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1 Introduction

In recent years, the amount of data that has been generated and recorded has grown enormously,
and data are now seen to be at the heart of modern economic activity, innovation, and growth.
See, for example, the report by the McKinsey Global Institute [51], which identifies ways in which
Big Data have transformed the modern world, as well as the report by the National Research
Council [19], which discusses reasons for and technical challenges in massive data analysis. In
many cases, these so-called Big Data are modeled as matrices, basically since an m x n matrix
A provides a natural mathematical structure with which to encode information about m objects,
each of which is described by n features. As a result, while linear algebra algorithms have been of
interest for decades in areas such as Numerical Linear Algebra (NLA) and scientific computing, in
recent years there has been renewed interest in developing matrix algorithms that are appropriate
for the analysis of large datasets that are represented in the form of matrices. For example, tools
such as the Singular Value Decomposition (SVD) and the related Principal Components Analysis
(PCA) [38] permit the low-rank approximation of a matrix, and they have have had a profound
impact in diverse areas of science and engineering. They have also been studied extensively in
large-scale machine learning and data analysis applications, in settings ranging from web search
engines and social network analysis to the analysis of astronomical and biological data.
Importantly, the structural and noise properties of matrices that arise in machine learning and
data analysis applications are typically very different than those of matrices that arise in scien-
tific computing and NLA. This has led researchers to revisit traditional problems in light of new
requirements and to consider novel algorithmic approaches to many traditional matrix problems.
One of the more remarkable trends in recent years is a new paradigm that arose in Theoretical
Computer Science (TCS) and that involves the use of randomization as a computational resource
for the design and analysis of algorithms for fundamental matrix problems. Randomized Numer-
ical Linear Algebra (RandNLA) is the interdisciplinary research area that exploits randomization
as a computational resource to develop improved algorithms for large-scale linear algebra prob-
lems, e.g., matrix multiplication, linear regression, low-rank matrix approximation, etc. [49]. In
this chapter, we will discuss RandNLA, with an emphasis on highlighting how many of the most
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interesting RandNLA developments for problems related to improved low-rank matrix approxi-
mation boil down to exploiting a particular structural property of Euclidean vector spaces. This
structural property is of interest in and of itself (for researchers interested in linear algebra per
se), but it is also of interest (for researchers interested in using linear algebra) since it highlights
strong connections between algorithms for many seemingly-unrelated matrix problems.

2 Overview

As background, we note that early work in RandNLA focused on low-rank approximation prob-
lems and led to results that were primarily of theoretical interest in idealized models of data
access [34, 57, 23, 24, 25, 63]. An overview of RandNLA for readers not familiar with the area has
recently been provided [49]. Subsequent work on very over-determined linear regression problems,
e.g., least-squares regression problems with an input matrix A € R™*™, with m > n, led to several
remarkable successes for RandNLA: theoretical results for worst-case inputs for the running time
in the RAM model that improve upon the 200 year old Gaussian elimination [31, 26, 17, 53, 56];
high-quality implementations that are competitive with or better than traditional deterministic
implementations, e.g., as provided by LAPACK, on a single machine [62, 2, 18]; and high-quality
implementations in parallel and distributed environments on up to terabyte-sized input matri-
ces [55, 16, 54, 70, 71].

As has been described in detail, e.g., in [49], both the more theoretical as well as the more
applied successes of RandNLA for these very over-determined linear regression problems were
achieved by using, implicitly or explicitly, the so-called statistical leverage scores of the tall in-
put matrix A.! In some cases, the use of leverage scores was explicit, in that one used exact
or approximate leverage scores to construct a nonuniform importance sampling probability dis-
tribution with respect to which to sample rows from the input matrix, thereby constructing a
data-aware subspace embedding [28, 26]. In other cases, the use of leverage scores was implicit, in
that one performed a random projection, thereby implementing a data-oblivious subspace embed-
ding [31, 68].2 In both cases, the improved theoretical and practical results for over-determined
linear regression problems were obtained by coupling the original, rather theoretical, RandNLA
ideas more closely with structural properties of the input data [49].

In parallel with these successes on over-determined regression problems, there have also been
several impressive successes on applying RandNLA methods to a wide range of seemingly-different
low-rank matrix approximation problems.?> For example, consider the following problems (which
are described in more detail in Section 4):

e the Column Subset Selection Problem (CSSP), in which one seeks to select the most infor-
mative subset of exactly k columns from a matrix;

e the problem of using random projections to approximate low-rank matrix approximations
faster than traditional SVD-based or QR-based deterministic methods either for worst-case
input matrices and/or for inputs that are typical in scientific computing applications;

!The statistical leverage scores of a tall matrix A € R™*™ with m >> n are equal to the diagonal elements of
the projection matrix onto the column span of A [14, 50, 48]. Thus, they capture a subtle but important structural
property of the Euclidean vector space from which the data were drawn.

