
EE270
Large scale matrix computation,

optimization and learning

Instructor : Mert Pilanci

Stanford University

Tuesday, Feb 18 2020

Randomized Linear Algebra and Optimization

Lecture 13: Gradient Descent with Momentum and

Preconditioning

Optimizing convex least squares cost

I Consider

min
x

1

2
kAx � bk22
| {z }

f (x)

I gradient rf (x) = A
T
(Ax � b)

I Gradient Descent:

xt+1 = xt � µAT
(Axt � b)

I fixed step size µt = µ

Optimizing convex least squares cost

I Basic (in)equality method

(1) x
⇤
minimizes f (x), hence rf (x

⇤
) = A

T
(Ax

⇤ � b) = 0

(2) xt+1 = xt � µAT
(Axt � b)

(3) define error �t = xt � x
⇤

I �t+1 = �t � µAT
A�t

Optimizing convex least squares cost

I Basic (in)equality method

(1) x
⇤
minimizes f (x), hence rf (x

⇤
) = A

T
(Ax

⇤ � b) = 0

(2) xt+1 = xt � µAT
(Axt � b)

(3) define error �t = xt � x
⇤

I �t+1 = �t � µAT
A�t

Optimizing convex least squares cost

I run gradient descent M iterations, i.e., t = 1, ...,M

I �M = (I � µAT
A)

M
�0

I k�Mk2  �max
�
(I � µAT

A)
M
�
k�0k2

�max
�
I � µAT

A
�M

= maxi=1,..,d

��1� µ�i (A
T
A)
��M

where �i is the i-th eigenvalue in decreasing order

I Define

�� as the smallest eigenvalue of A
T
A

�+ as the largest eigenvalue of A
T
A

I maxi=1,..,d

��1� µ�i (A
T
A)
�� = max

⇣��1� µ��
��,
��1� µ�+

��
⌘

I optimal step size that minimizes above

I minµ�0 max

⇣��1� µ��
��,
��1� µ�+

��
⌘

I optimal µ = µ⇤
satisfies

��1� µ⇤��
�� =

��1� µ⇤�+

��

which implies µ⇤
=

2
�++��

Optimizing convex least squares cost

I Convergence rate using µ⇤
=

2
�++��

I max

⇣��1� µ⇤��
��,
��1� µ⇤�+

��
⌘
=

�+���
�++��

I kxM � x
⇤k2 

⇣
�+���
�++��

⌘M
kx0 � x

⇤k2

convergence depends on the eigenvalues of A
T
A

Two extremes:

I Identical eigenvalues (extremely well conditioned) �� = �+,

i.e., �1 = �2 = · · · = �d =) convergence in one iteration

I Distant eigenvalues (poorly conditioned) �+ � ��
=) �+���

�++��
⇡ 1 leads to slow convergence

I Condition number  :=
�+
��

I kxM � x
⇤k2 

⇣
�1
+1

⌘M
kx0 � x

⇤k2

Computational complexity

kxM � x
⇤k2 

⇣
�1
+1

⌘M
kx0 � x

⇤k2
I Initialize at x0 = 0

I For ✏ accuracy, i.e., kxM � x
⇤k2  ✏

I We need to set the number of iterations M to

M log

✓
� 1

+ 1

◆
+ log kx⇤k2  log(✏)

I M = O

✓
log(1✏)

log(+1
�1)

◆

I log

⇣
+1
�1

⌘
⇡ 2

�1 for large 

I M = O

✓
log(1✏)

log(+1
�1)

◆
= O

�
 log(1✏)

�
for large 

I Total computational cost nd log(
1
✏) for ✏ accuracy

Improving condition number dependence: momentum

I minx f (x)

I Gradient Descent with Momentum

xt+1 = xt � µtrf (xt) + �t(xt � xt�1)

I the term �t(xt � xt�1) is referred to as momentum

Momentum

I Gradient Descent with Momentum

xt+1 = xt � µtrf (xt) + �t(xt � xt�1)

I related to a discretization of the second order ordinary

di↵erential equation

ẍ + aẋ + brf (x)

