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Abstract
Given two or more Deep Neural Networks (DNNs)
with the same or similar architectures, and trained on
the same dataset, but trained with different solvers,
parameters, hyper-parameters, regularization, etc., can
we predict which DNN will have the best test accuracy,
and can we do so without peeking at the test data?
In this paper, we show how to use a new Theory of
Heavy-Tailed Self-Regularization (HT-SR) to answer
this. HT-SR suggests, among other things, that modern
DNNs exhibit what we call Heavy-Tailed Mechanistic
Universality (HT-MU), meaning that the correlations in
the layer weight matrices can be fit to a power law (PL)
with exponents that lie in common Universality classes
from Heavy-Tailed Random Matrix Theory (HT-RMT).
From this, we develop a Universal capacity control metric
that is a weighted average of PL exponents. Rather
than considering small toy NNs, we examine over 50
different, large-scale pre-trained DNNs, ranging over 15
different architectures, trained on ImagetNet, each of
which has been reported to have different test accuracies.
We show that this new capacity metric correlates very
well with the reported test accuracies of these DNNs,
looking across each architecture (VGG16/.../VGG19,
ResNet10/.../ResNet152, etc.). We also show how to
approximate the metric by the more familiar Product
Norm capacity measure, as the average of the log
Frobenius norm of the layer weight matrices. Our
approach requires no changes to the underlying DNN or
its loss function, it does not require us to train a model
(although it could be used to monitor training), and it
does not even require access to the ImageNet data.

1 Introduction
We are interested in the following general question.
• Given two or more Deep Neural Networks (DNNs) with

the same or similar architectures, trained on the same
dataset, but trained with different solvers, parameters,
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hyper-parameters, regularization, etc., can we predict
which DNN will have the best test accuracy, and can
we do so without peeking at the test data?

This question is both theoretical and practical. Theoret-
ically, solving this would help to understand why this
class of machine learning (ML) models performs as well
as it does in certain classes of applications. Practically,
there are many motivating examples. Here are two.
• Automating architecture search. Developing

DNN models requires significant architecture engineer-
ing, so there is interest in automating the design of
DNNs. Current methods can produce a series of DNNs
subject to given general architecture constraints, but
the models must be evaluated using cross validation
(CV). DNNs have so many adjustable parameters that
even when using CV it is possible to leak information
from the test sets into the training data, thus produc-
ing brittle, non-robust models. It is thus of interest
to have design principles and quality metrics that do
not depend on the test data and/or the labels.

• Fine-Tuning Pre-trained Models. Since one often
does not have enough labeled data to train a large
DNN from scratch, many modern engineering solutions
can re-use widely-available pre-trained DNNs, fine-
tuning them on smaller data sets. This technique often
works extremely well for visual tasks, using DNNs
pre-trained on ImageNet; and recently it has become
feasible for complex natural language processing (NLP)
tasks. Sometimes, however, these fine-tuned models
become brittle and non-robust—due to overtraining,
because information leaks from the test set into the
training data. Here, it would also be very helpful to
be able to fine-tune large, pre-trained DNNs without
needing to peek at the test data.

To predict trends in the generalization accuracy
of a series of DNN architectures, VC-like theories of-
fer theoretical bounds on the generalization accuracy.
Practically, such capacity metrics can guide the theo-
retical development of new regularizers for traditional
ML optimization problems (e.g., counterfactual expected
risk minimization [1]), but the bounds themselves are
far too loose to be used directly. Moreover, since the
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early days of NN research, it was known that VC theory
could (probably) not be directly applied to the seemingly
wildly non-convex optimization problem implicitly posed
by NNs. (This has caused some researchers to suggest
we need to rethink regularization in DNNs entirely.)

In light of this, Liao et al. [2] used an appropriately-
scaled, data-dependent Product Norm capacity control
metric to bound the worst-case generalization error
for several small (non production-quality, but still
interesting) DNN models, and they showed that the
bounds are remarkably tight. There is, in fact, a large
body of work on norm-based capacity control metrics,
both recent, e.g., [2, 3, 4] and [5, 6, 7, 8, 9, 10, 11, 12, 13,
14], as well as much older [15, 16]. Much of this work
has been motivated by the observation that parameter
counting and more traditional VC-based bounds tend to
lead to vacuous results for modern state-of-the-art DNNs,
e.g., since modern DNNs are heavily over-parameterized
and depend so strongly on the training data.

