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How do we view BIG data?

Can’t anybody see who
| am or want to be?

Wow. It's big.
| need fast
algorithms.

Wow . | need
a bigger
machine.

Wow. This isa
mess. | better
clean it up.

Wow. | need
to posit a
rmodel.

Wow. It's not
smoath. | need
regularization.




) Algorithmic vs. Statistical Perspectives

Lambert (2000)

Computer Scientists

* Data: are a record of everything that happened.

* Goal: process the data to find interesting patterns and associations.
* Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians

* Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.

* Goal. is to extract information about the world from noisy data.

* Methodology. Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.



) Perspectives are NOT incompatible

- Statistical/probabilistic ideas are central to recent work on
developing improved randomized algorithms for matrix problems.

* Intractable optimization problems on graphs/networks yield to
approximation when assumptions are made about network
participants.

* In boosting (a statistical technique that fits an additive model
by minimizing an objective function with a method such as
gradient descent), the computation parameter (i.e., the number
of iterations) also serves as a regularization parameter.



) Matrices and graphs in data analysis

Graphs:
* model information network with graph G = (V,E) -- vertices represent
“entities” and edges represent “interactions” between pairs of entities

Matrices:
* model data sets by a matrix -- since an m x n matrix A can encode
information about m objects, each of which is described by n features

Matrices and graphs represent a nice tradeoff between:
- descriptive flexibility
» algorithmic tractability

But, the issues that arise are very different than in traditional linear
algebra or graph theory ..



. The gap between NLA and TCS ...
) (... was the genesis of MMDS!)

Matrix factorizations:
- in NLA and scientific computing - used to express a problem s.t. it can
be solved more easily.
* in TCS and statistical data analysis - used to represent structure that
may be present in a matrix obtained from object-feature observations.

NLA:

» emphasis on optimal conditioning,

» backward error analysis issues,

* is running time a large or small constant multiplied by n? or n3,

TCS:

- originally motivated by large data applications

» consider space-constrained or pass-efficient models

- exploiting over-sampling and randomness as computational resources.



) Outline

* "Algorithmic"” and "statistical” perspectives on data problems

* Genetics application

DNA SNP analysis --> choose columns from a matrix
PMJIKPGKD, Genome Research '07; PZBCRMD, PLOS Genetics '07; Mahoney and
Drineas, PNAS '09; DMM, SIMAX '08; BMD, SODA '09

* Internet application
Community finding --> partitioning a graph
LLDM (WWW'08 & TR-Jrnl'08 & WWW '10)

We will focus on what was going on "under the hood” in these two
applications --- use statistical properties implicit in worst-case
algorithms to make domain-specific claims!



‘_.DNA SNPs and human genetics

Human genome = 3 billion base pairs
25,000 - 30,000 genes
Functionality of 97% of the genome is unknown.

Individual "polymorphic” variations at = 1 b.p./thousand.

SNPs are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
_V_) /._..AGCTGTGGCTCCCCCCCCAGAGAGAGAGAACTAAGGGGCCGGAGCGACCCAACCAAGG'I'I'AGCTCGCGCGATCTCTAGCTAGGGGTGAAG... Y
g ..GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACTAAGGGGCCGGAAGGAACCAACCAAGGTTAATTIGGIGGGGTT|TTICCGGTT GG GG TT GG AA ...
79 ...GGTTTTGGTTCCCCCCCCGGAAAGAGAAAGCTAAGGGGCCAGAGCGACCCAACCAAGGTTAGCTI|ICGICGCGATICTICTAGCTAGGGGTGAAG ...
% ..GGTTTTGGTTCCCCCCCCGGAAAGAGAGAACCGGAACCCCAGGGCCACCCAACGAAGGTTAGCTICGICGCGATCTCTAGCT AGGTGTGAAG ...
E ..GGTTTTGGTTCCCCCCCCGGAAGGGGGGAACTAAGGGGCTGGAACCACCGAACCAAGGTTGGCOCGCGCGAT|ICTICTAGCTAGGGTT GG AA ...
...GGTTTTGGTTCCCCCGCCAGAGAGAGAGAACTAAGGGGCTGGAGCCCCCGAACCAAGTTTAGCT|CG|CGCGATICTICTAGCTAGGGTT GG AA ...
&.GG'I'I"I'I'GG'I'I'CCCCCCCCGGAAAGAGAGAATI'AAGGGGCCAGAGCGAACCAACGAAGGTI'AATI'@GGGG'I'I'ECCGGTI'GGGTTI'GGAA... _

SNPs occur quite frequently within the genome and thus are effective genomic
markers for the tracking of disease genes and population histories.