I which models the motion of a body in a potential field given

by f

Momentum

I also called accelerated gradient descent, or heavy-ball method

I can be re-written as

pt = �tpt�1 �rf (xt)

xt+1 = xt + ↵tpt

I pt is the search direction

I there is a short-term memory

I typically we set p0 = 0

Gradient Descent with Momentum for Least Squares

Problems

I minx f (x) where f (x) = kAx � bk22
I Gradient Descent with momentum (Heavy Ball Method)

xt+1 = xt � µtrf (xt) + �t(xt � xt�1)

I Recall that when � = 0 (Gradient Descent) we defined

�t := xt � x
⇤
where x

⇤
= A

†
b and established the recursion

�t+1 =
�
I � µAT

A
�
�t

I Since there is one time step memory, consider

Vt := k�t+1k22 + k�tk22 instead

I we can write Vt in terms of Vt�1 = k�tk22 + k�t�1k22
I Lyapunov analysis

Vt is an energy function that decays to zero and

upper-bounds error, i.e., k�tk22  Vt

Convergence analysis

I minx f (x) where f (x) = kAx � bk22
I Gradient Descent with momentum (Heavy Ball Method)

xt+1 = xt � µtrf (xt) + �t(xt � xt�1)

I let �t := xt � x
⇤
where x

⇤
= A

†
b

I note that b = Ax
⇤
+ b

?
and rf (xt) = A

T
A�t


�t+1

�t

�
=


xt � ↵rf (xt) + �(xt � xt�1)� x

⇤

�t

�

=


(1 + �)I � ↵AT

A �I
I 0

� 
�t

�t�1

�

Convergence analysis

I iterating for t = 1, ...,M


�M+1

�M

�
=


(1 + �)I � ↵AT

A �I
I 0

�M 
�1

�0

�

I taking norms

����


�t+1

�t

�����
2

=

�����


(1 + �)I � ↵AT

A �I
I 0

�M 
�t

�t�1

������
2

 �max

 
(1 + �)I � ↵AT

A �I
I 0

�M!����


�t

�t�1

�����
2

Spectral Radius

I Let M be an d ⇥ d matrix with eigenvalues �1, ...,�d

I spectral radius is defined as

⇢(M) := max
i=1,..,d

|�i (M)|

Lemma limk! �max(M
k
)
1
k = ⇢(M)

I Let �i denote the eigenvalues of A
T
A for i = 1, ..., d

I Lemma The eigenvalues of


(1 + �)I � ↵AT

A �I
I 0

�

are given by the eigenvalues of 2⇥ 2 matrices


1 + � � ↵�i ��

1 0

�

I for i = 1, ..., d

I These are given by the roots of u
2 � (1 + � � ↵�i)u + � = 0

I setting ↵ =
4p

�++
p

��
and � =

p
�+�

p
��

p
�++

p
��

yields

I spectral radius: ⇢

✓
(1 + �)I � ↵AT

A �I
I 0

�◆
=

p
�+�

p
��

p
�++

p
��

Convergence result

I setting ↵ =
4p

�++
p

��
and � =

p
�+�

p
��

p
�++

p
��

yields

����


�t+1

�t

�����
2

 �max

 p
�+ �

p
��p

�+ +
p

��

!M ����


�t

�t�1

�����
2

Computational complexity

I Gradient Descent (� = 0) total computational cost

nd log(
1
✏) for ✏ accuracy

I Gradient Descent with Momentum total computational costp
nd log(

1
✏) for ✏ accuracy

I we need to know eigenvalues of A
T
A to find optimal step-sizes

I Conjugate Gradient doesn’t require the eigenvalues explicitly

and results in
p
nd log(

1
✏) operations

Computational complexity

I Gradient Descent (� = 0) total computational cost

nd log(
1
✏) for ✏ accuracy

I Gradient Descent with Momentum total computational costp
nd log(

1
✏) for ✏ accuracy

I we need to know eigenvalues of A
T
A to find optimal step-sizes

I Conjugate Gradient doesn’t require the eigenvalues explicitly

and results in
p
nd log(

1
✏) operations

Questions?