As with most theoretical studies, Liao et al.’s
approach and intent differ greatly from ours. They seek
worst-case complexity bounds, motivated to reconcile
discrepancies with more traditional statistical learning
theory, and they apply them (to quite small-scale NNs).
To address our main question, we seek an average-case
or typical case (for realistic large-scale NNs) complexity
metric, viable in production to guide the development of
better DNNs at scale. Bounding a small toy model does
not necessarily mean that the individual weight matrix
norms in production-quality DNNs will be directly
comparable. In particular, it does not mean that
we can directly compare the individual weight matrix
norms across layers in different, and more complex,
architectures. Also, Liao et al. had to modify the
DNN optimization loss function. This means that their
approach cannot be tested/evaluated on any existing pre-
trained DNN architecture, e.g., the VGG and ResNet
models, widely-used today in industry. Still, their results
do suggest that a Product Norm may work well as a
practical capacity metric for large, and perhaps even pre-
trained, production-quality DNNs. We will evaluate this
and show that it does. More generally, to predict trends
in the test accuracies, one needs some more Universal
empirical metric that transfers across DNN architectures.

Recent work by Martin and Mahoney [17, 18]
suggests a Universal empirical metric to characterize the
amount of Implicit Self-Regularization and, accordingly,
the generalization capacity, for a wide range of pre-
trained DNNs.1 The metric (defined below) involves
the power law (PL) exponents, α, of individual layer

1A short version of [17] is available as [18]. The long version
contains many more results and a much more detailed exposition.

weight matrices, W, as determined by fitting the
Empirical Spectral Density (ESD), ρ(λ), to a PL
distribution. Looking in detail at a series of models,
like AlexNet, VGG, ResNet, etc, they observe that the
(linear) layer weight matrices almost always follow a PL
distribution, and fitted PL exponents nearly all lie within
a universal range α ∈ [2, 5]. Analysis of a small model
(MinAlexNet) demonstrates that smaller PL exponents
α correspond to better generalization. Subsequent
work [19] demonstrated Heavy-Tailed (HT) behavior
in nearly every pre-trained architecture studied, e.g.,
across nearly 7500 layer weight matrices (and 2D feature
maps), including DNNs pre-trained for computer vision
tasks on ImageNet, and for several different NLP tasks.

When one observes good empirical PL fits of ESDs
of correlations of layer weight matrices, we say the
DNN exhibits Heavy-Tailed behavior. Motivated by
these empirical observations, and using the Universality
properties of Heavy-Tailed Random Matrix Theory (HT-
RMT), Martin and Mahoney developed a theory of
Heavy-Tailed Self-Regularization (HT-SR) for DNNs [20,
17, 18]. We build on and extend that theory here.

In Statistical Physics, Universality of PL exponents
is very non-trivial, and it suggests the presence of a
deeper, underlying, Universal mechanism driving the
system dynamics [21, 22]. It is this Heavy Tailed
Mechanistic Universality (HT-MU), as we call it, that
originally motivated our study. HT-MU applies to the
analysis of complicated systems, including many physical
systems, traditional NNs [23, 24], and even models of
the dynamics of actual spiking neurons. Indeed, the
dynamics of learning in DNNs seems to resemble a system
near a phase transition, such as the phase boundary
of spin glass, or a system displaying Self Organized
Criticality (SOC), or a Jamming transition [25, 26]. Of
course, we can not say which mechanism, if any, is at
play. Instead, we use the machinery of HT-RMT as a
stand-in for a generative model of the weight matrices in
DNNs, to catalog and model the HT behavior of DNNs.2
This Universality suggests that we look for a Universal
Capacity Control Metric3 to address our main question.

