L ®
I ,I' > e

An Apache Spark & MPI Interface

Kai Rothauge, Alex Gittens, Michael W. Mahoney

Thanks to NERSC and Cray Inc. for help and support! “4riselab

What is MPI?

e MPI = Message Passing Interface
e A specification for the developers and users of message passing libraries
o Message-Passing Parallel Programming Model.

® cooperative operations between processes

e data moved from address space of one process to that of another

e Dominant model in high-performance computing

e Popular implementations: MPICH, Open MPI

e Generally regarded as “low-level” for purposes of distributed computing

©2018 RISELab

More on MPI

o Efficient implementations of collective operations

e \Works with distributed memory, shared memory, GPUs
e Requires installation of MPI implementation on system

e Communication between MPI processes:
e via TCP/IP sockets, or

e optimized for underlying interconnects (InfiniBand, Cray Aries, Intel
Omni-Path, etc.)

e Communicator objects connect groups of MPI| processors

e Con: No fault tolerance or elasticity

©2018 RISELab

Case Study: Spark vs. MPI

e Numerical linear algebra (NLA) using Spark vs. MPI
e \Why do linear algebra in Spark?

Spark for data-centric workloads and scientific
Na_tion.a.l Energy R_esearch .
Scientific Computing Center an aIyS|S

Characterization of linear algebra in Spark

UC Berkeley

Customers demand Spark; want to understand

performance concerns

©2018 RISELab

Case Study: Spark vs. MPI

e Numerical linear algebra (NLA) using Spark vs. MPI
 \Why do linear algebra in Spark”?

.
» Faster development, easier reuse
» Simple dataset abstractions (RDDs, DataFrames, DataSets)
* An entire ecosystem that can be used before and after the NLA computations
» Spark can take advantage of available local linear algebra codes
» Automatic fault-tolerance, out-of-core support

e Con:

» Classical MPIl-based linear algebra implementations will be faster and more efficient

Vi

©2018 RISELab

Case Study: Spark vs. MPI

e Numerical linear algebra (NLA) using Spark vs. MPI
e Computations performed on NERSC supercomputer Cori Phase 1, a Cray
XC40

e 2,388 compute nodes
e 128 GB RAM/node, 32 2.3GHz Haswell cores/node

e | ustre storage system, Cray Aries interconnect

A. Gittens et al. “Matrix factorizations at scale: A comparison of scientific data analytics in Spark and

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages
204-213, Dec 2016.

©2018 RISELab

Case Study: Spark vs. MPI

e Numerical linear algebra (NLA) using Spark vs. MPI

e Matrix factorizations considered include truncated Singular Value
Decomposition (SVD)

e Data sets include

e (QOceanic temperature data - 2.2 TB
® Atmospheric data - 16 TB

A. Gittens et al. “Matrix factorizations at scale: A comparison of scientific data analytics in Spark and

C+MPI using three case studies”, 2016 IEEE International Conference on Big Data (Big Data), pages
204-213, Dec 2016.

©2018 RISELab

Case Study:

800
Spark vs. MPI
600
Rank 20 SVD of 2
= 400
2.2TB ocean
temperature data
200
B P — —
0 Spark 100 MPI 100 Spark 300 MPI 300 Spark 500 MPI 500

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A=V
m Local SVD A«V m Task Start Delay - Scheduler Delay » Task Overheads

m Time Waiting Until Stage End

©2018 RISELab

Case Study:
Spark vs. MPI

100

Rank 20 SVD of

Time (s)

16TB atmospheric .

data using 48K+

cores

Spark

MPI Spark MPI Spark MPI Spark MPI Spark Overheads

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A~V
m Local SVD A~V m Task Start Delay « Scheduler Delay = Task Overheads

a Time Waiting Until Stage End

©2018 RISELab

Case Study: Spark vs. MPI

e \With favorable data (tall and skinny) and well-adapted algorithms, linear
algebra in Spark is 2x-26x slower than MPI when |/O is included

e Spark’s overheads:

e Orders of magnitude higher than the actual computation times

e Anti-scale

* The gaps in performance suggest it may be better to interface with

MPI-based codes from Spark

©©©©©©©©©©©©

RHlchem st
N

e Alchemist interfaces between Apache Spark and existing or custom

MPI-based libraries for linear algebra, machine learning, etc.
e Goal-

e Use Spark for regular data analysis workflow
e \When computationally intensive calculations are required, call relevant

MPI-based codes from Spark using Alchemist, send results to Spark

e Combine high productivity of Spark with high performance of MPI

©2018 RISELab

RHlchem st
N

e Target users:

o Scientific community: Use Spark for analysis of large scientific datasets by
calling existing MPI-based libraries where appropriate
e Machine learning practitioners and data analysts:
e Better performance of a wide range of large-scale, computationally
intensive ML and data analysis algorithms
e For instance, SVD for principal component analysis, recommender

systems, leverage scores, etc.