2Random projections can be applied in more general metric spaces, but in a Euclidean vector space a random
projection essentially amounts to rotating to a random basis, where the leverage scores are uniform and thus where
uniform sampling can be applied [49].

3By “low-rank matrix approximation problems,” we informally mean problems where the input is a general
matrix A € R™*", where both m and n are large, and a rank parameter k < min{m, n}; the output is a low-rank
approximation to A, not necessarily the optimal one, that is computed via the SVD.



e the problem of developing improved Nystrom-based low-rank matrix approximations of
symmetric positive definite matrices; and

e the problem of developing improved machine learning and data analysis methods to identify
interesting features in the data (feature selection).

These problems often arise in very different research areas, and they are—at least superficially—
quite different. Relatedly, it can be difficult to tell what—if anything—improved algorithms for
one problem mean for the possibility of improved algorithms for the others.

In this chapter, we highlight and discuss a particular deterministic structural property of
Euclidean vector spaces that underlies the recent improvements in RandNLA algorithms for all of
the above low-rank matrix approximation problems.* (See Lemma 1 below for a statement of this
result.) This structural property characterizes the interaction between the singular subspaces of
the input matrix A and any (deterministic or randomized) “sketching” matrix. In particular, this
structural property is deterministic, in the sense that it is a statement about the (fixed) input data
A and not the (randomized) algorithm. Moreover, it holds for arbitrary matrices A, i.e., matrices
that have an arbitrarily large number of columns and rows and not necessarily just tall-and-
thin or short-and-fat matrices A, as was the case in the over- or under-determined least-squares
problems. The structural property thus applies most directly to problems where one is interested
in low-rank approximation with respect to a low-rank space of dimension k& < min{m,n}.

In RandNLA, the sketching matrix is typically either a matrix representing the operation of
sampling columns or rows from the input matrix, or a matrix representing the random projection
operation. In that case, this structural property has an interpretation in terms of how the
sampling or projection operation interacts with the subspaces defined by the top and bottom
part of the spectrum of A. We emphasize, however, that this structural property holds more
generally: in particular, it holds for any (deterministic or randomized) “sketching” matrix and
thus it is a property of independent interest. For example, while it is outside the scope of this
chapter to discuss in detail, one can easily imagine using this property to derandomize RandNLA
algorithms or to develop other deterministic matrix algorithms for these and related matrix
problems or to develop improved heuristics in machine learning and data analysis applications.
In the remainder of this chapter, we highlight this structural property, stating and presenting
an analysis of a more general version of it than has been previously available. We also describe
how it is used in several of the recent improvements to various RandNLA algorithms for low-rank
matrix approximation problems.

3 Owur main technical result

In this section, we state and prove our main technical result. This technical result is a structural
condition that characterizes the interaction between the singular subspaces of the input matrix
A and any deterministic or randomized “sketching” matrix.

4Although this structural property is central to all of the above problems, its role is typically obscured since it
is often secondary to the main result of interest in a given paper, and thus it is hidden deep within the analysis of
each of the superficially-different methods that use it. This property was first introduced by Boutsidis et al. [10] in
the context of the CSSP, it was subsequently used by Halko et al. [44] to simplify the description of several related
random projection algorithms, and it was then used—typically knowingly, but sometimes unknowingly—by many
researchers working on these and other problems.



3.1 Statement of the main technical result

Recall that, given a matrix A € R™*"™ many RandNLA algorithms seek to construct a “sketch”
of A by post-multiplying A by some “sketching” matrix Z € R™*", where r is much smaller than
n. (For example, Z could represent the action of random sampling or random projection.) Thus,
the resulting matrix AZ € R™*" is matrix that is much smaller than the original matrix A, and
the interesting question is what kind of approximation guarantees does it offer for A.

A common approach is to explore how well AZ spans the principal subspace of A, and one
metric of accuracy is the error matrix, A — Psz A, where P4z A is the projection of A onto the
subspace spanned by the columns of AZ. Formally,

Paz = (AZ)(AZ)t = UazUL,.