2Perhaps the most well-known Universality in RMT is associ-
ated with the Gaussian Universality class, where the sum of many
random variables drawn from a wide range of distributions is “ap-
proximately Gaussian,” e.g., in the sense that the sum approaches
a suitably-normalized Gaussian distribution. As briefly reviewed
in Appendix A of [27], HT Universality makes analogous (but,
admittedly, more complicated) statements for random variables
drawn from distributions in which the tails decay more slowly than
those in the Gaussian Universality class [17, 18].

3To be clear, this metric is Universal, not in the sense that it
applies “universally” to every possible DNN, but in the Statistical
Physics sense [21, 22] that it applies to matrices within/across HT
“Universality” classes.
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Our main results are the following.
• We evaluate the Product Norm capacity control
metric on a wide range of large-scale pre-trained
production-level DNNs, including VGG and ResNet
series, demonstrating that it correlates well with
reported average test accuracies across many series of
models. While norm-based metrics have been applied
to small models, to our knowledge, evaluating this
metric to predict trends in test accuracies of large-scale
pre-trained models has never (until now) been reported.

• We introduce a new methodology to analyze the
performance of large-scale pre-trained DNNs, using a
phenomena observed in HT-SR Theory. We construct
a Universal capacity control metric to predict average
DNN test performance. This metric is a weighted
average of layer PL exponents, α̂, weighted by the
log4 of the Spectral norm (i.e., maximum eigenvalue
λmax) of layer correlation matrices:

α̂ =
∑
l∈L

αl log λ
max
l .

• We apply our Universal capacity control metric α̂ to
a wide range of large-scale pre-trained production-
level DNNs, including the VGG and ResNet series of
models, as well as many others. This metric correlates
very well with the reported average test accuracies
across many series of pre-trained DNNs.

• We provide a derivation for a relation between our
Universal capacity control metric α̂ and the well known
Product Norm capacity control metric, i.e, in the form
of the average log of the squared Frobenius norm:

〈log ‖W‖2F 〉 ≈
1

NL

∑
l∈L

αl log λ
max
l .

We do not make precise the error in “≈” but our deriva-
tion makes clear that we expect the approximation to
be good for smaller α and less good for larger α.

There is a tradeoff here: our α̂ metric has two
parameters (α and λmax), as opposed to the Product
Norm capacity control metric, which has one (‖ · ‖2F ),
and it is more expensive to compute, but it does perform
better. Informally, as opposed to looking only at the “size”
or “shape” of a model, e.g., as with a norm-based metric,
the parameters λmaxl and αl take into consideration both
the size and the shape of the model.

For both our Universal α̂ metric and the Product
Norm metric, our empirical results are, to our knowledge,
the first time such theoretical capacity metrics have been

4Throughout, we use log base 10.

reported to predict (trends in) the test accuracy for
pre-trained production-level DNNs. In particular, this
illustrates the usefulness of these norm-based metrics
beyond smaller models such as MNIST, CIFAR10, and
CIFAR100. Our results, including for both our Universal
metric and the Product Norm metric we consider, can be
reproduced with the WeightWatcher package5; and our
results suggest that our “practical theory” approach is
fruitful more generally for engineering good algorithms
for realistic large-scale DNNs.

A longer technical report version of this paper, with
appendices to which we will refer, has appeared as [27].

2 Brief Overview of Heavy-Tailed
Self-Regularization

Here, we briefly review Martin and Mahoney’s Theory of
Heavy-Tailed Self-Regularization (HT-SR) [17, 18]. See
Appendix A of [27] for more details.

Write the Energy Landscape (or optimization func-
tion, parameterized by Wls and bls) for a typical DNN
with L layers, with activation functions hl(·), and with
N ×M weight matrices Wl and biases bl, as:

EDNN=hL(WL ·hL−1(WL−1 ·hL−2(· · · )+bL−1)+bL).

Typically, this model would be trained on some labeled
data {di, yi} ∈ D, using Backprop, by minimizing the
loss L. For simplicity, we do not indicate the structural
details of the layers (e.g., Dense or not, Convolutions or
not, Residual/Skip Connections, etc.).

