
An Apache Spark ⇔ MPI Interface

Kai Rothauge, Alex Gittens, Michael W. Mahoney

Thanks to NERSC and Cray Inc. for help and support!

2 ©2018 RISELab

What is MPI?

• MPI = Message Passing Interface

• A specification for the developers and users of message passing libraries

• Message-Passing Parallel Programming Model:

• cooperative operations between processes

• data moved from address space of one process to that of another

• Dominant model in high-performance computing

• Popular implementations: MPICH, Open MPI

• Generally regarded as “low-level” for purposes of distributed computing

3 ©2018 RISELab

More on MPI

• Efficient implementations of collective operations

• Works with distributed memory, shared memory, GPUs

• Requires installation of MPI implementation on system

• Communication between MPI processes:

• via TCP/IP sockets, or

• optimized for underlying interconnects (InfiniBand, Cray Aries, Intel

Omni-Path, etc.)

• Communicator objects connect groups of MPI processors

• Con: No fault tolerance or elasticity

4 ©2018 RISELab

Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Why do linear algebra in Spark?

 Spark for data-centric workloads and scientific

 analysis

 Characterization of linear algebra in Spark

 Customers demand Spark; want to understand

 performance concerns

5 ©2018 RISELab

Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Why do linear algebra in Spark?
• Pros:

• Faster development, easier reuse

• Simple dataset abstractions (RDDs, DataFrames, DataSets)

• An entire ecosystem that can be used before and after the NLA computations

• Spark can take advantage of available local linear algebra codes

• Automatic fault-tolerance, out-of-core support

• Con:

• Classical MPI-based linear algebra implementations will be faster and more efficient

6 ©2018 RISELab

Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Computations performed on NERSC supercomputer Cori Phase 1, a Cray

XC40

• 2,388 compute nodes

• 128 GB RAM/node, 32 2.3GHz Haswell cores/node

• Lustre storage system, Cray Aries interconnect

A. Gittens et al. “Matrix factorizations at scale: A comparison of scientific data analytics in Spark and

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages

204–213, Dec 2016.

7 ©2018 RISELab

Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Matrix factorizations considered include truncated Singular Value

Decomposition (SVD)

• Data sets include

• Oceanic temperature data - 2.2 TB

• Atmospheric data - 16 TB

A. Gittens et al. “Matrix factorizations at scale: A comparison of scientific data analytics in Spark and

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages

204–213, Dec 2016.

8 ©2018 RISELab

Rank 20 SVD of

2.2TB ocean

temperature data

Case Study:
Spark vs. MPI

9 ©2018 RISELab

Rank 20 SVD of

16TB atmospheric

data using 48K+

cores

Case Study:
Spark vs. MPI

10 ©2018 RISELab

Case Study: Spark vs. MPI

• With favorable data (tall and skinny) and well-adapted algorithms, linear

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads:

• Orders of magnitude higher than the actual computation times

• Anti-scale

• The gaps in performance suggest it may be better to interface with

MPI-based codes from Spark

11 ©2018 RISELab

• Alchemist interfaces between Apache Spark and existing or custom

MPI-based libraries for linear algebra, machine learning, etc.

• Goal:

• Use Spark for regular data analysis workflow

• When computationally intensive calculations are required, call relevant

MPI-based codes from Spark using Alchemist, send results to Spark

• Combine high productivity of Spark with high performance of MPI

12 ©2018 RISELab

• Target users:

• Scientific community: Use Spark for analysis of large scientific datasets by

calling existing MPI-based libraries where appropriate

• Machine learning practitioners and data analysts:

• Better performance of a wide range of large-scale, computationally

intensive ML and data analysis algorithms

• For instance, SVD for principal component analysis, recommender

systems, leverage scores, etc.

13 ©2018 RISELab

Basic Framework

• Alchemist: Acts as bridge between Spark and MPI-based libraries

• Alchemist-Client Interface: API for user, communicates with Alchemist via

TCP/IP sockets

• Alchemist-Library Interface: Shared object, imports MPI library, provides

generic interface for Alchemist to communicate with library

14 ©2018 RISELab

Basic Framework

• Basic workflow:

• Spark application sends distributed dataset from RDD (IndexedRowMatrix) to

Alchemist via TCP/IP sockets using ACI

• Spark application tells Alchemist what MPI-based code should be called

• Alchemist loads relevant MPI-based library, calls function, sends results to Spark

15 ©2018 RISELab

Basic Framework

• Alchemist can also load data from file

• Alchemist needs to store distributed data in appropriate format that can be

used by MPI-based libraries:

• Candidates: ScaLAPACK, Elemental, PLAPACK

• Alchemist currently uses Elemental, support for ScaLAPACK under development

16 ©2018 RISELab

 Application 1

 Worker ACI

Driver

Worker

 Driver ACI

 Application 2

Worker Worker

Worker Worker Worker

Worker Worker Worker
 ALI C

MPI-based
Library C

Inter-Driver Socket Communication Dynamic linking

I

II

Inter-Worker Socket Communication

 Driver ACI

MPI Communication

 Worker ACI

 Worker ACI

 Worker ACI

 ALI A
MPI-based
Library A

 ALI B
MPI-based
Library B

Alchemist Architecture

17 ©2018 RISELab

 import alchemist.{Alchemist, AlMatrix}
 import alchemist.libA.QRDecomposition // libA is sample MPI lib

 // other code here ...

