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Preconditioning



Optimizing convex least squares cost

» Consider .
min §||Ax — b5

\ 7

f(x)
> gradient Vf(x) = AT (Ax — b)
» Gradient Descent:

Xp11 = Xp — ,uAT(AXt — b)

» fixed step size uy =



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT (Ax* — b) =0
(2) Xt+1 — Xt — ILLAT(AXt - b)

(3) define error A; = x; — x*



Optimizing convex least squares cost

» Basic (in)equality method
(1) x* minimizes f(x), hence Vf(x*) = AT (Ax* — b) =0
(2) Xt+1 — Xt — ILLAT(AXt - b)

(3) define error A; = x; — x*

> Aip1 = A — MATAAt



Optimizing convex least squares cost

>
>
>

vV v.vY

run gradient descent M iterations, ie., t=1,.... M
Ay = (I — pATAMA,

[Amll2 < omax ((I = AT AM) [|A0]2

omax (1 = pATAYY = maxi—y 4 |1 — uAi(ATA
where \; is the i-th eigenvalue in decreasing order
Define

A_ as the smallest eigenvalue of AT A

)|

A4 as the largest eigenvalue of AT A

maxi-1,..q |1 A (ATA)] = max (|1 = A, |1 = pA )
optimal step size that minimizes above

1— ,u)\+D

optimal p = p* satisfies }1 — u*)\_| = }1 — WAL

which implies p* = ﬁ

Y

min,>p max (‘1 — UA_



Optimizing convex least squares cost

» Convergence rate using u* = —Mi)\_

» max (‘1 — |, 1 _M*)‘-FD = t;;:

) A-a \M )
> = x*lla < (355 lxo = X7l

convergence depends on the eigenvalues of AT A

Two extremes:

» Identical eigenvalues (extremely well conditioned) A\_ = A4,
l.e., \{1 = A =-.-- = )y == convergence in one iteration
» Distant eigenvalues (poorly conditioned) AL > A_
— i‘I_Ti‘\: ~ 1 leads to slow convergence

» Condition number k := ;\—f

-1 M
> fxw = x7ll2 < (52) " o = %Il



Computational complexity

M
I = x*ll2 < (553) " llxo — X712

» Initialize at xp = 0

v

For € accuracy, i.e., ||[xp — x*[|2 < e

» We need to set the number of iterations M to

k—1 .
Mlog (H 1) 1 log "2 < log(e)

> log (Z—fl) ~ —2- for large r

log( %
>» M =0 (ﬁ) O (k log( &

» Total computational cost knd Iog(%) for € accuracy

N =

)) for large



Improving condition number dependence: momentum

» min, (x)

» Gradient Descent with Momentum

Xt41 = Xt — MtVf(Xt) + Bt(Xt — Xt—1)

» the term Bi(x; — x¢—1) is referred to as momentum



Momentum

» Gradient Descent with Momentum

Xer1 = Xt — e VI (xe) + Be(xe — x¢—1)

» related to a discretization of the second order ordinary
differential equation

X + ax + bVf(x)

» which models the motion of a body in a potential field given
by f



Momentum

» also called accelerated gradient descent, or heavy-ball method

» can be re-written as

pt = BepPr—1 — Vf(Xt)

Xt4+1 = Xt + Q¢ Pt

» p; is the search direction

v

there is a short-term memory

» typically we set pp = 0



Gradient Descent with Momentum for Least Squares

Problems
» min, f(x) where f(x) = ||Ax — b||5
» Gradient Descent with momentum (Heavy Ball Method)
Xt+1 = Xt — e VF(xe) + Be(xe — xe—1)

» Recall that when § = 0 (Gradient Descent) we defined

A; = x; — x* where x* = ATbh and established the recursion
Aei1 = (I — pATA) A,

» Since there is one time step memory, consider
Ve i= ||Aes1]|3 + || A¢]|3 instead

> we can write V; in terms of Vi1 = [|A¢|3 + || A¢_1]|3

» Lyapunov analysis

V; is an energy function that decays to zero and
upper-bounds error, i.e., |A¢]|3 < V4



Convergence analysis

» min, f(x) where f(x) = ||Ax — b||5
» Gradient Descent with momentum (Heavy Ball Method)

Xe41 = X¢ — e VI(Xt) + Be(Xe — Xxe—1)

> let A; := x; — x* where x* = ATh
» note that b = Ax* + b+ and Vf(x;) = AT AA,

[ Asiq ] _ [ x¢ — aVf(x:) + B(xe — x¢_1) — x* ]
At | A1.“

[ (@+8)—-aATA BI A;
e e




Convergence analysis

» iterating fort=1,....M

[AAMI\_/IH ] _ [ (1+ﬁ)l/—aATA 50/ ]M[:]

» taking norms

I ]l

/ 0 JAVER|

|[(1+5)/aATA 5/] [ A, ]

2

ome ([ F4 AT [

2



Spectral Radius

» Let M be an d x d matrix with eigenvalues A1, ...

» spectral radius is defined as

p(M) = max_[Ai(M)]

Lemma limy_, omax(M¥)% = p(M)



Let \; denote the eigenvalues of ATAfori=1,...,d

Lemma The eigenvalues of

(1+8) —aATA BI
RNV

are given by the eigenvalues of 2 X 2 matrices

1+ 6 — ()é)\,' —5
1 0
fori=1,...,d
These are given by the roots of u? — (1 + 3 — a)X)u+ =0
- _ 4 VAV
setting o = Vv and 8 = /o yields

_ T B
spectral radius: p ([ (1 +6)II aA"A 501 }) _ \/\/iEJF\/\/i:
—+ —_



Convergence result

» setting a = Vv \/}\7_ and 8 = \/L yields

[ Lo (550

2



Computational complexity

» Gradient Descent (5 = 0) total computational cost
rnd log(1) for € accuracy

» Gradient Descent with Momentum total computational cost
Vrnd log() for € accuracy

> we need to know eigenvalues of AT A to find optimal step-sizes



Computational complexity

» Gradient Descent (5 = 0) total computational cost
rnd log(1) for € accuracy

» Gradient Descent with Momentum total computational cost
Vrnd log() for € accuracy

> we need to know eigenvalues of AT A to find optimal step-sizes

» Conjugate Gradient doesn’t require the eigenvalues explicitly
and results in \/knd log(2) operations



Questions?