In the HT-SR Theory, we analyze the eigenvalue
spectrum (the ESD) of the associated correlation matri-
ces [17, 18]. From this, we can characterize the amount
and form of correlation (and therefore the implicit self-
regularizartion) present in the DNN’s weight matrices.
For each layer matrix Wl, of size N ×M , construct the
associated M ×M (uncentered) correlation matrix Xl.
Dropping the L and l, i indices, we have X = 1

NWTW.
If we compute the eigenvalue spectrum of X, i.e., λi
such that Xvi = λivi, then the ESD of eigenvalues,
ρ(λ), is just a histogram of the eigenvalues. Using HT-
SR Theory [17, 18], we can characterize the correlations
in a weight matrix by examining its ESD, ρ(λ). It can
be well-fit to a power law (PL) distribution, given as
ρ(λ) ∼ λ−α, which is (at least) valid within a bounded
range of eigenvalues λ ∈ [λmin, λmax].

When we observe HT behavior in W, or rather its
correlation matrix X, we essentially use HT-RMT as a
generative model. We say that we model W as if it is a
random matrix, Wrand(µ), drawn from a Universality
class of HT-RMT (i.e., VHT, MHT, or WHT, as defined
below). To characterize this HT-MU behavior, we use

5https://pypi.org/project/WeightWatcher/

507
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

09
/0

4/
20

 to
 1

08
.2

42
.1

78
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://pypi.org/project/WeightWatcher/


a HT variant of RMT and use HT random matrices to
elucidate different Universality classes. Let W(µ) be an
N ×M random matrix with entries chosen i.i.d. from

Pr [Wi,j ] ∼
Wµ

0

|Wi,j |1+µ
,

where W0 is the typical order of magnitude of Wi,j , and
where µ > 0. There are at least 3 different Universality
classes of HT random matrices, defined by the range µ
takes on:

• 0 < µ < 2: VHT: Universality class of Very Heavy-
Tailed (or Lévy) matrices;

• 2 < µ < 4: MHT: Universality class of Moderately
Heavy-Tailed (or Fat-Tailed) matrices;

• 4 < µ: WHT: Universality class of Weakly Heavy-
Tailed matrices.

3 Heavy-Tailed Mechanistic Universality and
Capacity Control Metrics

From prior work [17, 18], we expect that smaller PL
exponents of the ESD imply more regularization and
therefore better generalization. Since smaller norms
of weight matrices often correspond to better capacity
control [2, 3, 4, 8], we would like to relate the empirical
PL exponent α to the empirical Frobenius norm ‖W‖F .
At least naïvely, this is a challenge, since smaller PL
exponents often correspond to larger matrix norms (and
thus worse generalization!). See Appendices C and
D of [27] for more details. To resolve this apparent
discrepancy, we will exploit HT-MU to propose a
Universal DNN complexity metric.

Form of a Proposed Universal DNN Com-
plexity Metric. The PL exponent α is a complexity
metric for a single DNN weight matrix, with smaller
values corresponding to greater regularization [17, 18].
It describes how well that matrix encodes complex cor-
relations in the training data. Thus, a natural class of
complexity or capacity metrics to consider for a DNN
is to take a weighted average6 of the PL exponents, αl,i,
for each layer weight matrix Wl,i:

(3.1) α̂ :=
1

NL

∑
l,i

bl,iαl,i.

6There are several reasons we don’t want an unweighted
average: an unweighted average behaves differently for HT random
matrices than for well-trained DNN weight matrices, and so it
would not be Universal; we want a metric that relates the α

of HT-SR Theory with known capacity control metrics such as
norms of weight matrices, and including weights permits this
flexibility; we want weights to encode information that “larger”
matrices are somehow more important; and unweighted averages,
while sometimes providing predictive quality, do not perform as
reliably well. See Appendices C and D of [27] for more details.

Here, the smaller α̂, the better we expect the DNN to
represent training data, and (presumably) the better the
DNN will generalize. The main question is: what are
good weights bl,i?

As we now show, we can extract the weighted average
α̂ directly from the more familiar Product Norm, by
exploiting both HT Universality, and its finite-size effects,
arising in DNN weight matrices.