Recall that X € R™ ™ is the Moore-Penrose pseudoinverse of any matrix X € R™*" and that it
can be computed via the SVD of X; see [38] for details. Similarly, Usz € R™*” is the matrix of
the left singular vectors of AZ, where p is the rank of AZ. The following structural result offers
a means to bound any unitarily invariant norm of the error matrix A — PazA.

Lemma 1 Given A € R™", let Y € R™™* be any matriz such that Y'Y = I,. Let Z € R™"
(r > k) be any matriz such that YT Z and AY have full rank. Then, for any unitarily invariant
norm &, we have that

|A = PazAle < [A= AYYT|| + [[(A-AYYT) Z(YT2)" |, (1)

Three comments about this lemma, one regarding Z, one regarding Y, and one regarding the
interaction between Z and Y, are in order.

e Lemma 1 holds for any matrix Z, regardless of whether Z is constructed deterministically
or randomly. In the context of RandNLA, typical constructions of Z would represent a
random sampling or random projection operation.

e The orthogonal matrix Y in the above lemma is also arbitrary. In the context of RandNLA,
one can think of Y either as Y = Vj,, where Vj, € R™** is the matrix of the top k right singular
vectors of A, or as some other orthogonal matrix that approximates V; but Lemma 1 holds
more generally.

e As stated in Lemma 1, Y must satisfy two conditions: the matrix Y7 Z must have full rank,
equal to k, since r > k, and the matrix AY must also have full rank, again equal to k. If
Y = Vi, then the constraint that AY must have full rank is trivially satisfied, assuming that
A has rank at least k. Additionally, the sampling and random projection approaches that
are used in high-quality RandNLA algorithms with sufficiently large values of r guarantee
that the rank condition on Y7 Z is satisfied [26, 49]. More generally, though, one could
perform an a posteriori check that these two conditions hold.

3.2 A popular special case

Before providing a proof of this structural result, we will now consider a popular special case
of Lemma 1. To do so, we will let Y = V}, € R*** namely the orthogonal matrix of the top
k right singular vectors of A. (Actually, any orthogonal matrix spanning that same subspace
would do in this discussion.) For notational convenience, we will let V, LR (p=k) (respectively,
Yk € R(=r)*("=P)) bhe the matrix of the bottom p — k right singular vectors (respectively,



singular values) of A. Let Ay € R™*™ be the best rank k approximation to A as computed by
the SVD. It is well known that
A, = AVVL.

Assuming that VkTZ has full rank, then Lemma 1 implies that:
+
14— Pazdlle < 14~ Axlle + |[(4— 40 2 (v 2)"| .
Note here that

A—- A, = Uk,LEk,LVkT,L

and if we drop, using unitary invariance, the matrix Uy | from the second norm at the right-hand
side of the above inequality, then we get:

A = PazAlle < [[A = Aglle + sz,i (Vi 2) (V’fTZ)Jng'

For the special case of £ € {2, F'}, this is exactly the structural condition underlying the ran-
domized low-rank projection algorithms of [44] that was first introduced in the context of the
CSSP [10]. We summarize the above discussion in the following lemma.

Lemma 2 Given A € R™*", let V}, € R™* be the matriz of the top k right singular vectors of
A. Let Z € R™" (r > k) be any matriz such that YT Z has full rank. Then, for any unitarily
mvariant norm &,

+
|4~ Pazdlle < 14~ Al + |20 (W12) (W2)7)),. (2)

Eqn. (2) immediately suggests a proof strategy for bounding the error RandNLA algorithms for
low-rank matrix approximation: identify a sketching matrix Z such that VkTZ has full rank; and,

at the same time, bound the relevant norms of (VkTZ )+ and Vj | Z.
Lemma 1 generalizes the prior use of Lemma 2 in several important ways.

e First, it is not necessary to focus on random sampling matrices or random projection ma-
trices, but instead we consider arbitrary sketching matrices Z. This was actually implicit
in the analysis of the original version of Lemma 2 [10], but it seems worth making that
explicit here. It does, however, require the extra condition that AZ also has full rank.

e Second, it is not necessary to focus on Vj and so we consider the more general case of any
arbitrary orthogonal matrix Y € R™** instead of V}.

e Third, it is not necessary to focus on the spectral or Frobenius norm, as it is straightforward
to prove this result for any unitarily invariant matrix norm.
3.3 Proof of the main technical result

This proof of Lemma 1 follows our previous proof of Lemma 2 from [10], simplifying it and
generalizing it at appropriate places. We start by noting that