) DNA SNPs and data analysis

A common modus operandi in applying NLA to data problems:

* Write the gene/SNP data as an m x n matrix A.

- Do SVD/PCA to get a small number of eigenvectors

* Either: interpret the eigenvectors as meaningful i.t.0. underlying genes/SNPs

use a heuristic to get actual genes/SNPs from those eigenvectors

Unfortunately, eigenvectors themselves are meaningless (recall reification in stats):
- "EigenSNPs" (being linear combinations of SNPs) can not be assayed ...
* ... hor can “eigengenes” from micro-arrays be isolated and purified ...

* ... nor do we really care about "eigenpatients” respond to treatment ...



) DNA SNPs and low-rank methods

PMJKPGKD, Genome Research '07 (data from K. Kidd, Yale University)
PZBCRMD, PLOS Genetics '07 (data from E. Ziv and E. Burchard, UCSF)

- Common genetics task: find a small subset of informative actual SNPs

to cluster individuals depending on their ancestry

to determine predisposition to diseases
» Algorithmic question: Can we find the best k actual columns from a matrix?
Can we find actual SNPs that "capture” information in singular vectors?

Can we find actual SNPs that are maximally uncorrelated?

+ Common formalization of "best” lead to intractable optimization problems.



) Column Subset Selection Problem (CSSP)

Input: an m-by-n matrix A and a rank parameter k.

Goal: choose exactly k columns of A s.t. the m-by-k
matrix C minimizes the error:

min [|[A — PoAll¢ = min||A — CCTA|| (£ =2,F)
- Widely-studied problem in numerical linear algebra and optimization.

* Related to unsupervised feature selection.

* Choose the "best” k documents from a document corpus.



) Prior work in NLA & TCS

Numerical Linear Algebra: Theoretical Computer Science:

+ Deterministic, typically *  Randomized approaches, with
greedy, approaches. some failure probability. (Much
(E.g., Golub65, Foster86, Chan87, Chan- work in last 10 years following Frieze,
Hansen90, Bischof-Hansen91, Hong-Pan92, Kannan, and Vempala; Drineas, Kannan,

Chandrasekaran-Ipsen94, Gu-Eisenstat96,

. . Mahoney, etc..)
Bischof-Orti98, Pan-Tang99, Pan00, ...)

*  More than k columns are picked,

- Deep connection with the
e.g., O(poly(k)) columns chosen.

Rank Revealing QR

factorization. ,

+  Very good (1+¢) Frobenius norm
bounds. (Drineas, Mahoney, eftc.
2005,2006,2008,2009; Deshpande and
Vempala 2006)

*  Good spectral norm bounds.



) Subspace sampling probabilities

These p; are

12 / statistical

Subspace sampling probs:
leverage scores!

in "O(mnk)" time, compute p; =

Vi are any
orthogonal basis

Randomly sampling O(k log(k))columns this way for span(A,).
gives (1+&) Frobenius norm bounds!!

NOTE: The rows of V,T are orthonormal, but its columns (V,")® are not.

N
S
|

Vi orthogonal matrix containing the top
Uy : 25 : Vk,T k right singular vectors of A.
= diagonal matrix containing the top k

singular values of A.
m X n m X k k x k kXn J



) A hybrid two-stage algorithm

Boutsidis, Mahoney, and Drineas (2007)

* Not so simple ... Actually, run

Algorithm: Given an m-by-n matrix A and rank parameter k: QR on the down-sampled k-by-
O(k log k) version of V.

(Randomized phase)
Randomly select ¢ = O(k logk) columns according to “leverage score probabilities”.
(Deterministic phase)

Run a deterministic algorithm on the above columns™ to pick exactly k columns of A.

Theorem: Let C be the m-by-k matrix of the selected columns. Our algorithm
runs in "O(mmk)" and satisfies, w.p. > 1-10-29,

14 = PoAllp < O (klog" k) [|A = Ayl

14 = PoAll < O (K*/410g" (k) (n = k)2 ) [|A = Ayl



) Comparison with previous results

Running time is comparable with NLA algorithms.

Spectral norm:

Spectral norm bound is k'/#4log!/2k worse than previous work.

Frobenius norm:

An efficient algorithmic result at most (k logk)? worse than the
previous existential result.

