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ABSTRACT

There have long been connections between statistical mechanics
and neural networks, but in recent decades these connections have
withered. However, in light of recent failings of statistical learning
theory and stochastic optimization theory to describe, even qual-
itatively, many properties of production-quality neural network
models, researchers have revisited ideas from the statistical me-
chanics of neural networks. This tutorial will provide an overview
of the area; it will go into detail on how connections with random
matrix theory and heavy-tailed random matrix theory can lead to
a practical phenomenological theory for large-scale deep neural
networks; and it will describe future directions.
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DESCRIPTION AND OUTLINE

While techniques from statistical mechanics have long had connec-
tions with neural networks [10, 18, 32], work in statistical learning
theory in the last few decades has largely ignored it. Recent work
has demonstrated, however, that traditional statistical learning the-
ory and stochastic optimization theory often do not provide even a
qualitative guide to the performance of practical deep neural net-
works. Motivated by this, very recent work has begun to revisit
statistical mechanics approaches to learning.

The tutorial will provide an overview of these recent develop-
ments, aimed toward a typical conference attendee. In particular,
it will bring to the members of the community an awareness of
this alternate approach to learning and generalization, including its
long history from the 1980s and before; highlight and summarize
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recent failings of statistical learning theory and stochastic optimiza-
tion theory at explaining even qualitative properties of deep neural
networks in computer vision and natural language processing; de-
scribe how one can use recent results in heavy tailed random matrix
theory to construct a phenomenological theory of learning; use this
theory to operationalize certain aspects of the statistical mechanics
approach to learning and generalization, in order to make predic-
tions for production-scale models; and highlight connections with
other related works that in recent years have used techniques from
statistical mechanics.

Historical Overview. We will set the context by providing a brief
overview of early work on the connections between statistical
mechanics and neural networks [10, 18, 32].

Review The Foundational Material. We will review the founda-
tional material in the statistical mechanics approach to neural net-
works. For this, we will draw from [12, 14, 30, 34].

Differences with Traditional Learning Theory. We will describe dif-
ferences between the traditional approaches to statistical learning
theory and the statistical mechanics approach, including problem
formulation, e.g., worst case uniform bounds versus typical average
case predictions.

Failings of Traditional Approaches. We will describe recent work
that has pointed to fundamental limitations of traditional statisti-
cal learning theory and traditional stochastic optimization theory,
including the effect of adding noise to labels [36], changing batch
size and step size [16], etc.

A Simple Statistical Mechanics Model. In light of the failings of
popular machine learning approaches, we will describe a very sim-
ple model from statistical mechanics that qualitatively captures
these phenomena [23]. This model is perhaps the simplest model
that captures the observed phenomena, and it suggests that revisit-
ing statistical mechanics approaches will be useful more generally.

Random Matrix Theory and Heavy-tailed Random Matrix The-
ory. We will describe developments in random matrix theory and
heavy-tailed random matrix theory. This will include both from the
perspective of physics and strongly-correlated system theory [9, 33]
as well as mathematics and statistics [5, 6, 15]. We will describe
how this approach via strongly-correlated systems is complemen-
tary to and yet a substantial departure from the original statistical
mechanics approaches to neural networks. Importantly, while the
empirically-observed heavy-tailed phenomena render certain as-
pects of the theory more difficult (e.g., since the concentration prop-
erties of the random variables are less good), they help with other
aspects of the theory (e.g., many of the pathologies of Gaussian-
based spin glasses can be avoided).
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Theory of Implicit Heavy Tailed Self Regularization. We will out-
line the recent theory of implicit heavy tailed self regularization [24,
26], including the motivations, the large body of empirical results,
and the known and suspected limitations. This theory uses ideas
from the statistical mechanics of learning, but it does so in light of
empirical results that are seen in modern state-of-the-art networks.
An important part of this is using these methods to develop a theory
that can make useful predictions for the practitioner. Thus, a focus
will be on explaining how the theory can be used in practice for
extracting insight from production-quality pre-trained models.

Extensions and Applications of the Theory. We will describe re-
cent work on extending and applying the theory. This will start
with describing novel statistical mechanics based capacity control
metrics to predict trends in generalization accuracy for models such
as those in the VGG and ResNet series [25], comparing and contrast-
ing this with recent work using capacity control metrics such as the
log Frobenius norm [17, 29]. This will also include a discussion of
connections with recent work on large batch size [13, 31], energy
landscape methods [7, 8, 11, 27, 35], phase transitions in related
phenomenon [4, 28], etc.

GOALS AND TARGET
The goals of the tutorial are the following:

e to bring to the members of the community an awareness
of this alternate approach to learning, generalization, and
extracting insight from data;

e to provide an overview to members of the community of
the basic ideas of the theory and how that theory is quite
different than recently-popular techniques;

o to describe recent empirical results using that theory to make
strong predictions about the generalization properties of
production-scale models; and

o to describe fruitful future directions in which the theory can
be used in practical large-scale data analysis settings.

There have been several recent related seminars [19-22], which
have been based on our recent results on this topic [23-26]. The
tutorial will cover more generally the basic motivation, theoretical
and empirical results, and future directions at a level understandable
by students and researchers attending the conference. It will also
cover recent software repositories to reproduce published results
(e.g., [1], based on [24, 26]; and [3], based on [25]) as well as the
WeightWatcher package [2].
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