Product Norm Measures of Complexity. It
has been suggested that the complexity, C, of a DNN can
be characterized by the product of the norms of layer
weight matrices,

C ∼ ‖W1‖ × ‖W2‖ · · · ‖WL‖,

where ‖W‖ is, e.g., the Frobenius norm [2, 3, 4]. (Here,
we can use either ‖W‖ or ‖W‖2, and one can view C as
akin to a data-dependent VC complexity.) To that end,
we consider a log complexity

log C ∼ log

[
‖W1‖ × ‖W2‖ · · · ‖WL‖

]
∼

[
log ‖W1‖+ log ‖W2‖ · · · log ‖WL‖

]
,

and we define the average log norm of weight matrices
(where NL is the number of layers) as

(3.2) 〈log ‖W‖〉 = 1

NL

∑
l

log ‖Wl‖.

A Universal, Linear, PL–Norm Relation.
Based on our empirical results and theoretical consider-
ations, we propose a simple linear relation between the
(squared) Frobenius norm ‖W‖2F of W, the PL expo-
nent α, and the maximum eigenvalue λmax of X (i.e.,
the spectral norm ‖X‖2 = 1

N ‖W‖
2
2):

(3.3) PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

To our knowledge, this is the first time this PL–Norm
relation has been noted in the literature (although prior
work has considered norm bounds for HT data [16]).
A few comments on Eqn. (3.3). First, it provides a
connection between the PL parameter α of HT-SR
Theory and the weight norm ‖W‖2F of more traditional
statistical learning theory. Second, it has a structural
form like that of the well-known Hausdorff dimension [28].
Third, it shows that PL exponents can alternatively be
interpreted (up to the 1

N scaling) as the Stable Rank in
Log-Units:

Log-Units Stable Rank: Rlogs :=
log ‖W‖2F
log λmax

≈ α.

Our justification for proposing Eqn. (3.3) is three-fold.
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1. We derive Eqn. (3.3) in the special case of very
small PL exponent, α→ 1 (µ→ 0), for an N ×M
matrix Wrand(µ) (with N = M , or Q = 1, where
Q = N/M).7

2. For finite-size random matrices Wrand(µ), we ex-
pect the MHT Universality class, µ ∈ (2, 4), to
behave like the VHT Universality class, µ ∈ (1, 2).
Because of this similarity, we expect that we can
extend Eqn. (3.3), approximately, to larger PL expo-
nents. For N ∼ O(100−1000), α log λmax increases
nearly linearly with log ‖Wrand(µ)‖2F as µ increases.
For larger N , the relation saturates for large µ. See
Appendix B of [27].

3. As evidence of HT-MU, we observe empirically that
Eqn. (3.3) also applies, approximately, to the real
DNN weight matrices W. We see that α log λmax is
positively correlated with log ‖W‖2F as α increases,
and even shows similar saturation effects at large α.
See Appendix C of [27].

Finally, based on Eqn. (3.3), we choose the weights
in Eqn. (3.1) to be the log of the corresponding maximum
eigenvalues of X. That is, for a given l, i, we have the
weights in Eqn. (3.1) as

bl,i = λmaxl,i .

Then, we define the complexity metrics for Linear and
Convolutional Layers as follows:

Linear Layer: log ‖Wl‖2F → αl log λ
max
l

Conv2D Layer: log ‖Wl‖2F →
nl∑
i=1

αl,i log λ
max
l,i ,

where, for Conv2D Layers, we relate the “norm” of the
4-index Tensor Wl to the sum of the nl = c× d terms
for each feature map. This lets us compare the Product
Norm to the weighted average of PL exponents as follows:

(3.4) 2 log C= 〈log ‖W‖2F 〉→ α̂ :=
1

NL

∑
i,l

αi,llog λ
max
l,i .

Given these connections, in Section 4, we will use α̂ to
analyze numerous pre-trained DNNs.

The PL–Norm Relation: Deriving a Special
Case of Eqn. (3.3). Here, we derive Eqn. (3.3) in the
special case of very small PL exponent, as µ → 0, for
an N ×M random matrix W, with M = N,Q = 1, and

7In particular, while this is a limiting statement, we expect to
observe small deviations from this when we are not in the limit.

with elements drawn from Eqn. (A.3) of [27].8 We seek a
relation good in the region µ ∈ [0, 2], and we will extend
the µ ∼ 0 results to this full region. That is, we establish
this as an asymptotic relation for the VHT Universality
class for very small exponents.

