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How do we view BIG data?



Algorithmic vs. Statistical Perspectives

Computer Scientists
• Data: are a record of everything that happened.
• Goal: process the data to find interesting patterns and associations.
• Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians
• Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
• Goal: is to extract information about the world from noisy data.
• Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000)



Perspectives are NOT incompatible

• Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

• Intractable optimization problems on graphs/networks yield to
approximation when assumptions are made about network
participants.

• In boosting (a statistical technique that fits an additive model
by minimizing an objective function with a method such as
gradient descent), the computation parameter (i.e., the number
of iterations) also serves as a regularization parameter.



Matrices and graphs in data analysis

Graphs:
• model  information network with graph G = (V,E) -- vertices represent
“entities” and edges represent  “interactions” between pairs of entities

Matrices:
• model  data sets by a matrix -- since an m x n matrix A can encode
information about m objects, each of which is described by n features

Matrices and graphs represent a nice tradeoff between:
• descriptive flexibility
• algorithmic tractability

But, the issues that arise are very different than in traditional linear
algebra or graph theory …



The gap between NLA and TCS …
     (… was the genesis of MMDS!)

Matrix factorizations:
• in NLA and scientific computing - used to express a problem s.t. it can
be solved more easily.
• in TCS and statistical data analysis - used to represent structure that
may be present in a matrix obtained from object-feature observations.

NLA:
• emphasis on optimal conditioning,
• backward error analysis issues,
• is running time a large or small constant multiplied by n2 or n3.

TCS:
• originally motivated by large data applications
• consider space-constrained or pass-efficient models
• exploiting over-sampling and randomness as computational resources.



Outline

• “Algorithmic” and “statistical” perspectives on data problems

• Genetics application
DNA SNP analysis --> choose columns from a matrix

PMJKPGKD, Genome Research ’07; PZBCRMD, PLOS Genetics ’07; Mahoney and
Drineas, PNAS ’09; DMM, SIMAX ‘08; BMD, SODA ‘09

• Internet application
Community finding --> partitioning a graph

LLDM (WWW ‘08 & TR-Jrnl ‘08 & WWW ‘10)

We will focus on what was going on “under the hood” in these two
applications --- use statistical properties implicit in worst-case
algorithms to make domain-specific claims!



SNPs are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

SNPs occur quite frequently within the genome and thus are effective genomic
markers for the tracking of disease genes and population histories.

DNA SNPs and human genetics
• Human genome ≈ 3 billion base pairs

• 25,000 – 30,000 genes

• Functionality of 97% of the genome is unknown.

• Individual “polymorphic” variations at ≈ 1 b.p./thousand.

C

T



DNA SNPs and data analysis

A common modus operandi  in applying NLA to data problems:

• Write the gene/SNP data as an m x n matrix A.

• Do SVD/PCA to get a small number of eigenvectors

• Either: interpret the eigenvectors as meaningful i.t.o. underlying genes/SNPs

use a heuristic to get actual genes/SNPs from those eigenvectors

Unfortunately, eigenvectors themselves are meaningless (recall reification in stats):

• “EigenSNPs” (being linear combinations of SNPs) can not be assayed …

• … nor can “eigengenes” from micro-arrays be isolated and purified …

• … nor do we really care about “eigenpatients” respond to treatment ...



DNA SNPs and low-rank methods

• Common genetics task: find a small subset of informative actual SNPs

to cluster individuals depending on their ancestry

to determine predisposition to diseases

• Algorithmic question: Can we find the best k actual columns from a matrix?

Can we find actual SNPs that “capture” information in singular vectors?

Can we find actual SNPs that are maximally uncorrelated?

• Common formalization of “best” lead to intractable optimization problems.

PMJKPGKD, Genome Research ’07 (data from K. Kidd, Yale University)
PZBCRMD, PLOS Genetics ’07 (data from E. Ziv and E. Burchard, UCSF)



Column Subset Selection Problem (CSSP)

Input: an m-by-n matrix A and a rank parameter k.

Goal: choose exactly k columns of A s.t. the m-by-k
matrix C minimizes the error:

• Widely-studied problem in numerical linear algebra and optimization.

• Related to unsupervised feature selection.

• Choose the “best” k documents from a document corpus.



Prior work in NLA & TCS

Numerical Linear Algebra:

• Deterministic, typically
greedy, approaches.
(E.g., Golub65, Foster86, Chan87, Chan-
Hansen90, Bischof-Hansen91, Hong-Pan92,
Chandrasekaran-Ipsen94, Gu-Eisenstat96,
Bischof-Orti98, Pan-Tang99, Pan00, ...)