IA = PazAlle = [|A— (AZ) (AZ)" A]|,.. (3)
Then, for any unitarily invariant norm & [45],

AZ)TA = in ||A— (A2) X],.
(AZ) arg min |4 —(AZ) X]



This implies that in Eqn. (3) we can replace (AZ)" A with any other 7 x n matrix and the equality
with an inequality. In particular we replace (AZ )+ A with (AYYTZ )+ AYYT where AYYT is
a rank-k approximation to A (not necessarily the best rank-k approximation to A):

1A= PazAle = [|A-AZ(AZ)" A
< |a-az(avy7z)" AYYTHE .
This suboptimal choice for X is essentially the “heart” of our proof: it allows us to manipulate

and further decompose the error term, thus making the remainder of the analysis feasible. Use
A=A—AYYT + AYYT and the triangle inequality to get

[A— PazAl

< ||A-AvyT 4 YT - (4-AyYTHayYT) Z (AYYTZ)" AYYTH£

< JJA-AYYT|| 4+ [JAYYT - AYYTZ(AYYT2) T AYYT,

+ [(A-AYYT) Z(AYYT Z)*AY YT, .

We now prove that the second term in the last inequality is equal to zero. Indeed,
JAYYT — AYYTZ(AYY T Z)TAY Y|,

= [AYYT —AYYTZ(YTZ)H (AY) P AYY T, (4)
= [AYY" —AYYT|, =0.

In Eqn. (4), we replaced (AYYTZ)Jr by (YTZ)+ (AY)", using the fact that both matrices Y7 Z
and AY have full rank. The fact that both matrices have full rank also implies

YTz (YT2)" =1, and (AY)*AY = I,

which concludes the derivation. Using the same manipulations and dropping Y7 using unitary
invariance, we get:

(A~ AYYT) Z(AYYT2)* AYYT |, = |[(A - AYYT) 2" 2)*] .

which concludes the proof.

4 Applications of our main technical result

In this section, we discuss several settings where exploiting the structural result highlighted in
Lemma 1 results in improved analyses of RandNLA algorithms for low-rank matrix approxima-
tion problems.

4.1 The Column Subset Selection Problem (CSSP): theory

The special case of Lemma 2 corresponding to the spectral and Frobenius norm was first identified
and established in our prior work on the CSSP [10]. The CSSP is the problem of choosing the
“best” (in a sense that we will make precise shortly) set of r columns from an m x n matrix A.
Given the importance of the CSSP in both NLA as well as TCS applications of RandNLA, here



we will describe in some detail the role of Eqn. (1) in this context, as well as related work. In the
next section, we will describe applied aspects of the CSSP.

First of all, the CSSP can be formally defined as follows: given a matrix A € R™*" one seeks
a matrix C' € R"™*" consisting of r columns of A such that

|4 —ccal,

is minimized. While one could use any norm to measure the error A — CCt A, the most common
choices are £ = 2 or £ = F'. Most of the early work on CSSP in the NLA literature focused on
error bounds of the form

|A—CCTA||, < al|A— A,

where Ay is the best rank k approximation to A. The objective was to make the multiplicative
error factor o as small as possible. In this setting, the choice of r is critical, and almost all early
work focused on r = k, namely the setting where ezactly k columns of A are chosen in order
to approximate the best rank-k approximation to the matrix. The first result in this domain
goes back to Golub in the 1960’s [37]. It was quickly followed by numerous papers in the NLA
community studying algorithms and bounds for the CSSP, with a primary focus on the spectral
norm (£ = 2). Almost all the early papers analyzed deterministic, greedy approaches for the
CSSP, including the landmark work by Gu and Eisenstat [41], which provided essentially optimal
algorithms (in terms of «) for the spectral norm variant of the CSSP.

The work of [10, 8] was the first attempt to design a randomized algorithm for both the
spectral and the Frobenius norm version of the CSSP. The fundamental contribution of [10, §]
was an early, simple version of the structural result of Eqn. (1), which allowed us to combine in a
non-trivial way deterministic and randomized methods from the NLA and TCS communities for
the CSSP. More specifically, Algorithm 1 (see also Section 4.2 where we will discuss this algorithm
from a more applied perspective) is a two-phase approach that was proposed in order to identify
k columns of A to be included in C: first, sample O(klogk) columns of A with respect to the
leverage scores, a highly informative probability distribution over the columns of A that biases
the sampling process towards important columns; and, second, using deterministic column subset
selection algorithms, choose exactly k columns out of the O(klog k) columns sampled in the first
phase. Deriving the error bounds for the proposed two-phase approach was done by bounding
the second term of Eqn. (1) as follows: first, one bounds the relevant norm of (A - YYTA) 7,
where Y was equal to Vi and Z was a sampling matrix encoding both the randomized and the
deterministic phase of the proposed algorithm; and then, a lower bound on the smallest singular
value of the matrix Y27 was also proven. The latter bound was derived by properties of the
leverage score sampling as well as by properties of the deterministic column selection algorithm
applied in the second phase. Submultiplicativity of unitarily invariant norms was finally used to
conclude the proof. The work of [10, 8] provided a major improvement on previous bounds for
the Frobenius norm error of the CSSP, showing that the proposed randomized algorithm achieves