To start, recall that ‖W‖2F = Trace[WTW] =
N Trace[X]. Since, µ & 0, the eigenvalue spectrum is
dominated by a single large eigenvalue, it follows that

‖W‖2F ≈ Nλmax,

where λmax is the largest eigenvalue of the matrix X
(with the 1/N normalization). Taking the log of both
sides of this expression and expanding leads to

log ‖W‖2F ≈ log (Nλmax) = logN + log λmax.

Rearranging, we get that

log ‖W‖2F
log λmax

≈ logN

log λmax
+ 1.

Thus, for a parameter α satisfying Eqn. (3.3), we have

α ≈ logN

log λmax
+ 1.

The relation between α and µ for the VHT Universality
class is given in Eqn. (A.4a) of [27] as α = 1

2µ+1. Thus,
to establish our result, we need to show that

logN

log λmax
≈ 1

2
µ.

To do this, we use the relation of Eqn. (A.5) of [27] for
the tail statistic, i.e., that λmax ≈ N4/µ−1. Taking the
log of both sides gives

log λmax ≈ logN4/µ−1 = (4/µ− 1) logN,

from which it follows that
logN

log λmax
≈ logN

(4/µ− 1) logN
=

1

4/µ− 1
.

Finally, we can form the Taylor Series for
1

4/µ− 1
around, e.g., µ = 1.15 ≈ 1, which gives

1

4/µ− 1

∣∣∣∣
µ=1.15

≈ 1

2
µ− 1

6
+ · · · ≈ 1

2
µ.

This establishes the approximate—and rather surprising—
linear relation we want for µ ∈ [0, 2] for the VHT
Universality class of HT-RMT.

8We derive Eqn. (3.3) at what is sometimes pejoratively known
as “at a physics level of rigor.” That is fine, as our justification
ultimately lies in our empirical results. Recall our goal: to derive a
very simple expression relating fitted PL exponents and Frobenius
norms that is usable by practical engineers working with state-of-
the-art models, i.e., not simply small toy models. There is very
little “rigorous” work on HT-RMT, less still on understanding
finite-sized effects of HT Universality. Hopefully, our results will
lead to more work along these lines.
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(a) log Frobenius norm
〈log ‖W‖F 〉

(b) weighted average PL expo-
nent α̂

Figure 1: Pre-trained VGG and VGG_BN Architec-
tures and DNNs. Top 1 Test Accuracy versus average
log Frobenius norm 〈log ‖W‖F 〉 (in (1(a))) or Univer-
sal, weighted average PL exponent α̂ (in (1(b))) for
VGG11 vs VGG11_BN (blue), VGG13 vs VGG13_BN
(orange), VGG16 vs VGG16_BN (green), and VGG19
vs VGG19_BN (red). We plot plain the VGG models
with circles and the VGG_BN models with squares.

Model Top1 Accuracy α̂

VGG11 68.97 1.84
VGG11_BN 70.45 1.60
VGG13 69.66 1.65
VGG13_BN 71.51 1.36
VGG16 71.64 1.41
VGG16_BN 73.52 1.08
VGG19 72.08 1.16
VGG19_BN 74.27 0.81

Table 1: Results for VGG Architecture. Top1 Accuracy
is defined as the 100.0 minus the Top1 reported error.

4 Empirical Results on Pre-trained DNNs
Here, we summarize our empirical results. We only
consider Linear and Conv2D layers because we only
examine series of commonly available, open source, pre-
trained DNNs with these kinds of layers. All models have
been trained on ImageNet, and reported test accuracies
are widely available. Throughout, we use Test Accuracies
for the Top1 errors (where Accuracy = 100 - Top1 error).
We see similar results for Top5 errors. We emphasize
that, for our analysis, we do not need to retrain these
models—and we do not even need the test data!