©2018 RISELab

Basic Framework

Alchemist-
-------- Library Interface Mlz:t-)t::sed
(ALI) ry

*------ > Interprocess Socket Communication At > Dynamic linking

e Alchemist: Acts as bridge between Spark and MPI-based libraries

e Alchemist-Client Interface: API for user, communicates with Alchemist via
TCP/IP sockets
e Alchemist-Library Interface: Shared object, imports MPI library, provides

generic interface for Alchemist to communicate with library

©2018 RISELab

Basic Framework

. Alchemist- MPl-based
H I Ch\ejll S -I- --------- lerar{Al Ir-\l't)erface Library II

*------ > Interprocess Socket Communication At > Dynamic linking

e Basic workflow:
o Spark application sends distributed dataset from RDD (IndexedRowMatrix) to
Alchemist via TCP/IP sockets using ACI
e Spark application tells Alchemist what MPIl-based code should be called

e Alchemist loads relevant MPI-based library, calls function, sends results to Spark
y

©2018 RISELab

Basic Framework

Alchemist-
--------- Library Interface ME:;)?:sed
(ALI) ry

*------ > Interprocess Socket Communication At > Dynamic linking

* Alchemist can also load data from file
* Alchemist needs to store distributed data in appropriate format that can be

used by MPIl-based libraries:
e Candidates: ScaLAPACK, Elemental, PLAPACK

e Alchemist currently uses Elemental, support for ScaLAPACK under developmentl

©2018 RISELab

Alchemist Architecture

Spaﬁgz Application 1 RHlichemjst
i e SRR TS —— > . _
Driver | ACI |+ R ~ Driver <l AL A I\:I_I;;rlaa?;id
r———=—==- - ¥ } '
I ' R
| Worker | ACI ‘L | | 1
| ’\\I : || Worker |« Worker : Worker : P
I SRS L : -base
I Worker | ACI , T :_ == »: I<. : ALI B Library B
7/ I |
I Worker | ACI lr | | || Worker [«——| Worker : Worker
| , : | o o - e = = —
: I 1 > ALl C MPI-based
<"Z /" ld | Worker |«—1+| Worker |[«1—>{ Worker ' > Library C
SpQI’KW Application2 |.- <
< JUS N (e g —
g ks II -
Driver | ACI f e
7 < - - -» |Inter-Driver Socket Communication > REEEEES > Dynamic linking
Worker | ACI ¢ < ---» [nter-Worker Socket Communication <«— MPI Communication

o

©2018 RISELab

17

Sample API

import alchemist. {Alchemist, AlMatrix}
import alchemist.libA.QRDecomposition

// other code here

// sc is instance of SparkContext

// libA is sample MPI 1lib

val ac = new Alchemist.AlchemistContext (sc, numWorkers)
ac.registerlibrary("1ibA", ALIlibALocation)

// maybe other code here
val alA = AlMatrix(A)

// routine returns QR factors of A as
val (alQ, alR) = QRDecomposition (ald)

// A is IndexedRowMatrix

AlMatrix objects

// send data from Alchemist to Spark once ready

val Q = alQ.toIndexedRowMatrix ()
val R = alR.toIndexedRowMatrix()

// maybe other code here

ac.stop()

// convert AlMatrix alQ to RDD
// convert AlMatrix alR to RDD

// release resources once no longer required

©2018 RISELab

Vi

Example: Matrix Multiplication

==-Elll

* Requires expensive shuffles in Spark, which is impractical:

e Matrices/RDDs are row-partitioned
* one matrix must be converted to be column-partitioned

e Requires an all-to-all shuffle that often fails once the matrix is distributed

©2018 RISELab

Example: Matrix Multiplication

GB/nodes Spark+Alchemist Spark
Send (s) Multiplication (s) Receive (s) Total (s) Total (s)
0.8/1 5.90+2.17 6.60+0.07 2.19+0.58 14.68+2.69 160.31+8.89
12/1 16.66+0.88 75.69+0.42 19.43+0.45| 111.78+1.26 809.31+51.9
56/2 32.50+2.88 178.68+24.8 55.83+0.37 | 267.02+27.38 -Failed-
144/4 69.40+1.85 171.73+0.81 66.80+3.46 | 307.94+4.57 -Failed-