a=0 (k: log% k) with constant probability. Prior work had exponential dependencies on k.

The above bound motivated Deshpande and Rademacher [20] to look at the CSSP using the
so-called volume sampling approach. They designed and analyzed an approximation algorithm
that guaranteed o = y/k + 1 for the Frobenius norm, running in time O(knm3logm). This
algorithm matched a lower bound for the CSSP presented in [21]. It is worth noting that [20]
also presented faster versions of the above algorithm. The current state-of-the-art approach (in
terms of speed) appeared in the work of [42], who presented a randomized algorithm that runs in
O (kan) time and guarantees o = vk + 1, with constant probability. Neither of these papers
use the inequality that we discuss here. It would be interesting to understand how one could
leverage structural results in order to prove the above bounds.



Input: A € R™*" integer k < min {m,n}.
Output: C € R™** with k columns of A.

1. Randomized Stage:

o Let Vi, € R™** be any orthogonal basis spanning the top-k right singular
subspace of A.

e Compute the sampling probabilities p; for all ¢ =1...n:

2

: (5)

w= gD,

where (VkT)(i) denotes the i-th column of VkT as a column vector.
e Randomly select and rescale ¢ = O(klog k) columns of VkT according to
these probabilities.
2. Deterministic Stage:
e Let VT be the k x ¢ non-orthogonal matrix consisting of the down-sampled
and rescaled columns of VkT.
e Run a deterministic QR algorithm on V7 to select exactly k columns of V7.

e Return the corresponding columns of A.

Algorithm 1: A two-stage algorithm for the CSSP.

We now consider the relaxation of the CSSP where r is allowed to be greater than k. In this
framework, when r = Q(klogk/e), relative-error approximations, namely approximations where
a = 1+¢, are known. For example, [29, 30] presented the first result that achieved such a bound,
using random sampling of the columns of A according to the Euclidean norms of the rows of
Vi, which are the leverage scores that we mentioned earlier in this chapter. More specifically, a
(1 + €)-approximation was proven by setting r = (2 (ke_2 log (k‘e‘l)). Subsequently, [63] argued
that the same technique gives a (1 + €)-approximation using r = (k: log k + ke_l) columns, and
this improved the running time by essentially computing approximations to the singular vectors
of A. Tt is precisely in this context that the matrix Y of Eqn. (1) would be useful, since it
would allow us to work with approximation to the singular vectors of A. While neither of these
papers used the structural result of Eqn. (1) explicitly, they both implicitly had to follow similar
derivations. As a matter of fact, Eqn. (1) could be a starting point for both papers and with
little additional work could result in constant factor approximations. However, in order to get
relative error bounds, additional care and more technical details are necessary. A long line of
work followed [29, 63] showing alternative algorithms, often with improved running times, that
achieve comparable relative error bounds [22, 32, 33, 65].

A major open question on the CSSP was whether one could derive meaningful error bounds
for values of r that are larger than k& but smaller than O(klogk). Towards that end, the first
major breakthrough allowing sampling of fewer than O(klog k) columns appeared in [6, 7], where
it was proven that by setting r = 2k/e (up to lower order terms) one can achieve relative error
approximations to the CSSP. Once more, structural inequalities along the lines of Eqn. (1) were
at the forefront, combined with a novel column selection procedure invented by Batson et al. [3].



Using the structural inequality per se would only result in a constant factor approximation,
but an additional adaptive sampling step guaranteed the required relative error approximation.
Followup work by Guruswami and Sinop [42] presented algorithms based on volume sampling
that set » = k/e (up to lower order terms), thus exactly matching known lower bounds for the
CSSP when r > k. The running time of all these algorithms is at least linear in the dimensions
of the input matrix, but recent progress on subspace preserving embeddings that run in input
sparsity time has removed this dependency. We refer the interested reader to [17, 53, 56] for
RandNLA algorithms that run in input sparsity time, plus lower-order terms.