• Deep connection with the
Rank Revealing QR
factorization.

• Good spectral norm bounds.

Theoretical Computer Science:

• Randomized approaches, with
some failure probability.  (Much
work in last 10 years following Frieze,
Kannan, and Vempala; Drineas, Kannan,
Mahoney, etc..)

• More than k columns are picked,
e.g., O(poly(k)) columns chosen.

• Very good (1+ε) Frobenius norm
bounds.  (Drineas, Mahoney, etc.
2005,2006,2008,2009; Deshpande and
Vempala 2006)



Subspace sampling probabilities

NOTE: The rows of Vk
T are orthonormal, but its columns (Vk

T)(i) are not.

Subspace sampling probs:

in “O(mnk)” time, compute:

Vk: orthogonal matrix containing the top
k right singular vectors of A.

Σ k: diagonal matrix containing the top k
singular values of A.

These pi are
statistical

leverage scores!

Vk(i) are any
orthogonal basis

for span(Ak).Randomly sampling O(k log(k))columns this way
gives (1+ε) Frobenius norm bounds!!



Algorithm: Given an m-by-n matrix A and rank parameter k:

• (Randomized phase)

Randomly select c = O(k logk) columns according to “leverage score probabilities”.

• (Deterministic phase)

Run a deterministic algorithm on the above columns* to pick exactly k columns of A.

Theorem: Let C be the m-by-k matrix of the selected columns.  Our algorithm
runs in ”O(mmk)” and satisfies, w.p. ≥ 1-10-20,

* Not so simple …  Actually, run
QR on the down-sampled k-by-
O(k log k) version of Vk

T.

A hybrid two-stage algorithm
Boutsidis, Mahoney, and Drineas (2007)



Comparison with previous results

Running time is comparable with NLA algorithms.

Spectral norm:

• Spectral norm bound is k1/4log1/2k worse than previous work.

Frobenius norm:

• An efficient algorithmic result at most (k logk)1/2 worse than the
previous existential result.

NLA usually interested in columns for the bases they span !

Data analysis usually interested in the columns themselves !



Evaluation on term-document data

TechTC (Technion
Repository of Text
Categorization Datasets)

• lots of diverse test collections
from ODP
• ordered by categorization
difficulty
• use hierarchical structure of the
directory as background knowledge
• Davidov, Gabrilovich, and
Markovitch 2004

Fix k=10 and measure Frobenius norm error:



Things to note …
Different versions of QR (i.e., different pivot rules) perform differently …

• “obviously,” but be careful with “off the shelf” implementations.

QR applied directly to Vk
T typically does better than QR applied to A …

• since Vk
T defined the relevant non-uniformity structure in A

• since columns “spread out,” have fewer problems with pivot rules

“Randomized preprocessing” improves things even more …

• due to implicit regularization

• (if you are careful with various parameter choices)

• and it improves worse QR implementations more than better code



FIG. 6

in
di

vi
d u

al
s … AG CT GT GG CT CC CG AG AG AC AG CT AG CT …

… GG TT TT GG TT CC GG AG AA AC AG CT GG CT …

… AG CC GG GT CT CT CC GG AG CC GG CC AG CT …

… AA CT GT GG TT TT CC GG GG AA GG CT AG CC …

Select tSNPs

IN:  population A

OUT:  set of tSNPs

SNPs

in
di

vi
du

al
s … AA TT GT TT CC CT CG AG GG CC AA CC AA TT …

… AG CT GG TT TT CT CC GG AA AA AA CC AA TT …

… AG CC GG GT CT CC CC AG AA AC AG CT AA CT …

… AA CC GG GT CT TT CG AA AG CC GG CT AG CC …

Population A

Reconstruct SNPs

IN:  population A & assayed
tSNPs in B

OUT:  unassayed SNPs in B

Population B

SNPs

in
di

vi
du

al
s … AA ?? GT ?? ?? ?? CG ?? ?? ?? AA ?? ?? ?? …

… AG ?? GG ?? ?? ?? CC ?? ?? ?? AA ?? ?? ?? …

… AG ?? GG ?? ?? ?? CC ?? ?? ?? AG ?? ?? ?? …

… AA ?? GG ?? ?? ?? CG ?? ?? ?? GG ?? ?? ?? …

Population B

SNPs

: tSNP

Assay
tSNPs in

population
B

Transferability of tagging SNPs
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DNA HapMap SNP data

• Most NLA codes don’t even run on this 90 x 2M matrix.

