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Abstract

Quantile regression is a method to estimate
the quantiles of the conditional distribution
of a response variable, and as such it permits
a much more accurate portrayal of the rela-
tionship between the response variable and
observed covariates than methods such as
Least-squares or Least Absolute Deviations
regression. It can be expressed as a linear
program, and interior-point methods can be
used to find a solution for moderately large
problems. Dealing with very large problems,
e.g., involving data up to and beyond the ter-
abyte regime, remains a challenge. Here, we
present a randomized algorithm that runs in
time that is nearly linear in the size of the in-
put and that, with constant probability, com-
putes a (1+ε) approximate solution to an ar-
bitrary quantile regression problem. Our al-
gorithm computes a low-distortion subspace-
preserving embedding with respect to the loss
function of quantile regression. Our empiri-
cal evaluation illustrates that our algorithm
is competitive with the best previous work on
small to medium-sized problems, and that it
can be implemented in MapReduce-like envi-
ronments and applied to terabyte-sized prob-
lems.

1. Introduction

Quantile regression is a method to estimate the quan-
tiles of the conditional distribution of a response
variable, expressed as functions of observed covari-
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ates (Koenker & Bassett, 1978), in a manner anal-
ogous to the way in which Least-squares regression
estimates the conditional mean. The Least Absolute
Deviations regression (i.e., `1 regression) is a special
case of quantile regression that involves computing
the median of the conditional distribution. In con-
trast with `1 regression and the more popular `2 or
Least-squares regression, quantile regression involves
minimizing asymmetrically-weighted absolute residu-
als. Doing so, however, permits a much more accu-
rate portrayal of the relationship between the response
variable and observed covariates, and it is more ap-
propriate in certain non-Gaussian settings. For these
reasons, quantile regression has found applications in
many areas (Buchinsky, 1994; Koenker & Hallock,
2001; Buhai, 2005). As with `1 regression, the quantile
regression problem can be formulated as a linear pro-
gramming problem, and thus simplex or interior-point
methods can be applied (Koenker & D’Orey, 1993;
Portnoy & Koenker, 1997; Portnoy, 1997). Most of
these methods are efficient only for problems of small
to moderate size, and thus to solve very large-scale
quantile regression problems more reliably and effi-
ciently, we need new computational techniques.

In this paper, we provide a fast algorithm to com-
pute a (1 + ε) relative-error approximate solution to
the over-constrained quantile regression problem. Our
algorithm constructs a low-distortion subspace embed-
ding of the form that has been used in recent devel-
opments in randomized algorithms for matrices and
large-scale data problems; and our algorithm runs in
time that is nearly linear in the number of nonzeros in
the input data.

In more detail, recall that a quantile regression prob-
lem can be specified by a (design) matrix A ∈ Rn×d, a
(response) vector b ∈ Rn, and a parameter τ ∈ (0, 1),
in which case the quantile regression problem can be
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solved via the optimization problem

minimizex∈Rd ρτ (b−Ax), (1)

where ρτ (x) =
∑d
i=1 ρτ (xi), for x ∈ Rd, where

ρτ (z) =

{
τz, z ≥ 0;

(τ − 1)z, z < 0,
(2)

for z ∈ R, is the corresponding loss function. In
the remainder of this paper, we will use A to denote
the augmented matrix

[
b −A

]
, and we will consider

A ∈ Rn×d. With this notation, the quantile regres-
sion problem of (1) can equivalently be expressed as a
constrained problem with a single linear constraint,

minimizex∈C ρτ (Ax), (3)

where C = {x ∈ Rd | cTx = 1} and c is a unit vector
with the first coordinate set to be 1. We will focus on
problems with size n� d.