NLA usually interested in columns for the bases they span

Data analysis usually interested in the columns themselves |



) Evaluation on term-document data

TechTC (Technion
Repository of Text
Categorization Datasets)

* lots of diverse test collections
from ODP

- ordered by categorization
difficulty

* use hierarchical structure of the
directory as background knowledge
- Davidov, Gabrilovich, and
Markovitch 2004

Frobenius norm residual error

Fix k=10 and measure Frobenius norm error:

1681
1.4+F
13F
y w
qrEp on A
11k grep an vy
—+—— -phase algarithm

1 1 1 1 1 1 1 1 1
20 40 B0 80 100 120 140 16O 180 200
nurnber of columns kept in the randomized phase



) Things to note ...

Different versions of QR (i.e., different pivot rules) perform differently ...

“obviously,” but be careful with "off the shelf" implementations.

QR applied directly to V,T typically does better than QR applied to A ...
since V, T defined the relevant non-uniformity structure in A

since columns "spread out,” have fewer problems with pivot rules

“Randomized preprocessing” improves things even more ...
due to implicit regularization
(if you are careful with various parameter choices)

and it improves worse QR implementations more than better code



Select tSNPs
IN: population A
OUT: set of tSNPs

SNPs

... AG CT GT GG CT CCCGAGAGACAGCTAGCT ...
...GGTTTTGGTT CC GG AGAAACAGCT GG CT ...

individuals

A A A

A : tSNP

...AGCCGGGT CT CT CCGG AG CCGG CCAGCT ...
...AACTGTGGTT TT CC GG GG AA GG CT AGCC ...

4 N

Assay
tSNPs in
population

Transferability of tagging SNPs

FIG. 6

individuals

individuals

SNPs

AANRGTR?NNNRCEN N NAANR NN L
LAGR?GEN N NRCCN N NAANR NN L
LAGN?PGEN N NRCCNNNAG? N ? L

L AANGEN? NN CC? N NNGG Y L

Reconstruct SNPs

tSNPs in B

QUT: unassayed SNPs in

SNPs

...AATTGT TT CCCT CGAG GG CCAACCAATT ...
...AGCTGGTT TT CT CC GG AAAAAACCAATT ...
...AGCCGG GT CTCCCCAGAAACAGCTAACT ...
...AACCGGGTCTTT CGAAAGCC GG CTAGCC ...
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Targeting 95% of the SNP variance in the reference population
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Top singular vector

DNA HapMap SNP data

Separating CHB and JPT using the top singular vector
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- Most NLA codes don't even run on this 90 x 2M matrix.

* Informativeness is a state of the art supervised technique in genetics.



Selecting PCA-correlated SNPs for individual assignment to four continents
(Africa, Europe, Asia, America)

Africa

Europe

Asia
. 12 . 13 .14 .15 .16 17, 18 1920 . 2122

America
* top 30 PC ; ated SNPs

PCA-scores

SNPs by chromosomal order

Paschou et al (2007) PLoS Genetics



~ An Aside on:
) Least Squares (LS) Approximation

( ) ()
Zy = min [|b— Azl|s

A ( ~ ) : » xEeR4
T | ~

— |lb— A3

2

S S

Ubiquitous in applications & central to theory:
Statistical interpretation: best linear unbiased estimator.

Geometric interpretation: orthogonally project b onto span(A).



:. Algorithmic and Statistical Perspectives

Zy = min ||b— Azx|l|s
re R
= |[b— Az]]2

Algorithmic Question: How long does it take to solve this LS problem?
Answer: O(nd?) time, with Cholesky, QR, or SVD*
Statistical Question: When is solving this LS problem the right thing to do?

Answer: When the data are "nice,"” as quantified by the leverage scores.

*BTW, we used statistical leverage score ideas to get the first (1+¢)-approximation worst-case-
analysis algorithm for the general LS problem that runs in o(nd?) time for any input matrix.

Theory: DM06,DMM06,506 DMMSO7
Numerical implementation: by Tygert, Rokhlin, etc. (2008)



) Statistical Issues and Regression Diaghostics

Statistical Model: b = Ax+¢
g = "nice" error process
b’ = A X, = A(ATA)!ATb = prediction
H= A(ATA)!AT is the "hat" matrix, i.e. projection onto span(A)

Statistical Interpretation:
H;; -- measures the leverage or influence exerted on b’; by b;,
H, -- leverage/influence score of the i-th constraint

Note: H;; = |[UD|,2 = row "“lengths” of spanning orthogonal matrix

(Note: these are the sampling probabilities we used for our worst-case algorithms!)