• Informativeness is a state of the art supervised technique in genetics.



SNPs by chromosomal order
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Selecting PCA-correlated SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Paschou et al (2007) PLoS Genetics



An Aside on:
Least Squares (LS) Approximation

Ubiquitous in applications & central to theory:

Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



Algorithmic and Statistical Perspectives

Algorithmic Question: How long does it take to solve this LS problem?

Answer: O(nd2) time, with Cholesky, QR, or SVD*

Statistical Question: When is solving this LS problem the right thing to do?

Answer: When the data are “nice,” as quantified by the leverage scores.

*BTW, we used statistical leverage score ideas to get the first (1+ε)-approximation worst-case-
analysis algorithm for the general LS problem that runs in o(nd2) time for any input matrix.

Theory: DM06,DMM06,S06,DMMS07

Numerical implementation: by Tygert, Rokhlin, etc. (2008)



Statistical Issues and Regression Diagnostics

Statistical Model: b = Ax+ε

ε = “nice” error process

b’ = A xopt = A(ATA)-1ATb = prediction

H = A(ATA)-1AT is the “hat” matrix, i.e. projection onto span(A)

Statistical Interpretation:

Hij -- measures the leverage or influence exerted on b’i by bj,

Hii -- leverage/influence score of the i-th constraint

Note: Hii = |U(i)|2
2 = row “lengths” of spanning orthogonal matrix

(Note: these are the sampling probabilities we used for our worst-case algorithms!)



Hat Matrix and Regression Diagnostics
See: “The Hat Matrix in Regression and ANOVA,” Hoaglin and Welsch (1978)

Things to note:
• Point 4 is a bivariate outlier - and  H4,4 is largest, just exceeds 2p/n=6/10.

• Points 1 and 3 have relatively high leverage - extremes in the scatter of points.

• H1,4 is moderately negative - opposite sides of the data band.

• H1,8 and H1,10 moderately positive - those points mutually reinforce.

• H6,6 is fairly low - point 6 is in central position.



Leverage Scores of “Real” Data Matrices

Leverage scores of Zachary karate
network edge-incidence matrix. Cumulative leverage score for the Enron

email data matrix.



Leverage Scores and Information Gain

Similar strong correlation between (unsupervised) Leverage Scores and (supervised)  Informativeness elsewhere!



A few general thoughts

Q1: Why does a statistical concept like leverage help with
worst-case analysis of traditional NLA problems?

• A1: If a data point has high leverage and is not an error, as
worst-case analysis implicitly assumes, it is very important!

Q2: Why are statistical leverage scores so non-uniform in many
modern large-scale data analysis applications?

• A2: Statistical models are often implicitly assumed for
computational and not statistical reasons---many data points
“stick out” relative to obviously inappropriate models!



Outline

• “Algorithmic” and “statistical” perspectives on data problems

• Genetics application

DNA SNP analysis --> choose columns from a matrix

• Internet application

Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways --- we use
statistical properties implicit in worst-case algorithms to make
domain-specific claims!



Networks and networked data

Interaction graph model of
networks:
• Nodes represent “entities”
• Edges represent “interaction”
between pairs of entities

Lots of “networked” data!!
• technological networks

– AS, power-grid, road networks

• biological networks
– food-web, protein networks

• social networks
– collaboration networks, friendships

• information networks
– co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

• language networks
– semantic networks...

• ...



Social and Information Networks



Motivation: Sponsored (“paid”) Search
Text based ads driven by user specified query

The process:

• Advertisers bids on query
phrases.

• Users enter query phrase.

• Auction occurs.

• Ads selected, ranked,
displayed.

• When user clicks,
advertiser pays!



Bidding and Spending Graphs

Uses of Bidding and Spending
graphs:

• “deep” micro-market identification.

• improved query expansion.

More generally, user segmentation
for behavioral targeting.

A “social network” with “term-document” aspects.



What do these networks “look” like?



Micro-markets in sponsored search

10 million keywords

1.
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Gambling

Sports

Sports
Gambling

Movies Media

Sport
videos

What is the CTR and
advertiser ROI  of sports

gambling keywords?

Goal: Find isolated  markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?



Clustering and Community Finding

• Linear (Low-rank) methods
If Gaussian, then low-rank space is good.

• Kernel (non-linear) methods
If low-dimensional manifold, then kernels are good

• Hierarchical methods
Top-down and botton-up -- common in the social sciences

• Graph partitioning methods
Define “edge counting” metric in interaction graph, then optimize!

“It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”



Communities, Conductance, and NCPPs
Let A be the adjacency matrix of G=(V,E).

