An Apache Spark ⇔ MPI Interface

Kai Rothauge, Alex Gittens, Michael W. Mahoney

Thanks to NERSC and Cray Inc. for help and support!
What is MPI?

- **MPI** = Message Passing Interface
- A *specifieration* for the developers and users of message passing libraries
- *Message-Passing Parallel Programming Model*:
 - cooperative operations between processes
 - data moved from address space of one process to that of another
- Dominant model in **high-performance computing**
- Popular *implementations*: MPICH, Open MPI
- Generally regarded as “low-level” for purposes of distributed computing
More on MPI

• Efficient implementations of collective operations
• Works with *distributed memory, shared memory, GPUs*
• Requires installation of MPI implementation on system
• Communication between MPI processes:
 • via TCP/IP sockets, or
 • optimized for underlying interconnects (InfiniBand, Cray Aries, Intel Omni-Path, etc.)
• **Communicator** objects connect groups of MPI processors
• **Con**: No *fault tolerance or elasticity*
Case Study: Spark vs. MPI

- **Numerical linear algebra (NLA)** using Spark vs. MPI
- Why do linear algebra in Spark?

Spark for data-centric workloads and scientific analysis

Characterization of linear algebra in Spark

Customers demand Spark; want to understand performance concerns
Case Study: Spark vs. MPI

• **Numerical linear algebra (NLA)** using Spark vs. MPI

• Why do linear algebra in Spark?
 • **Pros**:
 • Faster development, easier reuse
 • Simple dataset abstractions (RDDs, DataFrames, DataSets)
 • An entire ecosystem that can be used before and after the NLA computations
 • Spark can take advantage of available local linear algebra codes
 • Automatic fault-tolerance, out-of-core support
 • **Con**:
 • Classical MPI-based linear algebra implementations will be faster and more efficient
Case Study: Spark vs. MPI

- **Numerical linear algebra (NLA)** using Spark vs. MPI
- Computations performed on NERSC supercomputer **Cori** Phase 1, a Cray XC40
 - 2,388 compute nodes
 - 128 GB RAM/node, 32 2.3GHz Haswell cores/node
 - Lustre storage system, Cray Aries interconnect

Case Study: Spark vs. MPI

- **Numerical linear algebra (NLA)** using Spark vs. MPI
- Matrix factorizations considered include *truncated Singular Value Decomposition (SVD)*
- Data sets include
 - Oceanic temperature data - 2.2 TB
 - Atmospheric data - 16 TB

Case Study: Spark vs. MPI

Rank 20 SVD of 2.2TB ocean temperature data

©2018 RISELab
Case Study: Spark vs. MPI

Rank 20 SVD of 16TB atmospheric data using 48K+ cores
Case Study: Spark vs. MPI

• With favorable data (tall and skinny) and well-adapted algorithms, linear algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads:
 • Orders of magnitude higher than the actual computation times
 • Anti-scale

• The gaps in performance suggest it may be better to interface with MPI-based codes from Spark
• **Alchemist** interfaces between Apache Spark and *existing* or *custom* MPI-based libraries for linear algebra, machine learning, *etc.*

• **Goal:**

 • Use Spark for regular data analysis workflow

 • When computationally intensive calculations are required, call relevant MPI-based codes from Spark using Alchemist, send results to Spark

• Combine **high productivity** of Spark with **high performance** of MPI
• Target users:
 • **Scientific community:** Use Spark for analysis of large scientific datasets by calling existing MPI-based libraries where appropriate
 • **Machine learning practitioners** and **data analysts:**
 • Better performance of a wide range of large-scale, computationally intensive ML and data analysis algorithms
 • For instance, SVD for principal component analysis, recommender systems, leverage scores, etc.
Basic Framework

- **Alchemist**: Acts as bridge between Spark and MPI-based libraries
- **Alchemist-Client Interface**: API for user, communicates with Alchemist via TCP/IP sockets
- **Alchemist-Library Interface**: Shared object, imports MPI library, provides generic interface for Alchemist to communicate with library
Basic Framework

Basic workflow:

- Spark application sends distributed dataset from RDD (IndexedRowMatrix) to Alchemist via TCP/IP sockets using ACI
- Spark application tells Alchemist what MPI-based code should be called
- Alchemist loads relevant MPI-based library, calls function, sends results to Spark
Basic Framework

- Alchemist can also load data from file
- Alchemist needs to store distributed data in appropriate format that can be used by MPI-based libraries:
 - Candidates: ScaLAPACK, Elemental, PLAPACK
 - Alchemist currently uses Elemental, support for ScaLAPACK under development
Alchemist Architecture

Application 1
- Driver: ACI
- Worker: ACI

Application 2
- Driver: ACI
- Worker: ACI

Inter-Driver Socket Communication
- Dynamic linking
- MPI Communication

Inter-Worker Socket Communication

ALI A: MPI-based Library A
ALI B: MPI-based Library B
ALI C: MPI-based Library C
import alchemist.{Alchemist, AlMatrix}
import alchemist.libA.QRDecomposition // libA is sample MPI lib

// other code here ...