Hat Matrix and Regression Diagnostics

See: "The Hat Matrix in Regression and ANOVA," Hoaglin and Welsch (1978)
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) Leverage Scores of "Real” Data Matrices

"Cumulative leverage" for terms in "Enron kafri="

10

en Highest Leverage Scorey
(out of ca. 92K terms)
0.0117
0.0096
0.o070
0.0067
0.0055
0.0043
0.0042
0.0040
0.0040
0.0039

dfn = 1.0554e-04

'IIZII:| 1D1 102 103 'IEI+ 10
Leverage scores of Zachary karate Index of " hichest leverage term
network edge-incidence matrix. Cumulative leverage score for the Enron

email data matrix.



Leverage Scores and Information Gain

A
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Similar strong correlation between (unsupervised) Leverage Scores and (supervised) Informativeness elsewhere!



] A few general thoughts

Q1: Why does a statistical concept like leverage help with
worst-case analysis of traditional NLA problems?

Al: If a data point has high leverage and is not an error, as
worst-case analysis implicitly assumes, it is very important!

Q2: Why are statistical leverage scores so non-uniform in many
modern large-scale data analysis applications?

A2: Statistical models are often implicitly assumed for
computational and not statistical reasons---many data points
“stick out” relative to obviously inappropriate models!



l Outline

* "Algorithmic"” and "statistical” perspectives on data problems
* Genetics application

DNA SNP analysis --> choose columns from a matrix
* Internet application

Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic” and
“statistical” perspectives interact in fruitful ways --- we use
statistical properties implicit in worst-case algorithms to make
domain-specific claims!



) Networks and networked data

Lots of "networked"” datall

* technological networks
- AS, power-grid, road networks

* biological networks
- food-web, protein networks

- social networks
- collaboration networks, friendships

- information networks

- co-citation, blog cross-postings,
advertiser-bidded phrase graphs...

* language networks
- semantic networks...

Interaction graph model of

networks:

* Nodes represent “entities”

- Edges represent “interaction”
between pairs of entities



E

Social and Information Networks

e Social nets | Nodes | Edges J Description
LIVEJOURNAL 4,843,953 | 42,845,684 | Blog friendships |4]
EPINIONS 75,877 405,739 | Who-trusts-whom [35]
FLICKR 404,733 2,110,078 | Photo sharing [21]
DELICIOUS 147,567 301,921 | Collaborative tagging
CA-DBLP 317,080 1,049,866 | Co-authorship (CA) [4]
CA-COND-MAT 21,363 91,286 | CA cond-mat [25]

e Information networks

CIT-HEP-TH 27,400 352,021 | hep-th citations [13]
Broc-PosTts 457,305 565,072 | Blog post links [28]

e Web graphs

WEB-GOOGLE 855,802 4,291,352 | Web graph Google
WEB-wT10G 1,458 316 6,225,033 | TREC WT10G web

e Bipartite afliliation (authors-to-papers) networks

ATp-DBLP 615,673 944,456 | DBLP [25]
ATP-ASTRO-PH 54,498 131,123 | Arxiv astro-ph [25]

e Internet networks

AS 6,474 12,572 | Autonomous systems
(GNUTELLA 62,561 147,878 | P2P network [36]

Table 1: Some of the network datasets we studied.



' Motivation: Sponsored (“paid”

Text based ads driven by user specified query

The process:

* Advertisers bids on query

phrases.

« Users enter query phrase.
* Auction occurs.

« Ads selected, ranked,

displayed.

* When user clicks,

advertiser pays!

Web | Images | Video | Local | Shopping | mere =

| barcelona chair Search pticns

Also try: barcelona style chair, knoll barcelona chair, More...

e Barcelona Chair: Sale Weekend
www. PGMod.com/Barcelona-Chair - Customer Appreciation Sale! Save 5% on Barcelona Chair +
Free S&H.

Barcelona Chair - Free Shipping
www. moderncollections.com - Avoid cheap imitations. Our Barcelona Chair offers genuine
quality...

e Barcelona Chairs
BizAate.com - We Offer 2,500+ Chalir Choices. Deals On barcelona chairs.

# Classic Barcelona Chair On Sale $899
funkysofa.com - Al colors available. The Barcelona Chair is a classic piece that...

