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What is MPI?

• MPI = Message Passing Interface

• A specification for the developers and users of message passing libraries

• Message-Passing Parallel Programming Model: 

• cooperative operations between processes

• data moved from address space of one process to that of another 

• Dominant model in high-performance computing

• Popular implementations: MPICH, Open MPI

• Generally regarded as “low-level” for purposes of distributed computing
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More on MPI

• Efficient implementations of collective operations

• Works with distributed memory, shared memory, GPUs

• Requires installation of MPI implementation on system

• Communication between MPI processes:

• via TCP/IP sockets, or

• optimized for underlying interconnects (InfiniBand, Cray Aries, Intel 

Omni-Path, etc.) 

• Communicator objects connect groups of MPI processors

• Con: No fault tolerance or elasticity
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Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Why do linear algebra in Spark?
                                                    
                                                         Spark for data-centric workloads and scientific

                                                         analysis

                                                         Characterization of linear algebra in Spark

                                                    Customers demand Spark; want to understand

                                                         performance concerns
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Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Why do linear algebra in Spark?
• Pros: 

• Faster development, easier reuse

• Simple dataset abstractions (RDDs, DataFrames, DataSets)

• An entire ecosystem that can be used before and after the NLA computations

• Spark can take advantage of available local linear algebra codes

• Automatic fault-tolerance, out-of-core support

• Con:

• Classical MPI-based linear algebra implementations will be faster and more efficient
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Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Computations performed on NERSC supercomputer Cori Phase 1, a Cray 

XC40

• 2,388 compute nodes

• 128 GB RAM/node, 32 2.3GHz Haswell cores/node

• Lustre storage system, Cray Aries interconnect

A. Gittens et al. “Matrix factorizations at scale: A  comparison of scientific data analytics in Spark and 

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages 

204–213, Dec 2016.
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Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI

• Matrix factorizations considered include truncated Singular Value 

Decomposition (SVD)

• Data sets include

• Oceanic temperature data - 2.2 TB

• Atmospheric data - 16 TB

A. Gittens et al. “Matrix factorizations at scale: A  comparison of scientific data analytics in Spark and 

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages 

204–213, Dec 2016.
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Rank 20 SVD of 

2.2TB ocean

temperature data

Case Study: 
Spark vs. MPI
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Rank 20 SVD of 

16TB atmospheric

data using 48K+

cores

Case Study: 
Spark vs. MPI
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Case Study: Spark vs. MPI

• With favorable data (tall and skinny) and well-adapted algorithms, linear 

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads:

• Orders of magnitude higher than the actual computation times

• Anti-scale

• The gaps in performance suggest it may be better to interface with 

MPI-based codes from Spark
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• Alchemist interfaces between Apache Spark and existing or custom 

MPI-based libraries for linear algebra, machine learning, etc.

• Goal:

• Use Spark for regular data analysis workflow

• When computationally intensive calculations are required, call relevant 

MPI-based codes from Spark using Alchemist, send results to Spark

• Combine high productivity of Spark with high performance of MPI
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• Target users:

• Scientific community: Use Spark for analysis of large scientific datasets by 

calling existing MPI-based libraries where appropriate

• Machine learning practitioners and data analysts:

• Better performance of a wide range of large-scale, computationally 

intensive ML and data analysis algorithms 

• For instance, SVD for principal component analysis, recommender 

systems, leverage scores, etc.
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Basic Framework

• Alchemist: Acts as bridge between Spark and MPI-based libraries

• Alchemist-Client Interface: API for user, communicates with Alchemist via 

TCP/IP sockets

• Alchemist-Library Interface: Shared object, imports MPI library, provides 

generic interface for Alchemist to communicate with library
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Basic Framework

• Basic workflow:

• Spark application sends distributed dataset from RDD (IndexedRowMatrix) to 

Alchemist via TCP/IP sockets using ACI

• Spark application tells Alchemist what MPI-based code should be called

• Alchemist loads relevant MPI-based library, calls function, sends results to Spark
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Basic Framework

• Alchemist can also load data from file

• Alchemist needs to store distributed data in appropriate format that can be 

used by MPI-based libraries:

• Candidates: ScaLAPACK, Elemental, PLAPACK

• Alchemist currently uses Elemental, support for ScaLAPACK under development
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   import alchemist.{Alchemist, AlMatrix}
   import alchemist.libA.QRDecomposition      // libA is sample MPI lib

   // other code here ...

