EE270

Large scale matrix computation, optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020

Randomized Linear Algebra and Optimization Lecture 13: Gradient Descent with Momentum and Preconditioning

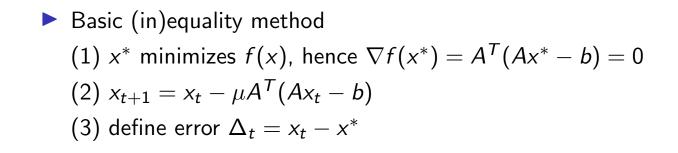
・ロ・・ 白・ ・ 川・ ・ 川・ ・ し・ うくぐ

$$\min_{x} \underbrace{\frac{1}{2} \|Ax - b\|_{2}^{2}}_{f(x)}$$

• gradient
$$\nabla f(x) = A^T(Ax - b)$$

$$x_{t+1} = x_t - \mu A^T (A x_t - b)$$

• fixed step size $\mu_t = \mu$



$$\blacktriangleright \Delta_{t+1} = \Delta_t - \mu A^T A \Delta_t$$

▶ run gradient descent M iterations, i.e., t = 1, ..., M

convergence depends on the eigenvalues of $A^T A$ Two extremes:

- ► Identical eigenvalues (extremely well conditioned) $\lambda_{-} = \lambda_{+}$, i.e., $\lambda_{1} = \lambda_{2} = \cdots = \lambda_{d} \implies$ convergence in one iteration
- ► Distant eigenvalues (poorly conditioned) $\lambda_+ \gg \lambda_ \implies \frac{\lambda_+ - \lambda_-}{\lambda_+ + \lambda_-} \approx 1$ leads to slow convergence
- Condition number $\kappa := \frac{\lambda_+}{\lambda_-}$

$$||x_M - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^M ||x_0 - x^*||_2$$

◆□ → ◆□ → ◆ = → < = → < = → < </p>

Computational complexity

$$||x_M - x^*||_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^M ||x_0 - x^*||_2$$

• Initialize at $x_0 = 0$

For
$$\epsilon$$
 accuracy, i.e., $||x_M - x^*||_2 \le \epsilon$

We need to set the number of iterations M to

$$M\log\left(rac{\kappa-1}{\kappa+1}
ight)+\log\|x^*\|_2\leq \log(\epsilon)$$

•
$$M = O\left(\frac{\log(\frac{1}{\epsilon})}{\log(\frac{\kappa+1}{\kappa-1})}\right)$$

• $\log\left(\frac{\kappa+1}{\kappa-1}\right) \approx \frac{2}{\kappa-1}$ for large κ
• $M = O\left(\frac{\log(\frac{1}{\epsilon})}{\log(\frac{\kappa+1}{\kappa-1})}\right) = O(\kappa \log(\frac{1}{\epsilon}))$ for large κ

• Total computational cost $\kappa nd \log(\frac{1}{\epsilon})$ for ϵ accuracy

Improving condition number dependence: momentum

$$\blacktriangleright \min_x f(x)$$

Gradient Descent with Momentum

$$x_{t+1} = x_t - \mu_t \nabla f(x_t) + \beta_t (x_t - x_{t-1})$$

• the term $\beta_t(x_t - x_{t-1})$ is referred to as **momentum**

▲□▶▲□▶▲□▶▲□▶▲□▶ ▲□▶

Momentum

Gradient Descent with Momentum

$$x_{t+1} = x_t - \mu_t \nabla f(x_t) + \beta_t (x_t - x_{t-1})$$

related to a discretization of the second order ordinary differential equation

$$\ddot{x} + a\dot{x} + b\nabla f(x)$$

which models the motion of a body in a potential field given by f

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Momentum

also called accelerated gradient descent, or heavy-ball method
 can be re-written as

$$p_t = \beta_t p_{t-1} - \nabla f(x_t)$$
$$x_{t+1} = x_t + \alpha_t p_t$$

- *p_t* is the search direction
- there is a short-term memory
- typically we set $p_0 = 0$

Gradient Descent with Momentum for Least Squares Problems

- $\min_{x} f(x)$ where $f(x) = ||Ax b||_{2}^{2}$
- Gradient Descent with momentum (Heavy Ball Method)

$$x_{t+1} = x_t - \mu_t \nabla f(x_t) + \beta_t (x_t - x_{t-1})$$

Recall that when $\beta = 0$ (Gradient Descent) we defined $\Delta_t := x_t - x^*$ where $x^* = A^{\dagger}b$ and established the recursion

$$\Delta_{t+1} = (I - \mu A^T A) \Delta_t$$

- Since there is one time step memory, consider $V_t := \|\Delta_{t+1}\|_2^2 + \|\Delta_t\|_2^2$ instead
- \blacktriangleright we can write V_t in terms of $V_{t-1} = \|\Delta_t\|_2^2 + \|\Delta_{t-1}\|_2^2$