VGG and VGG_BN Models. We first look at
the VGG class of models, comparing the log norm and
the Universal α̂ metrics. See Figure 1 and Table 1
for a summary of the results. Figures 1(a) and 1(b)
show both the average log Frobenius norm, 〈log ‖W‖F 〉
of Eqn. (3.2), and the weighted average PL exponent,
α̂ of Eqn. (3.4), as a function of the reported (Top1)

test accuracy for the series of pre-trained VGG models,
as available in the pyTorch package.9 These models
include VGG11, VGG13, VGG16, and VGG19, as
well as their more accurate counterparts with Batch
Normalization, VGG11_BN, VGG13_BN, VGG16_BN
and VGG19_BN. Table 1 provides additional details.

Across the entire series of architectures, reported test
accuracies increase linearly as each metric, 〈log ‖W‖F 〉
and α̂, decreases. Moreover, whereas the log norm
relation has 2 outliers, VGG13 and VGG13_BN, the
Universal α̂ metric shows a near perfect linear relation
across the entire VGG series.

(a) log Frobenius norm
〈log ‖W‖F 〉

(b) weighted average PL expo-
nent α̂

Figure 2: Pre-trained ResNet Architectures and DNNs.
Top 1 Test Accuracy versus average log Frobenius norm
〈log ‖W‖F 〉 (in (2(a))) or Universal, weighted average
PL exponent α̂ (in (2(b))).

ResNet Models. We next look at the ResNet class
of models. See Figure 2 and Table 2 for a summary of
the results. Here, we consider a set of 15 different pre-
trained ResNet models, of varying sizes and accuracies,
ranging from the small ResNet10 up to the largest
ResNet152 models, as provided by the OSMR sandbox,10
developed for training large-scale image classification
networks for embedded systems. Again, we compare the
reported (Top1) test accuracy versus the average log
norm 〈log ‖W‖F 〉 and the Universal α̂ metrics.

As with the VGG series, both metrics monotonically
decrease as test accuracies decrease for ResNet series,
and both metrics have a few large outliers off the
main line relation. See Figures 2(a) and 2(b). In
particular, the log norm metric has several notable
outliers, including resnet18_wd2, resnet18_wd3_d4,
resnet34, and resnet10. The α̂ metric shows a slightly
better relation, with resnet18_wd2 more in line, and the
other 3 outliers a little less off the main line of correlation.
The α̂ metric is as good or slightly better than average
log norm metric for the Resnet series of models.

9https://pytorch.org/
10https://github.com/osmr/imgclsmob
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Architecture Model Top1 Accuracy α̂

ResNet
(small)

resnet10 62.54 1.94

resnet12 63.82 0.74
resnet14 66.83 1.70
resnet16 69.10 1.49

ResNet18 resnet18_wd4 50.50 1.83
resnet18_wd2 62.96 1.82
resnet18_w3d4 66.39 0.28

resnet18 70.48 1.09
ResNet34 resnet34 74.34 -0.42
ResNet50 resnet50 76.21 0.13

resnet50b 76.95 0.09
ResNet101 resnet101 78.10 -0.67

resnet101b 78.55 -0.92
ResNet152 resnet152 78.74 -1.11

resnet152b 79.26 -1.74

Table 2: Results for ResNet Architectures and DNN
Models. The Top1 Accuracy is defined as the 100.0
minus the Top1 reported error. Some α̂ < 0 because the
of how the ResNet weight matrices are internally scale
and normalized, which makes the maximum eigenvalue
less then one, λmax < 1.

We see similar results for our Universal PL capacity
control metric α̂ across a wide range of other pre-trained
DNN models, described in next. In nearly all cases, the
metric α̂ correlates well with the reported test accuracies,
with only a three DNN architectures as exceptions.
Overall the α̂ metric systematically correlates well with
the generalization accuracy of a wide class of pre-trained
DNN architectures—which is rather remarkable.

More Pre-trained Models. We present results
for eleven more series of pre-trained DNN architectures,
eight of which show positive results, as with the VGG
and ResNet series, and three of which provide counterex-
ample architectures. See Table 3 for a summary.