Yahoo!s: Report kad results or ads. Bucket test: FG55

.Barcelona Chair - Volo Leather

Ludwig Mies van der Roche's Barcelona Chair and Stool (1928), originally created to fumish his
German Pavilion at -he International Exhibition in Barcelona, have come...

www. dwr.com/productdetail cfm?id=7200 - 17}

2 Barcelona chair - Wikipedia, the free encyclopedia
The Barcelona chair and ottoman was designed by Mies van der Rohe for ... Barcelona Chair,
inspired by its predecessors, the campaign and folding chairs ...

Search

YaHoO!

Barcelona Chair Direct from
Importer

Barcelona Scofa, Barcelona Chair
and more Barcelona furniture
designs.

www. WickedElements.com

Barcelona Chairs

Chairs & Seats from 152+ Shops.
Barcelona Chairs on Sale,

www. Calibex.com

Barcelona Chair - $659.99
Free Shipping

Loveseat, daybed, ottoman. Free
shipping. Up to 80% off.

www. modabode.com

Buy Barcelona Chairs
We Have 12,900+ Sofas.
Barcelona Chairs on Sale.
www. NexTag.com/sofas

Barcelona Chair

The Right Style For Your Space.
Barcelona chair From $20.
Shopzilla.com/chairs



) Bidding and Spending Graphs

travel account

travel query

travel account

travel query

travel account

travel query

travel query

finance query

finance account

finance account

finance account

finance query

finance account

finance query

ambling quer
g g query Kﬁ}q e

finance account

gambling account

gambling query .:_’_’ i

e

gambling query

— —— "---\_\_\_\_\_ .
= T = gambling account
e —~______ﬂ_2‘!_1_00 ‘

e
gambling query ./
$12

A "social network" with "term-document” aspects.

“=-——=__. gambling account

Uses of Bidding and Spending
graphs:

« "deep” micro-market identification.

* improved query expansion.

More generally, user segmentation
for behavioral targeting.



= What do these networks

?

look" like

1))




l Micro-markets in sponsored search

Goal: Find isolated markets/clusters with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?

What is the CTR and
advertiser ROl of sports

gambling keywords? Movies Media

o

3 Sports

.g
5 Gambling \ ~Sport
< mne VIdeOS
2 Sports

= Gambling

X

10 million keywords



) Clustering and Community Finding

* Linear (Low-rank) methods

If Gaussian, then low-rank space is good.

« Kernel (non-linear) methods

If low-dimensional manifold, then kernels are good

» Hierarchical methods

Top-down and botton-up -- common in the social sciences

« Graph partitioning methods

Define “"edge counting” metric in interaction graph, then optimizel

"It is a matter of common experience that communities exist in networks ... Although not precisely
defined, communities are usually thought of as sets of nodes with better connections amongst its
members than with the rest of the world.”



) Communities, Conductance, and NCPPs

Let A be the adjacency matrix of G=(V,E).

The conductance ¢ of a set S of nodes is:

Zies:jgs Az‘j
min{ A(S), A(S)}

¢(5) =

The Network Community Profile (NCP) Plot of the graph is:

®(k) = min ¢(S)

SCV,|S|=k < A "size-resolved"”
J community-quality measurel!

- Just as conductance captures the "gestalt” notion of cluster/ community
quality, the NCP plot measures cluster/community quality as a function of size.
« NCP plot is intractable to compute exactly

« Use approximation algorithms to approximate it (even better than exactly)



. Probing Large Networks
) with Approximation Algorithms

Idea: Use approximation algorithms for NP-hard graph partitioning
problems as experimental probes of network structure.

Spectral - (quadratic approx) - confuses “long paths"” with "deep cuts”
Multi-commodity flow - (log(n) approx) - difficulty with expanders
SDP - (sqrt(log(n)) approx) - best in theory

Metis - (multi-resolution for mesh-like graphs) - common in practice

X+MQT - post-processing step on, e.g., Spectral of Metis

Metis+MQI - best conductance (empirically)

Local Spectral - connected and tighter sets (empirically)

We are not interested in partitions per se, but in probing network structure.



. Approximation algorithms as
) experimental probes?

The usual modus operandi for approximation algorithms:
« define an objective, the numerical value of which is intractable o compute
« develop approximation algorithm that returns approximation to that number

« graph achieving the approximation may be unrelated to the graph achieving the
exact optimum.

But, for randomized approximation algorithms with a geometric flavor (e.g. matrix
algorithms, regression algorithms, eigenvector algorithms; duality algorithms, etc):

« often can approximate the vector achieving the exact solution

* randomized algorithms compute an ensemble of answers -- the details of which
depend on choices made by the algorithm

« maybe compare different approximation algorithms for the same problem.



wge Analogy: What does a protein look like?