Lyapunov analysis

 V_t is an energy function that decays to zero and upper-bounds error, i.e., $\|\Delta_t\|_2^2 \leq V_t$

Convergence analysis

min_x f(x) where f(x) = ||Ax - b||₂²
 Gradient Descent with momentum (Heavy Ball Method)

$$x_{t+1} = x_t - \mu_t \nabla f(x_t) + \beta_t (x_t - x_{t-1})$$

let ∆_t := x_t - x^{*} where x^{*} = A[†]b
note that b = Ax^{*} + b[⊥] and ∇f(x_t) = A^TA∆_t

$$\begin{bmatrix} \Delta_{t+1} \\ \Delta_t \end{bmatrix} = \begin{bmatrix} x_t - \alpha \nabla f(x_t) + \beta (x_t - x_{t-1}) - x^* \\ \Delta_t \end{bmatrix}$$
$$= \begin{bmatrix} (1+\beta)I - \alpha A^T A & \beta I \\ I & 0 \end{bmatrix} \begin{bmatrix} \Delta_t \\ \Delta_{t-1} \end{bmatrix}$$

4 日 > 4 日 > 4 目 > 4 目 > 1 日 > 9 4 円 > 1 日

Convergence analysis

• iterating for
$$t = 1, ..., M$$

$$\begin{bmatrix} \Delta_{M+1} \\ \Delta_M \end{bmatrix} = \begin{bmatrix} (1+\beta)I - \alpha A^T A & \beta I \\ I & 0 \end{bmatrix}^M \begin{bmatrix} \Delta_1 \\ \Delta_0 \end{bmatrix}$$

taking norms

$$\left\| \begin{bmatrix} \Delta_{t+1} \\ \Delta_t \end{bmatrix} \right\|_2 = \left\| \begin{bmatrix} (1+\beta)I - \alpha A^T A & \beta I \\ I & 0 \end{bmatrix}^M \begin{bmatrix} \Delta_t \\ \Delta_{t-1} \end{bmatrix} \right\|_2$$
$$\leq \sigma_{\max} \left(\begin{bmatrix} (1+\beta)I - \alpha A^T A & \beta I \\ I & 0 \end{bmatrix}^M \right) \left\| \begin{bmatrix} \Delta_t \\ \Delta_{t-1} \end{bmatrix} \right\|_2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spectral Radius

▶ Let *M* be an *d* × *d* matrix with eigenvalues λ₁, ..., λ_d
 ▶ spectral radius is defined as

 $ho(M) := \max_{i=1,..,d} |\lambda_i(M)|$ Lemma $\lim_{k \to \sigma_{\max}} (M^k)^{rac{1}{k}} =
ho(M)$

(ロ)、(型)、(E)、(E)、(E)、(O)へ()

Let \(\lambda_i\) denote the eigenvalues of \(A^T A\) for \(i = 1, ..., d\)
Lemma The eigenvalues of

$$\begin{bmatrix} (1+\beta)I - \alpha A^T A & \beta I \\ I & 0 \end{bmatrix}$$

are given by the eigenvalues of 2×2 matrices

$$\left[\begin{array}{rrr} 1+\beta-\alpha\lambda_i & -\beta\\ 1 & 0 \end{array}\right]$$

▲□▶▲□▶▲□▶▲□▶ ■ ∽੧<

Convergence result

► setting
$$\alpha = \frac{4}{\sqrt{\lambda_{+}} + \sqrt{\lambda_{-}}}$$
 and $\beta = \frac{\sqrt{\lambda_{+}} - \sqrt{\lambda_{-}}}{\sqrt{\lambda_{+}} + \sqrt{\lambda_{-}}}$ yields
$$\left\| \begin{bmatrix} \Delta_{t+1} \\ \Delta_{t} \end{bmatrix} \right\|_{2} \le \sigma_{\max} \left(\frac{\sqrt{\lambda_{+}} - \sqrt{\lambda_{-}}}{\sqrt{\lambda_{+}} + \sqrt{\lambda_{-}}} \right)^{M} \left\| \begin{bmatrix} \Delta_{t} \\ \Delta_{t-1} \end{bmatrix} \right\|_{2}$$

Computational complexity

- Gradient Descent ($\beta = 0$) total computational cost $\kappa nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- Gradient Descent with Momentum total computational cost $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- \blacktriangleright we need to know eigenvalues of $A^T A$ to find optimal step-sizes

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<

Computational complexity

- Gradient Descent ($\beta = 0$) total computational cost $\kappa nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- Gradient Descent with Momentum total computational cost $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ for ϵ accuracy
- we need to know eigenvalues of $A^T A$ to find optimal step-sizes
- Conjugate Gradient doesn't require the eigenvalues explicitly and results in $\sqrt{\kappa} nd \log(\frac{1}{\epsilon})$ operations

◆□ → ◆□ → ◆ = → ◆ = → ○ < ○</p>

Questions?

・・・<・<・<・・・