4.2 The Column Subset Selection Problem (CSSP): data analysis and machine
learning

The CSSP algorithm of [10] has also been applied in several machine learning and data analysis
applications, e.g., see [9, 11, 12, 60, 59, 46]. In this section, we informally describe our experiences
when using such approaches in data analysis and machine learning tasks. Our objective here is
to provide some insight as to what is going on “under the hood” with this method as well as
provide some speculation to justify its success in applications.

Recall Algorithm 1, our two-stage hybrid algorithm for the CSSP [10], and note that both
the original choice of columns in the first phase, as well as the application of the QR algorithm
in the second phase, involve the matrix V,CT rather than the matrix A itself. In words, VkT is
the matrix defining the relevant non-uniformity structure over the columns of A [30, 50]. The
analysis of this algorithm (a large part of which boiled down to the proof of Lemma 2) makes
critical use of exact or approximate versions of the importance sampling probabilities given in
Eqn. (5). These are a generalization of the concept of statistical leverage scores; see [50, 49] as
well as [66, 15, 14] for a detailed discussion. Here, we note informally that leverage scores capture
a notion of “outlierness” or the extent to which data points are “spread out” or the “influence”
of data points in low-rank and least-squares approximation problems.

Observe that the second stage of Algorithm 1 involves a QR computation. It is critical to the
success of this algorithm to apply this QR procedure on the randomly-sampled version of VkT, 1.€.,
the matrix defining the worst-case non-uniformity structure in A, rather than on A itself. We have
also observed the importance of this empirically. To understand this, recall that an important
aspect of different QR algorithms is how they make so-called pivot rule decisions about which
columns to keep [39]; and recall also that such decisions can be tricky when the columns in the
matrix that is input to the QR algorithm are not orthogonal or spread out in similarly “nice”
ways (e.g., when it is the case that two columns are approximately, but not exactly, collinear).
With this in mind, here are several empirical observations we have made that shed light on the
inner workings of the CSSP algorithm and its usefulness in applications.

e Since the QR decomposition can be used to solve directly the CSSP, we investigated several
alternative algorithms for the QR decomposition; and we also compared each QR alter-
native to the CSSP using that version of QR in the second phase. An initial observation
was that “off-the-shelf” implementations of alternative algorithms for the QR decomposi-
tion behave quite differently—e.g., some versions such as the Low-RRQR algorithm of [13]
tend to perform much better than other versions such as the qrxp algorithm of [5, 4]. Al-
though not surprising to NLA practitioners, this observation indicates that “off-the-shelf”
implementations in large-scale data applications should be used carefully. A second, less
obvious, observation is that preprocessing with the randomized first phase tends to improve
worse-performing variants of QR more than better variants. Part of this is simply due
to the fact that the worse-performing variants have more room to improve, but part of



this is also due to the fact that more sophisticated versions of QR tend to make elaborate
pivot rule decisions. This sophistication is relatively less important after the randomized
phase has selected columns that are already spread out and biased towards the important
or outlying directions.

e To understand better the role of randomness in the algorithm, we also investigated the ef-
fect of applying algorithms for the QR decomposition directly on VkT (without running the
randomized phase first) and then keeping the corresponding columns of A. Interestingly,
with this “preprocessing” we tended to get better columns than if we ran QR decomposi-
tion algorithms directly on the original matrix A. Again, the interpretation seems to be
that, since the norms of the columns of VkT define the relevant nonuniformity structure of
A, working directly with those columns tends to avoid (even in traditional deterministic
settings) situations where pivot rules fail to choose good columns.

e Of course, we also observed that randomization further improves the results, assuming
that care is taken in choosing the rank parameter k and the sampling parameter c¢. In
practice, the choice of k should be viewed as a “model selection” question. By choosing
c =k, 1.5k, 2k, ..., we often observed a “sweet spot,” in a bias-variance sense, as a function
of increasing c¢. That is, for a fixed k, the behavior of the deterministic QR algorithms
improves by choosing somewhat more than k columns, but that improvement is degraded
by choosing too many columns in the randomized phase.