Our main algorithm depends on a technical result, pre-
sented as Lemma 3 below, of independent interest. Let
A ∈ Rn×d be an input matrix, and let S ∈ Rs×n be
a random sampling matrix constructed based on the
following importance sampling probabilities,

pi = min{1, s · ‖U(i)‖1/‖U‖1},

where ‖·‖1 is the element-wise norm, and where U(i) is
the i-th row of an `1 well-conditioned basis U for the
range of A (see Definition 2 below). Then, Lemma 3
states that, for a sampling complexity s that depends
on d but is independent of n,

(1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax)

will be satisfied for every x ∈ Rd.

Although one could use, e.g., the algorithm of (Das-
gupta et al., 2009) to compute such a well-conditioned
basis U and then “read off” the 1-norm of the rows
of U , doing so would be much slower than the time
allotted by our main algorithm. Thus, to apply the
ideas from Lemma 3 for fast quantile regression, we
provide two algorithms, Algorithm 1 and Algorithm 2
below. As quantified by Lemma 4 and Lemma 5, re-
spectively, these two algorithms provide fast construc-
tion of the well-conditioned basis U and fast estimation
of the `1 norms of U(i), respectively; and both run in
O(nnz(A) · log n) time, where nnz(A) is the number of
nonzero elements of A.

Given these results, our main algorithm for quantile
regression is presented as Algorithm 3. Our main
theorem for this algorithm, Theorem 1 below, states

that, with constant probability, this algorithm returns
a (1 + ε)-approximate solution to the quantile regres-
sion problem; and that this solution can be obtained in
timeO(nnz(A)·log n) plus the time for solving the sub-
problem, whose size is O(µd3 log(µ/ε)/ε2) × d, where
µ = τ

1−τ , for τ ≥ 1/2, independent of n.

Our empirical evaluation results show that the output
of our algorithm is 2-digit accurate in terms of both
objective value and solution to quantile regression by
sampling, e.g., about 0.001% of the data. It outper-
forms other conditioning-based methods, and the run-
ning time of the proposed algorithm is comparable to
existing sampling methods in RAM. In addition, our
algorithm can be implemented in MapReduce-like en-
vironments and applied to terabyte-sized problems.

The best previous algorithm for moderately large
quantile regression problems is due to (Portnoy &
Koenker, 1997) and (Portnoy, 1997). Their algorithm
uses an interior-point method on a smaller problem
that has been preprocessed by randomly sampling a
subset of the data. Their preprocessing step involves
predicting the sign of each A(i)x

∗− bi, where A(i) and
bi are the i-th row of the input matrix and the re-
sponse vector, respectively, and x∗ is an optimal so-
lution to the original problem. When compared with
our approach, they compute an optimal solution, while
we compute an approximate solution; but we provide
worst-case analysis that with high probability our algo-
rithm is guaranteed to work, while they do not. Also,
the sampling complexity of their algorithm depends
on the higher dimension n, while the number of sam-
ples required by our algorithm depends only on the
lower dimension d; but our sampling is with respect to
a carefully-constructed nonuniform distribution, while
they sample uniformly at random.

For a detailed overview of recent work on using ran-
domized algorithms to compute approximate solu-
tions for least-squares regression and related prob-
lems, see the recent review (Mahoney, 2011). Most
relevant for our work is the algorithm of (Dasgupta
et al., 2009) that constructs a well-conditioned ba-
sis by ellipsoid rounding and a subspace-preserving
sampling matrix in order to approximate the solu-
tion of general `p regression problems, for p ∈ [1,∞),
in roughly O(nd5 log n); the algorithms of (Sohler &
Woodruff, 2011) and (Clarkson et al., 2013) that use
the “slow” and “fast’ versions of Cauchy Transform
to obtained a low-distortion `1 embedding matrix and
solve the over-constrained `1 regression problem in
O(nd1.376+) and O(nd log n) time, respectively; and
the algorithm of (Meng & Mahoney, 2013) that con-
structs low-distortion embeddings in “input sparsity”
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time and uses those embeddings to approximate the
solution of the over-constrained `1 regression problem
in O(nnz(A) · log n+poly(d) log(1/ε)/ε2) time. In par-
ticular, we will use the method in (Meng & Mahoney,
2013) for constructing `1-norm well-conditioned basis
matrices in nearly input-sparsity time.