 // sc is instance of SparkContext
 val ac = new Alchemist.AlchemistContext(sc, numWorkers)
 ac.registerLibrary("libA", ALIlibALocation)

 // maybe other code here ...

 val alA = AlMatrix(A) // A is IndexedRowMatrix

 // routine returns QR factors of A as AlMatrix objects
 val (alQ, alR) = QRDecomposition(alA)

 // send data from Alchemist to Spark once ready
 val Q = alQ.toIndexedRowMatrix() // convert AlMatrix alQ to RDD
 val R = alR.toIndexedRowMatrix() // convert AlMatrix alR to RDD

 // maybe other code here ...

 ac.stop() // release resources once no longer required

Sample API

18 ©2018 RISELab

Example: Matrix Multiplication

• Requires expensive shuffles in Spark, which is impractical:

• Matrices/RDDs are row-partitioned

• one matrix must be converted to be column-partitioned

• Requires an all-to-all shuffle that often fails once the matrix is distributed

19 ©2018 RISELab

Example: Matrix Multiplication

GB/nodes Spark+Alchemist Spark

Send (s) Multiplication (s) Receive (s) Total (s) Total (s)

0.8/1 5.90±2.17 6.60±0.07 2.19±0.58 14.68±2.69 160.31±8.89

12/1 16.66±0.88 75.69±0.42 19.43±0.45 111.78±1.26 809.31±51.9

56/2 32.50±2.88 178.68±24.8 55.83±0.37 267.02±27.38 -Failed-

144/4 69.40±1.85 171.73±0.81 66.80±3.46 307.94±4.57 -Failed-

• Generated random matrices and used same number of Spark and Alchemist

nodes

• Take-away: Spark’s matrix multiply is slow even on one executor, and

unreliable once there are more

20 ©2018 RISELab

Example: Truncated SVD
• Use Alchemist and MLlib to get rank 20

truncated SVD

• Experiments run on NERSC supercomputer

Cori

• Each node of Cori has 128GB RAM and 32

cores

• Spark: 22 nodes; Alchemist: 8 nodes

• A: m-by-10K, where m = 5M, 2.5M, 1.25M,

625K, 312.5K

• Ran jobs for at most 30 minutes (1800 s)

Experiment Setup

21 ©2018 RISELab

Rank 20 SVD of

2.2TB ocean

temperature data

Case Study:
Spark vs. MPI

22 ©2018 RISELab

Rank 20 SVD of

16TB atmospheric

data using 48K+

cores

Case Study:
Spark vs. MPI

23 ©2018 RISELab

Example: Truncated SVD
Experiment Setup

• 2.2TB (6,177,583-by-46,752) ocean

temperature data read in from HDF5 file

• Data replicated column-wise

24 ©2018 RISELab

• PySpark, SparkR ⇔ MPI Interface

• Interface for Python => PySpark support

• Future work: Interface for R

• More Functionality

• Support for sparse matrices

• Support for MPI-based libraries built on ScaLAPACK

• Alchemist and Containers

• Alchemist running in Docker and Kubernetes

• Will enable Alchemist on clusters and the cloud

Upcoming Features

25 ©2018 RISELab

Limitations and Constraints

• Two copies of data in memory, more during a relayout during computation

• Data transfer overhead between Spark and Alchemist when data on

different nodes

• Subject to network disruptions and overload

• MPI is not fault tolerant or elastic

• Lack of MPI-based libraries for machine learning

• No equivalent to MLlib currently available, closest is MaTEx

• On Cori, need to run Alchemist and Spark on separate nodes -> more

data transfer over interconnects -> larger overheads

26 ©2018 RISELab

Future Work

• Apache Spark ⇔ X Interface

• Interest in connecting Spark with other libraries for distributed computing (e.g.

Cray Chapel, Apache REEF)

• Reduce communication costs

• Exploit locality

• Reduce number of messages

• Use communication protocols designed for underlying network infrastructure

• Run as network service

• MPI computations with (basic) fault tolerance and elasticity

2

7

Kai Rothauge

kai.rothauge@berkeley.edu

github.com/kai-rothauge/alchemist

github.com/project-alchemist/

Thanks to Cray Inc., DARPA and
NSF for financial support

References

● A. Gittens, K. Rothauge, M. W. Mahoney, et al., “Alchemist: Accelerating Large-Scale
 Data Analysis by offloading to High-Performance Computing Libraries”, 2018,
 Proceedings of the 24th ACM SIGKDD International Conference, Aug 2018, to appear
● A. Gittens, K. Rothauge, M. W. Mahoney, et al., “Alchemist: An Apache Spark ⇔ MPI

Interface”, 2018, to appear in CCPE Special Issue on Cray User Group Conference 2018