4.3 Random projections for low-rank matrix approximation

There has been massive interest recently in implementing random projection algorithms for use in
scientific computing applications. One thing that has enabled this is that the structural condition
identified in Lemma 2 makes it easier to parameterize RandNLA algorithms in terms more familiar
to the NLA and scientific computing communities (and thus this was a very important step in
the development of practically-useful RandNLA methods for low-rank matrix approximation.) To
see how this relates to our main technical result, consider the following basic random projection
algorithm. Given a matrix A € R™*" and a rank parameter k:

e Construct an nx ¢, with £ = O(k/€), structured random projection matrix 2, e.g., uniformly
sample a few rows from a randomized Hadamard transform (see, for example, [31] for a
precise definition of the randomized Hadamard transform).

e Return B = AQN.

This algorithm, which amounts to choosing uniformly at random a small number ¢ of columns in
a randomly rotated basis, was introduced in [63], where it is proven that

A= Pp Allp < (1+¢) |A = Py Allp, (6)

where Pp, A is the projection of A onto the best rank-£ approximation of B, holds with high
probability. This bound, which is the random projection analogue of the relative-error CUR
matrix approximations of [30, 50], provides a bound only on the reconstruction error of the top
part of the spectrum of the input matrix. Additionally, it necessitates sampling a relatively large
number of columns ¢ = O(k/e).

In many practical applications, e.g., when providing high-quality numerical implementations,
it is preferable to parameterize the problem in order to choose some number ¢ = k + p columns,
where p is a modest additive oversampling factor, e.g., p is equal to 10 or 20 or k. When attempting

10



to be this aggressive at minimizing the size of the sample, the choice of the oversampling factor
p is quite sensitive to the input. That is, whereas the bound of Eqn. (6) holds for any worst-
case input, here the proper choice for the oversampling factor p could depend on the matrix
dimensions, the decay properties of the spectrum, and the particular choice made for the random
projection matrix [52, 69, 47, 61, 44, 43].

To deal with these issues, the best numerical implementations of RandNLA algorithms for
low-rank matrix approximation, and those that obtain the strongest results in terms of minimizing
p, take advantage of Lemma 2 in a somewhat different way than was originally used in the analysis
of the CSSP. For example, rather than choosing O(klogk) dimensions and then filtering them
through exactly k dimensions, one can choose some number ¢ of dimensions and project onto a
k'-dimensional subspace, where k < k’ < /¢, while exploiting Lemma 2 to bound the error, as
appropriate for the computational environment at hand [44].

Consider, for example, the following random projection algorithm. Given A € R™*™, a rank
parameter k, and an oversampling factor p:

e Set £ =k +p.

e Construct an n x £ random projection matrix 2, either with i.i.d. Gaussian entries or in
the form of a structured random projection such as uniformly sampling a few rows from a
randomized Hadamard transform.

e Return B = AQ.

Although this approach is quite similar to the algorithms of [58, 63|, algorithms parameterized in
this form were first introduced in [52, 69, 47], where a suite of bounds of the form

1A = Z|ly S 105/Fmin{m, n} | A — Aglly

were shown to hold with high probability. Here, Z is a rank-k-or-greater matrix, easily-constructed
from B. Such results can be used to obtain the so-called interpolative decomposition, a variant
of the basic CSSP with explicit numerical conditioning properties, and [52, 69, 47] also provided
a posteriori error estimates that are useful in situations where one wants to choose the rank
parameter k to be the numerical rank, as opposed to a prior: specifying k as part of the input.
Such a priori choices were more common in TCS algorithms for the same problem that predated
the aforementioned approach.

Consider, in addition, how the following random projection algorithm addresses the issue
that the decay properties of the spectrum can be important when it is of interest to aggressively
minimize the oversampling parameter p. Given a matrix A € R™*", a rank parameter k, an
oversampling factor p, and an iteration parameter ¢:

e Set £ =k +p.

e Construct an n x £ random projection matrix 2, either with i.i.d. Gaussian entries or in
the form of a structured random projection such as uniformly sampling a few rows from a
randomized Hadamard transform.

e Return B = (AAT)74Q.

This algorithm, as well as a numerically-stable variant of it, was introduced in [61], where it was
shown that bounds of the form

1/(4q+2)
) 14— Al

1A - 2|, < (10 Cmin{m, n}
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hold with high probability. Again, Z is a rank-k-or-greater matrix easily-constructed from B;
and this bound should be compared with the bound of the previous algorithm. Basically, this
random projection algorithm modifies the previous algorithm by coupling a form of the power
iteration method within the random projection step and, in many cases, it leads to improved
performance [61, 44].