// sc is instance of SparkContext
val ac = new Alchemist.AlchemistContext(sc, numWorkers)
ac.registerLibrary("libA", ALIlibALocation)

// maybe other code here ...

val alA = AlMatrix(A) // A is IndexedRowMatrix

// routine returns QR factors of A as AlMatrix objects
val (alQ, alR) = QRDecomposition(alA)

// send data from Alchemist to Spark once ready
val Q = alQ.toIndexedRowMatrix() // convert AlMatrix alQ to RDD
val R = alR.toIndexedRowMatrix() // convert AlMatrix alR to RDD

// maybe other code here ...

ac.stop() // release resources once no longer required
Example: Matrix Multiplication

• Requires expensive shuffles in Spark, which is impractical:
 • Matrices/RDDs are row-partitioned
 • one matrix must be converted to be column-partitioned
 • Requires an all-to-all shuffle that often fails once the matrix is distributed
Example: Matrix Multiplication

<table>
<thead>
<tr>
<th>GB/nodes</th>
<th>Spark+Alchemist</th>
<th>Spark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Send (s)</td>
<td>Total (s)</td>
</tr>
<tr>
<td></td>
<td>Multiplication (s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receive (s)</td>
<td></td>
</tr>
<tr>
<td>0.8/1</td>
<td>5.90±2.17</td>
<td>14.68±2.69</td>
</tr>
<tr>
<td>12/1</td>
<td>16.66±0.88</td>
<td>111.78±1.26</td>
</tr>
<tr>
<td>56/2</td>
<td>32.50±2.88</td>
<td>267.02±27.38</td>
</tr>
<tr>
<td>144/4</td>
<td>69.40±1.85</td>
<td>307.94±4.57</td>
</tr>
</tbody>
</table>

- Generated random matrices and used same number of Spark and Alchemist nodes.
- Take-away: *Spark’s matrix multiply is slow even on one executor, and unreliable once there are more.*
Example: Truncated SVD

- Use Alchemist and MLlib to get rank 20 truncated SVD
- Experiments run on NERSC supercomputer Cori
- Each node of Cori has 128GB RAM and 32 cores

Experiment Setup

- Spark: 22 nodes; Alchemist: 8 nodes
- A: m-by-10K, where m = 5M, 2.5M, 1.25M, 625K, 312.5K
- Ran jobs for at most 30 minutes (1800 s)
Case Study: Spark vs. MPI

Rank 20 SVD of 2.2TB ocean temperature data
Case Study: Spark vs. MPI

Rank 20 SVD of 16TB atmospheric data using 48K+ cores

![Bar chart comparing Spark and MPI for SVD computation. The chart shows the time taken in seconds for various operations such as parallel HDFS read, gram matrix vector product, distributed A-V, local SVD A-V, task start delay, scheduler delay, task overheads, and time waiting until stage end. The chart indicates that Spark generally performs better than MPI, with lower time taken across most operations.]
Example: Truncated SVD

Experiment Setup

- 2.2TB (6,177,583-by-46,752) ocean temperature data read in from HDF5 file
- Data replicated column-wise
Upcoming Features

• PySpark, SparkR ↔ MPI Interface
 • Interface for Python => PySpark support
 • Future work: Interface for R

• More Functionality
 • Support for sparse matrices
 • Support for MPI-based libraries built on ScaLAPACK

• Alchemist and Containers
 • Alchemist running in Docker and Kubernetes
 • Will enable Alchemist on clusters and the cloud
Limitations and Constraints

- **Two copies of data in memory**, more during a relayout during computation
- **Data transfer overhead** between Spark and Alchemist when data on different nodes
 - Subject to network disruptions and overload
- **MPI is not fault tolerant or elastic**
- **Lack of MPI-based libraries for machine learning**
 - No equivalent to MLlib currently available, closest is MaTEx
- On Cori, **need to run Alchemist and Spark on separate nodes** -> more data transfer over interconnects -> larger overheads
Future Work

• Apache Spark ↔ X Interface
 • Interest in connecting Spark with other libraries for distributed computing (e.g. Cray Chapel, Apache REEF)

• Reduce communication costs
 • Exploit locality
 • Reduce number of messages
 • Use communication protocols designed for underlying network infrastructure

• Run as network service

• MPI computations with (basic) fault tolerance and elasticity
Thanks to Cray Inc., DARPA and NSF for financial support

github.com/project-alchemist/

References