-1-11
(U -1-1-11-1-1111-11001001-1-1100001111-1-1000000000001000O0
3 -1-1-11-1-1111-1100011-11110-1101101-1-1000000000000000O0
_D -1-1-11-1-1111-11-1-1-1101-1-10-11100111-1-1-110000000001-1-11
et -1-1-11-1t-110100000101-1-10-101-10111-1-1000000000001-1-11
> -1-1-11-1-1111-110001-11-1-1100011101-4-11-1-1-1-1-1-11-1-1-10-1-11
O
E¥ _




We are quite similar, but we are different ...

The average genome (~2x3 billion base pairs) contains:

*  3-4 million single nucleotide variations, compared to the reference sequence
(Single Nucleotide Polymorphisms — SNPs)

* ~0.4 million small insertions or deletions ‘indels’ (1-100bp)
« ~5,000 larger insertions or deletions (>100bp)

Variation across all (~23,000) genes - the ‘exome’
« ~18,000 variant

¢ ~8-9,000 functional variant

¢ ~95% of variants are commo

« ~500-1000 genes with new mutation

« ~100-200 knock-out mutations

Genetic variation shaped by evolutionary forces
 Mutation

* Genetic drift

« Population structure (inbreeding, mating patterns, etc.)
* Gene flow and admixture

* Natural selection

Great application domain to stress test novel methods ...



Early Homo sapiens sapiens
in Africa

http://info.med.yale.edu/genetics/kkidd/point.html



Homo sapiens sapiens

Colonizing south west Asia

~100,000 BP

http://info.med.yale.edu/genetics/kkidd/point.html



o
‘. .:. © ® o ° [ [ ]
0 @0 :. Ooe :.... o0 ¢ .. .....
...... ®o (- Y . ° .. ..‘ ... 0 °
o’ o° 0 'o: ..0.. ° : 0o Y00 .
o o %0., 0 000, 0o 00 , o
0° 0000, 00e® ¢ i P o .
* o o, ©0°%% o ®:70% o 00¢, 0 o
® e < %0 1,0 "% . .
. '.o [ X ) ° [ ... ® o 0® e ® 9 ..
o ..O 0: .. :' 0, :. : .. ® H
; '.:....... 0 ® % . .: .
. @
.o. :..:.....‘.... .: o
o0 0°0° 00947 @ ® o
?"..'.-,‘..'.'. ° °*
...0 ...o. * e
° .C .. o o
® .. o o
? "*s; Homo sapiens sapiens e,
°eee® ¢ °* o
~40,000 BP W,
.

http://info.med.yale.edu/genetics/kkidd/point.html



"4 ASW, MKK, LWK,
' & YR

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Europeans

Africans

5 Mbuti pygmy 12 Fren

6 Biaka 13 North ltalian
7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

18 Palestinian )
31 Daur

Central and
Southern Asians

19 Balochi
21 Makrani
23 Pathan

24 Burusho
25 Hazara

Eastern Asians

32 Hezhen
33 Lahu
34 Miao
35 Orogen
36 She

37 Tujia
38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

Oceanians

47 Papuan

Native Americans

HGDP data
* 1,033 samples
* 7 geographic regions

* 52 populations

HapMap Phase 3 data

* 1,207 samples

* 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)
447,143 SNPs (columns)

Dense matrix:

over one billion entries



The Singular Value Decomposition (SVD)

Let the blue circles represent m data
points in a 2-D Euclidean space.

o Then, the SVD of the m-by-2 matrix of
° the data will return ...
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The Singular Value Decomposition (SVD)

5 Let the blue circles represent m data
. . . p
points in a 2-D Euclidean space.

Then, the SVD of the m-by-2 matrix of
the data will return ...

1st (right) singular vector:

direction of maximal variance,

s|ngular vector
O

2 | | |
4.0 4.5 5.0 5.5 6.0




The Singular Value Decomposition (SVD)

5 Let the blue circles represent m data
points in a 2-D Euclidean space.

2nd (right)
singular vector o Then, the SVD of the m-by-2 matrix of

the data will return ...

1st (right) singular vector:

direction of maximal variance,

2nd (right) singular vector:

s|ngular vector
O

direction of maximal variance, after
| | | removing the projection of the data
2 along the first singular vector.

4.0 4.5 5.0 5.5 6.0




Singular values

o,: measures how much of the data variance
is explained by the first singular vector.

2nd (right) 02

singular vector ©

0,: measures how much of the data variance
is explained by the second singular vector.

Principal Components Analysis (PCA) is done via the
computation of the Singular Value Decomposition
(SVD) of a (mean-centered) covariance matrix.

Typically, a small constant number (say k) of the top
singular vectors and values are kept.




SVD: formal definition

m X n m X p pXp pXn

p: rank of A
U (V): orthogonal matrix containing the left (right) singular vectors of A.

S: diagonal matrix containing the singular values of A.

Letoy, 05, ..., 0, be the entries of X.

Exact computation of the SVD takes O(min{mn?, m?n}) time.

The top k left/right singular vectors/values can be computed faster using
iterative methods.



Rank-k approximations via the SVD

features
Sig. | significant
E .
S ® noise noise
»

objects



Rank-k approximations (A)

m X n m X k kxk kxn

U, (V): orthogonal matrix containing the top k left (right) singular vectors of A.
2,: diagonal matrix containing the top k singular values of A.