The results that perform as expected are show in
Figures 3, 4, 5, and 6. For each set of models, our
Universal metric α̂ is smaller when, for the most part,
the reported (Top 1) test accuracy is larger. This holds
approximately true for the three of the four DenseNet
models, with densenet169 as an outlier. In fact, this
is the only outlier out of 26 DNN models in these 8
architectures. For all of the other pre-trained DNNs,
smaller α̂ corresponds with smaller test error and larger
test accuracy, as predicted by our theory.

Counterexamples. In such a large corpus of
DNNs, there are of course exceptions for a predictive
theory. See Table 3 for the counterexamples. These
are ResNeXt, MeNet, and FDMobileNet. For ResNeXt,
there are only two models, and the α̂ is larger for the

Architecture Model Top 1 α̂

Working
Examples

DenseNet densenet121 74.43 1.25
densenet161 77.14 0.84
densenet169 75.60 0.68
densenet201 76.90 0.50

SqueezeNet squeezenet_v1_0 58.69 2.55
squeezenet_v1_1 58.18 1.56

CondenseNet condensenet74_c4_g4 73.75 -1.83
condensenet74_c8_g8 71.07 -1.63

DPN dpn68 75.83 0.57
dpn98 79.19 0.11
dpn131 79.46 -0.13

ShuffleNet shufflenetv2_wd2 58.52 5.12
shufflenetv2_w1 65.61 2.86

MobileNet mobilenet_wd4 53.74 5.54
mobilenet_wd2 63.70 4.26
mobilenet_w3d4 66.46 4.41
mobilenet_w1 70.14 4.19

mobilenetv2_wd4 50.28 12.12
mobilenetv2_wd2 63.46 4.69
mobilenetv2_w3d4 68.11 4.21
mobilenetv2_w1 70.69 3.50

SE-ResNet seresnet50 77.53 -0.35
seresnet101 78.12 -1.24
seresnet152 78.52 -1.53

SE-ResNeXt seresnext50_32x4d 79.00 1.81
seresnext101_32x4d 80.04 0.76

Counter-
examples

ResNeXt resnext101_32x4d 78.19 1.22
resnext101_64x4d 78.96 1.34

MeNet menet108_8x1_g3 56.08 5.31
menet128_8x1_g4 56.05 4.46
menet228_12x1_g3 66.43 4.82
menet256_12x1_g4 66.59 4.97
menet348_12x1_g3 69.90 5.74
menet352_12x1_g8 66.69 4.42
menet456_24x1_g3 71.60 5.11

FDMobileNet fdmobilenet_wd4 44.23 6.40
fdmobilenet_wd2 56.15 7.01
fdmobilenet_w1 65.30 7.10

Table 3: Results for more pre-trained DNN models.
Models provided in the OSMR Sandbox, implemented
in pyTorch. Top 1 refers to the Top 1 Accuracy, which
100.0 minus the Top 1 reported error.

less accurate model. For MeNet, there are seven differ-
ent models, and there is no discernible pattern in the
data. Finally, for FDMobileNet, there are three different
pre-trained models, and, again, the α̂ is larger for the
less accurate models. We have not looked in detail at
these results and simply present them for completeness.
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(a) DenseNet (b) SqueezeNet

Figure 3: Pre-trained Densenet and SqueezeNet
PyTorch Models. Top 1 Test Accuracy versus α̂.

(a) CondenseNet (b) DPN

Figure 4: Pre-trained CondenseNet and DPN Models.
Top 1 Test Accuracy versus α̂.

(a) ShuffleNet (b) MobileNet

Figure 5: Pre-trained ShuffleNet and MobileNet Models.
Top 1 Test Accuracy versus α̂.

5 Discussion and Conclusion
We have presented an unsupervised capacity control
metric which predicts trends in test accuracies of a
trained DNN—without peeking at the test data. See
Appendix E of [27] for more discussion. Our work leads
to a harder theoretical question: can one characterize
properties of realistic DNNs to determine whether a
DNN is overtrained—without peeking at the test data?

(a) SeResNet (b) SeResNeXt

Figure 6: Pre-trained SeResNet and SeResNeXt Models.
Top 1 Test Accuracy versus α̂.
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