The conductance φ of a set S of nodes is:

The Network Community Profile (NCP) Plot of the graph is:

• Just as conductance captures the “gestalt” notion of cluster/ community
quality, the NCP plot measures cluster/community quality as a function of size.
• NCP plot is intractable to compute exactly
• Use approximation algorithms to approximate it (even better than exactly)

A “size-resolved”
community-quality measure!



Probing Large Networks
with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths” with “deep cuts”

Multi-commodity flow - (log(n) approx) - difficulty with expanders

SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQI - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically)

We are not interested in partitions per se, but in probing network structure.



Approximation algorithms as
experimental probes?

The usual modus operandi for approximation algorithms:

• define an objective, the numerical value of which is intractable to compute

• develop approximation algorithm that returns approximation to that number

• graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc):

• often can approximate the vector achieving the exact solution

• randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

• maybe compare different approximation algorithms for the same problem.



Analogy: What does a protein look like?

Experimental Procedure:

• Generate a bunch of output data by using
the unseen object to filter a known input
signal.

• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.



Low-dimensional and small social networks

Zachary’s karate club Newman’s Network Scienced-dimensional meshes

RoadNet-CA



NCP for common generative models

Preferential Attachment Copying Model

RB Hierarchical Geometric PA



What do large networks look like?
Downward sloping NCPP

small social networks (validation)

“low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)

Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etc.

Large social/information networks are very very  different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Typical example of our findings

General relativity collaboration network
(4,158 nodes, 13,422 edges)

45Community size
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Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



Large Social and Information Networks

LiveJournal Epinions

Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)



“Whiskers” and the “core”
• Whiskers

• maximal sub-graph detached from
network by removing a single edge

• Contain (on average) 40% of nodes and
20% of edges

• Core

• the rest of the graph, i.e., the 2-edge-
connected core

• Global minimum of NCPP is a whisker

Distribution of “whiskers” for AtP-DBLP.

Epinions

If remove whiskers, then the lowest
conductance sets (the “best” communities)
are “2-whiskers”:



How do we know this plot it “correct”?

• Lower Bound Result

Spectral and SDP lower bounds for large partitions

• Modeling Result
Very sparse Erdos-Renyi (or PLRG wth β ε (2,3)) gets imbalanced deep cuts

• Structural Result

Small barely-connected “whiskers” responsible for minimum

• Algorithmic Result
Ensemble of sets returned by different algorithms are very different

Spectral vs. flow vs. bag-of-whiskers heuristic

Spectral method implicitly regularizes, gets more meaningful communities



Random graphs and forest fires

A “power law random graph” model (Chung-Lu)
A “forest fire” model (LKF05)



Regularized and non-regularized communities (1 of 2)

• Metis+MQI (red) gives sets with
better conductance.

• Local Spectral (blue) gives tighter
and more well-rounded sets.



Regularized and non-regularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:

Two ca. 500 node communities from Metis+MQI:



A few general thoughts

Regularization is typically implemented by adding a norm constraint

• makes the problem harder (think L1-regularized L2-
regression).

Approximation algorithms for intractable graph problems implicitly
regularize

• relative to combinatorial optimum

• incorporate empirical signatures of bias-variance tradeoff.

Use statistical properties implicit in worst-case algorithms to
provide insights into informatics graphs

• good since networks are large, sparse, and noisy.



A “claimer” and a “disclaimer”:

• Today, mostly took a “10,000 foot” view:

• But, “drilled down” on two specific
examples that illustrate “algorithmic-
statistical” interplay in a novel way

• Mostly avoided* “rubber-hits-the-road” issues:

• Multi-core and multi-processor issues

• Map-Reduce and distributed computing

• Other large-scale implementation issues

*But, these issues are very much a motivation and “behind-the-scenes” and important looking forward!



Conclusion

• “Algorithmic” and “statistical” perspectives on data problems

• Genetics application

DNA SNP analysis --> choose columns from a matrix

• Internet application

Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways.



MMDS Workshop on
“Algorithms for Modern Massive Data Sets”

(http://mmds.stanford.edu)

at Stanford University, June 15-18, 2010

Objectives:

- Address algorithmic, statistical, and mathematical challenges in modern statistical
data analysis.

- Explore novel techniques for modeling and analyzing massive, high-dimensional, and
nonlinearly-structured data.

- Bring together computer scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.

Organizers: M. W. Mahoney, P. Drineas, A. Shkolnik, L-H. Lim, and G. Carlsson.

Registration will be available soon!