PCA (Principal Components Analysis) essentially amounts to the
computation of the SVD of a mean-centered covariance matrix.

SVD is the algorithmic tool behind MultiDimensional Scaling
(MDS). Factor Analysis, etc.



Paschou, et al (2010) J Med Genet

EigenSNP 2

EigenSNP 1

* Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the “out-of-Africa” hypothesis.

* Mexican population seems out of place: we move to the top three PCs.
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EigenSNP 3

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

Paschou, et al. (2010) J Med Genet
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EigenSNP 2

* Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and — of course — can not be assayed!

« Can we find actual SNPs that capture the information in the singular vectors?

* Relatedly, can we compute them and/or the truncated SVD “efficiently.”



Two related issues with eigen-analysis

Computing large SVDs: computational time

* |In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

e Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs

Combinatorial optimization problem; hard even for small matrices.

Often called the Column Subset Selection Problem (CSSP).

Not clear that such “good” columns even exist.

Avoid “reification” problem of “interpreting” singular vectors!

* (Solvable in “random projection time" with CX/CUR decompositions! (PNAS, MD09))



CUR matrix decompositions

Mahoney and Drineas “CUR Matrix Decompositions for Improved Data Analysis” (PNAS, 2009)
Mahoney, "Randomized Algorithms for Matrices and Data," FnTML, 2011
Drineas and Mahoney, "RandNLA: Randomized Numerical Linear Algebra," CACM, 2016

Goal. Solve the following problem:

“While very efficient basis vectors, the (singular) vectors themselves are completely artificial
and do not correspond to actual (DNA expression) profiles. ... Thus, it would be interesting to
try to find basis vectors for all experiment vectors, using actual experiment vectors and not
artificial bases that offer little insight.” Kuruvilla et al. (2002)

Theorem:
Given an arbitrary matrix, call a black box that | won’ t describe.

* You get a small number of actual columns/rows that are only marginally worse than the
truncated PCA/SVD.

* The black box runs faster than computing a truncated PCA/SVD for arbitrary input.

* It s very robust to heuristic modifications.

Corollary:
We can use the same methods to approximate the PCA/SVD.



CUR matrix decompositions and RandNLA

Mahoney and Drineas “CUR Matrix Decompositions for Improved Data Analysis” (PNAS, 2009)
Mahoney, "Randomized Algorithms for Matrices and Data," FnTML, 2011
Drineas and Mahoney, "RandNLA: Randomized Numerical Linear Algebra," CACM, 2016

One of many methods from Randomized (Numerical) Linear Algebra (RandNLA):
*  Interdisciplinary research area

. Exploits randomization as a computational resource to develop improved algorithms for large-scale
linear algebra problems

Qua methods, Qua applications, Qua implementations,
RandNLA: RandNLA: RandNLA:
* Roots in theoretical * Vital new tool for machine * Outperform highly-
computer science (TCS) learning, statistics, and data optimized software

. analysis (LAPACK)
* Deep connections to
mathematics and applied * Solved state-of-the-art * Scalability in parallel and
mathematics problems in genetics, distributed environments

astronomy, Mass spec

) ) * Terabyte-scale PCA in
Imaging, etc.

Spark/Alchemist

» Statistical interpretation
that complement
bootstrapping, etc.

Promises sound algorithmic and statistical foundation for modern large-scale data analysis.



Selecting PCA SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africa

-

-

’

y 3
Europsg
b
Asia

America

Africa

Europe
Asia

America
6 . 7 . 8 . . . . . . 14 . 15 .16 .17. 18 1920 .2122

* top 30 PCA-correlated SNPs

g lq

SNPs by chromosomal order
* Data analysis and machine learning and statistics and

PCA-scores

Mahoney and Drineas (2009) PNAS

theory of algorithms and scientific computing ... and Paschou et al (2007; 2008) PLoS Genetics
genetics and astronomy and mass spectrometry and ... Paschou et al (2010) J Med Genet
; - . |

likes this---but each for different reasons! Drineas et al (2010) PLoS One

* Good “hydrogen atom” for methods development! Javed et al (2011) Annals Hum Genet



Bioinformatics: a cautionary tale?

* How did/does bioinformatics relate to computer science, statistics, and
applied mathematics, “technically” and “sociologically”?

* How did NIH choose to fund graduate students and postdocs in the
budget expansion of the 90s?

* What effect did this have on the number of American/foreign going
into biomedical research?

« How will the pay structure of biomedical researchers effect which cs/
stats “data scientists” engage you in your efforts?

* What effect does med schools deciding not to do joint faculty hires
with cs departments have on bioinformatics and big biomedical data?

* How is this Big Biomedical Data phenomenon similar to and different
than the Bioinformatics experience?



Big changes in the past ... and future

Consider the creation of:

* Modern Physics * OR and Management Science
» Computer Science * Transistors and Microelectronics
* Molecular Biology * Biotechnology

These were driven by new measurement techniques and
technological advances, but they led to:

* big new (academic and applied) questions

* new perspectives on the world

* lots of downstream applications

We are in the middle of a similarly big shift!

QUESTION: What, if anything, does biomedicine have to offer?