In their review, [44] used Lemma 2 to clarify and simplify these and other prior random
projection methods. (Subsequent work, e.g., that of [40] which develops RandNLA algorithms
within the subspace iteration framework, has continued to use Lemma 2 in somewhat different
ways.) Lemma 2 was explicitly reproven (with squares in the norms) in [44], using a proof based
on the perturbation theory of orthogonal projectors, thus providing an elegant alternative to
the original proof of the inequality. Our inequality in Lemma 2 was an essential ingredient of
their work, allowing the authors of [44] to bound the performance of their algorithms based on
the relationship between the singular vectors corresponding to the large singular values of A
and their counterparts corresponding to the small singular values of A. As the authors of [44]
observe, “when a substantial proportion of the mass of A appears in the small singular values, the
constructed basis may have low accuracy. Conversely, when the large singular values dominate,
it is much easier to identify a good low-rank basis.” Our main inequality, originally developed
within the context of the CSSP, precisely quantifies this tradeoff in a strong sense and it serves
as a starting point and foundation for the RandNLA theory reviewed in [44].

4.4 Improved results for Nystrom-based machine learning.

Symmetric positive semi-definite (SPSD) matrices are of interest in many applications, in par-
ticular for so-called kernel-based machine learning methods [64]. In many situations, matrices
of interest are moderately well approximated by low-rank matrices, and in many of these cases
one is interested in so-called Nystrom-based low-rank matrix approximation [67, 27, 36]. These
are low-rank matrix approximations that are expressed in terms of actual columns and rows,
i.e., they are essentially CSSP methods for SPSD matrices that preserve the SPSD property. A
challenge here is that, while CSSP methods provide high-quality bounds for general matrices, it
is difficult to preserve the SPSD property and thus extend these to provide high-quality SPSD
low-rank approximation of SPSD matrices. Indeed, early work on Nystrom methods was either
heuristic [67] or provided rigorous but weak worst-case theory [27].

A qualitative improvement in this area occurred with Gittens and Mahoney [36], which used a
result from Gittens [35] to preserve the SPSD property, while working with leverage-based column
sampling and related random projection methods. A critical component of the analysis of [36]
involved providing structural decompositions which are variants of Lemma 2 for SPSD matrices
for the spectral, Frobenius, and trace norms. Subsequent to this, Anderson et al. [1] introduced
the so-called spectral gap error bound method to provide still finer results in a common case:
namely, when one performs a very modest amount of oversampling for input kernel matrices
that do not have a large spectral gap, but that do have a spectrum that decays rapidly. The
analysis of [1] used a result from Gu [40] that extended Lemma 2 by providing an analogous
structural statement when one is interested in splitting the matrix into three parts: the top,
middle, and bottom (rather than just top and bottom) parts of the spectrum. In each of these
cases, increasingly finer results are derived for several related problems by exploiting structural
properties having to do with the interaction of sampling/projection operators in the RandNLA
algorithms with various parts of the vector space defined by the input matrix.
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5 Conclusions

The interdisciplinary history of RandNLA has seen a gradual movement toward providing increasingly-
finer bounds for a range of low-rank (and other) matrix problems. In this chapter, we have
highlighted, described, and extended a deterministic structural result underlying many state-of-
the-art RandNLA algorithms for low-rank matrix approximation problems. A general theme in
this development is that this is accomplished by using general algorithmic and statistical tools
and specializing them to account for the fine-scale structure of the Euclidean vector space de-
fined by the data matrix. For example, while a vanilla application of the Johnson-Lindenstrauss
lemma, which is applicable to vectors in general metric spaces, leads to interesting results (e.g.,
additive-error bounds on the top part of the spectrum of the matrix being approximated), much
stronger results (e.g., relative-error bounds, as well as the CSSP results that first introduced the
predecessor of Lemma 1, as well as the other results we have reviewed here) can be obtained by
exploiting the vector space structure of the Euclidean spaces defined by the top and bottom parts
of the spectrum of A.

A challenge in interdisciplinary research areas such as RandNLA is that algorithms solving
seemingly different problems use similar structural results in various ways. At the same time,
diverse research areas study those problems from many different perspectives. As a result, high-
lighting structural commonalities is rare and such structural results usually get “buried” deep
inside the technical analysis of the proposed methods. Highlighting the central role of such
structural results is important, especially as RandNLA methods are increasingly being applied
to data analysis tasks in applications ranging from genetics [60, 59, 46] to astronomy [73] and
mass spectrometry imaging [72] and as RandNLA algorithms are increasingly being implement
in large-scale parallel and distributed computational environments [55, 54, 70, 71].
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