   // sc is instance of SparkContext
   val ac = new Alchemist.AlchemistContext(sc, numWorkers)
   ac.registerLibrary("libA", ALIlibALocation)

   // maybe other code here ...

   val alA = AlMatrix(A)                     // A is IndexedRowMatrix

   // routine returns QR factors of A as AlMatrix objects
   val (alQ, alR) = QRDecomposition(alA)
   
   // send data from Alchemist to Spark once ready
   val Q = alQ.toIndexedRowMatrix()          // convert AlMatrix alQ to RDD
   val R = alR.toIndexedRowMatrix()          // convert AlMatrix alR to RDD

   // maybe other code here ...

   ac.stop()                                 // release resources once no longer required

Sample API
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Example: Matrix Multiplication

• Requires expensive shuffles in Spark, which is impractical:

• Matrices/RDDs are row-partitioned

• one matrix must be converted to be column-partitioned

• Requires an all-to-all shuffle that often fails once the matrix is distributed
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Example: Matrix Multiplication

GB/nodes Spark+Alchemist Spark

Send (s) Multiplication (s) Receive (s) Total (s) Total (s)

0.8/1 5.90±2.17 6.60±0.07     2.19±0.58 14.68±2.69 160.31±8.89

12/1 16.66±0.88 75.69±0.42 19.43±0.45 111.78±1.26 809.31±51.9

56/2 32.50±2.88 178.68±24.8 55.83±0.37 267.02±27.38 -Failed-

144/4 69.40±1.85 171.73±0.81 66.80±3.46 307.94±4.57 -Failed-

• Generated random matrices and used same number of Spark and Alchemist 

nodes

• Take-away: Spark’s matrix multiply is slow even on one executor, and 

unreliable once there are more
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Example: Truncated SVD
• Use Alchemist and MLlib to get rank 20 

truncated SVD

• Experiments run on NERSC supercomputer 

Cori

• Each node of Cori has 128GB RAM and 32 

cores

• Spark: 22 nodes; Alchemist: 8 nodes

• A: m-by-10K, where m = 5M, 2.5M, 1.25M, 

625K, 312.5K

• Ran jobs for at most 30 minutes (1800 s)

Experiment Setup
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Rank 20 SVD of 

2.2TB ocean

temperature data

Case Study: 
Spark vs. MPI
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Rank 20 SVD of 

16TB atmospheric

data using 48K+

cores

Case Study: 
Spark vs. MPI
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Example: Truncated SVD
Experiment Setup

• 2.2TB (6,177,583-by-46,752) ocean 

temperature data read in from HDF5 file

• Data replicated column-wise
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• PySpark, SparkR ⇔ MPI Interface

• Interface for Python => PySpark support

• Future work: Interface for R

• More Functionality

• Support for sparse matrices

• Support for MPI-based libraries built on ScaLAPACK

• Alchemist and Containers

• Alchemist running in Docker and Kubernetes

• Will enable Alchemist on clusters and the cloud

Upcoming Features
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Limitations and Constraints

• Two copies of data in memory, more during a relayout during computation

• Data transfer overhead between Spark and Alchemist when data on 

different nodes

• Subject to network disruptions and overload

• MPI is not fault tolerant or elastic

• Lack of MPI-based libraries for machine learning

• No equivalent to MLlib currently available, closest is MaTEx

• On Cori, need to run Alchemist and Spark on separate nodes -> more 

data transfer over interconnects -> larger overheads
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Future Work

• Apache Spark ⇔ X Interface

• Interest in connecting Spark with other libraries for distributed computing (e.g. 

Cray Chapel, Apache REEF)

• Reduce communication costs

• Exploit locality

• Reduce number of messages

• Use communication protocols designed for underlying network infrastructure

• Run as network service

• MPI computations with (basic) fault tolerance and elasticity
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