Three possible representations (all-atom;
backbone; and solvent-accessible surface)
of the three-dimensional structure of
the protein triose phosphate isomerase.

background medium Experimental Procedure:
Scﬁgg:? * Generate a bunch of output data by using
e the unseen object to filter a known input
N clutter , target SignaL
receiver 1 *  Reconstruct the unseen object given the

'

-+ probing fields output signal and what we know about the

m— artifactual properties of the input signal.

transmitter



Low-dimensional and small social networks
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NCP for common generative models
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) What do large networks look like?

Downward sloping NCPP
small social networks (validation)
"low-dimensional” networks (intuition)

hierarchical networks (model building)

existing generative models (incl. community models)
Natural interpretation in terms of isoperimetry

implicit in modeling with low-dimensional spaces, manifolds, k-means, etfc.
Large social/information networks are very very different

We examined more than 70 large social and information networks

We developed principled methods to interrogate large networks

Previous community work: on small social networks (hundreds, thousands)



Typical example of our findings

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)

General relativity collaboration network
(4,158 nodes, 13,422 edges)
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) Large Social and Information Networks

Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008 & arXiv 2008 & WWW 2010)
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Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.



"Whiskers" and the

* Whiskers

» maximal sub-graph detached from
network by removing a single edge

« Contain (on average) 40% of nodes and
20% of edges

* Core

* the rest of the graph, i.e., the 2-edge-
conhnected core

 Global minimum of NCPP is a whisker
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l How do we know this plot it "correct”?

» Lower Bound Result

Spectral and SDP lower bounds for large partitions

« Modeling Result
Very sparse Erdos-Renyi (or PLRG wth g ¢ (2,3)) gets imbalanced deep cuts

e Structural Result

Small barely-connected "whiskers” responsible for minimum

* Algorithmic Result
Ensemble of sets returned by different algorithms are very different
Spectral vs. flow vs. bag-of-whiskers heuristic

Spectral method implicitly regularizes, gets more meaningful communities



) Random graphs and forest fires

Let w = (wyq,...,w,), where

w; = ci~YB-D 3 (2,3).

Connect nodes ¢ and 7 w.p.

Pij = Wiw;/ Y Wk

A "power law random graph” model (Chung-Lu)
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AuthToPap-dblp
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* Metis+MQI (red) gives sets with

better conductance.

* Local Spectral (blue) gives tighter

and more well-rounded sets.
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Regularized and non-reqularized communities (1 of 2)
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) Regularized and non-reqularized communities (2 of 2)

Two ca. 500 node communities from Local Spectral Algorithm:




:. A few general thoughts

Regularization is typically implemented by adding a norm constraint

 makes the problem harder (think L1-regularized L2-
regression).

Approximation algorithms for intractable graph problems implicitly
regularize

* relative to combinatorial optimum
* incorporate empirical signatures of bias-variance tradeoff.

Use statistical properties implicit in worst-case algorithms to
provide insights into informatics graphs

* good since networks are large, sparse, and noisy.



, A "claimer” and a "disclaimer":

« Today, mostly took a "10,000 foot" view:

« But, “drilled down" on two specific
examples that illustrate "algorithmic-
statistical” interplay in a novel way

* Mostly avoided* “rubber-hits-the-road" issues: |
* Multi-core and multi-processor issues
« Map-Reduce and distributed computing

* Other large-scale implementation issues

*But, these issues are very much a motivation and "behind-the-scenes” and important looking forward!



] Conclusion

* "Algorithmic"” and "statistical” perspectives on data problems
* Genetics application

DNA SNP analysis --> choose columns from a matrix
* Internet application

Community finding --> partitioning a graph

In many large-scale data applications, “algorithmic"” and
“statistical” perspectives interact in fruitful ways.



MMDS Workshop on

"Algorithms for Modern Massive Data Sets”
) (http://mmds.stanford.edu)

at Stanford University, June 15-18, 2010

Objectives:

- Address algorithmic, statistical, and mathematical challenges in modern statistical
data analysis.

- Explore novel techniques for modeling and analyzing massive, high-dimensional, and
nonlinearly-structured data.

- Bring together computer scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.

Organizers: M. W. Mahoney, P. Drineas, A. Shkolnik, L-H. Lim, and G. Carlsson.

Registration will be available soon!