* Generated random matrices and used same number of Spark and Alchemist
nodes

o Take-away: Spark’s matrix multiply is slow even on one executor, and
unreliable once there are more o

©2018 RISELab

Spark => Alchemist send time MPI compute time
Alchemist => Spark send time

Example: Truncated SVD w0os o N

e Use Alchemist and MLlib to get rank 20 0 | .
truncated SVD e b NN 315.6s
18.4s
e Experiments run on NERSC supercomputer 118 192 208.7s
100 1R .- ... B ... N
: 145.1
Corl 99s 120.6s S
_ 0s - 7.9s | 9.1s | 14.2s | 37.9s | 61.1s D
e Each node of Cori has 128GB RAM and 32 5 GB 50GB 100GB 200 GB 400 GB
cores B Spark+Alchemist execution time B Spark execution time
2,000s

Experiment Setup >1,800s >1,800s >1,800s >1,800s
e Spark: 22 nodes; Alchemist: 8 nodes LS
e A: m-by-10K, where m = 5M, 2.5M, 1.25M, 1,000s -
625K, 312.5K ooe Zm 4005
e Ran jobs for at most 30 minutes (1800 s) : ol el =i N BN 1488 1777

©2018 RISELab
25 GB 50 GB 100 GB 200 GB 400 GB

Case Study:

800
Spark vs. MPI
600
Rank 20 SVD of 2
= 400
2.2TB ocean
temperature data
200
B P — —
0 Spark 100 MPI 100 Spark 300 MPI 300 Spark 500 MPI 500

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A=V
m Local SVD A«V m Task Start Delay - Scheduler Delay » Task Overheads

m Time Waiting Until Stage End

21 ©2018 RISELab

Case Study:

Spark vs. MPI
100
Rank 20 SVD of
16TB atmospheric | .
data using 48K+
cores
1

Spark MPI Spark MPI Spark MPI Spark MPI Spark Overheads

Time (s)

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A~V
m Local SVD A~V m Task Start Delay « Scheduler Delay = Task Overheads

a Time Waiting Until Stage End

22 ©2018 RISELab

Example: Truncated SVD

Experiment Setup
e 2.21B (6,177,583-by-46,752) ocean e Data replicated column-wise
temperature data read in from HDFS file

Load time from HDF5 [SVD compute time (MPI) [Alchemist => Spark send time [Overall
3605 R R R R S e R SR S S S R R T R S R S A R R S R S R R S S R R R SR R R S R S SR RS A R R T S S S R R TR R R

270s -

180s -

2.2 TB (38 nodes) 4.4 TB (76 nodes) 8.8 TB (154 nodes) 17.6 TB (308 nodes)

©2018 RISELab

90s -

Os

Upcoming Features

e PySpark, SparkR & MPI Interface
e |nterface for Python => PySpark support

e Future work: Interface for R
e More Functionality

e Support for sparse matrices
e Support for MPIl-based libraries built on ScaLAPACK

e Alchemist and Containers

e Alchemist running in Docker and Kubernetes

e Will enable Alchemist on clusters and the cloud

©2018 RISELab

Limitations and Constraints

e Two copies of data in memory, more during a relayout during computation
 Data transfer overhead between Spark and Alchemist when data on

different nodes
e Subject to network disruptions and overload

e MPI i1s not fault tolerant or elastic

e L ack of MPIl-based libraries for machine learning
e No equivalent to MLIlib currently available, closest is MaTEX

e On Corli, need to run Alchemist and Spark on separate nodes -> more

data transfer over interconnects -> larger overheads

©2018 RISELab

Future Work

e Apache Spark & X Interface
® [nterest in connecting Spark with other libraries for distributed computing (e.qg.
Cray Chapel, Apache REEF)
e Reduce communication costs

o EXxploit locality
e Reduce number of messages

e Use communication protocols designed for underlying network infrastructure

e Run as network service

e MPI computations with (basic) fault tolerance and elasticity

©2018 RISELab

Thanks to Cray Inc., DARPA and Rk

kai.rothauge@berkeley.edu .

NSF for financial support

github.com/kai-rothauge/alchemist

github.com/project-alchemist/

References

e A. Gittens, K. Rothauge, M. W. Mahoney, et al., “Alchemist: Accelerating Large-Scale
Data Analysis by offloading to High-Performance Computing Libraries”, 2018,
Proceedings of the 24th ACM SIGKDD International Conference, Aug 2018, to appear

e A. Gittens, K. Rothauge, M. W. Mahoney, et al., “Alchemist: An Apache Spark & MPI
Interface”, 2018, to appear in CCPE Special Issue on Cray User Group Conference 2018

Zrise ab 2

UC Berkeley