A more detailed empirical evaluation and the proofs
of our main (and additional) results may be found in
the associated technical report (Yang et al., 2013).

2. Preliminaries

We use ‖ · ‖1 to denote the element-wise `1 norm for
both vectors and matrices; and we use [n] to denote
the set {1, 2, . . . , n}. For any matrix A, A(i) and A(j)

denote the i-th row and the j-th column of A, respec-
tively; and A denotes the column space of A. For
simplicity, we assume A has full column rank; and we
always assume that τ ≥ 1

2 . All the results hold for
τ < 1

2 by simply switching the positions of τ and 1−τ .

Although ρτ (·) is not a norm, since the loss function
does not have the positive linearity, it satisfies some
“good” properties, as stated in the following lemma:

Lemma 1. Suppose that τ ≥ 1
2 . Then, for any x, y ∈

Rd, a ≥ 0, the following hold: ρτ (x + y) ≤ ρτ (x) +
ρτ (y); (1−τ)‖x‖1 ≤ ρτ (x) ≤ τ‖x‖1; ρτ (ax) = aρτ (x);
and |ρτ (x)− ρτ (y)| ≤ τ‖x− y‖1.

The following notion of a low-distortion embedding
will be crucial for our method. In this paper, the “mea-
sure functions” we will consider are ‖ · ‖1 and ρτ (·).
Definition 1 (Low-distortion embedding). Given A ∈
Rn×d, a measure function of vectors f(·), a matrix
S ∈ Rs×n is a (1 ± ε)-distortion embedding matrix of
(A, f(·)) if s = poly(d) and for all x ∈ Rd,

(1− ε)f(Ax) ≤ f(SAx) ≤ (1 + ε)f(Ax).

We will say that S is a (1 ± ε)-distortion sampling
matrix if S is a (1 ± ε)-distortion embedding matrix
and there is only one nonzero element per row in S.

The following notion of a basis, originally introduced
by (Dasgupta et al., 2009), that is well-conditioned for
the `1 norm will also be crucial for our method.

Definition 2 (Well-conditioned basis). Given A ∈
Rn×d, a basis U of A is (α, β)-conditioned if ‖U‖1 ≤ α
and for all x ∈ Rq, ‖x‖∞ ≤ β‖Ux‖1. We will say that
U is a well-conditioned basis of A if α and β are low-
degree polynomials in d, independent of n.

For completeness, note that two important ingredients
for proving subspace preservation are γ-nets and tail

inequalities. Suppose that Z is a point set and ‖ · ‖
is a metric on Z. A subset Zγ is called as a γ-net for
some γ > 0 if for every x ∈ Z there is a y ∈ Zγ such
that ‖x − y‖ ≤ γ. It is well-known that the unit ball
of a d-dimensional subspace has a γ-net with size at
most (3/γ)d (Bourgain et al., 1989). Also, we use the
standard Bernstein inequality to prove concentration
results for the sum of independent random variables.

Lemma 2 (Bernstein inequality). Let X1, . . . , Xn be
independent random variables with zero-mean. Sup-
pose that |Xi| ≤ M , for i ∈ [n], then for any positive
number t, we have

Pr

∑
i∈[n]

Xi > t

 ≤ exp

(
− t2/2∑

i∈[n] EX2
j +Mt/3

)
.

3. Main Theoretical Results

Here, we present our main technical results on low-
distortion subspace-preserving embeddings and our
fast randomized algorithm for quantile regression.

3.1. Main technical ingredients

We start with a result which says that if we sample suf-
ficiently many (but still only poly(d)) rows according
to an appropriately-defined non-uniform importance
sampling distribution (of the form given in Eqn. (4)
below), then we obtain a (1± ε)-distortion embedding
matrix with respect to the loss function of quantile re-
gression. Note that the form of this lemma, the proof
of which may be found in (Yang et al., 2013), is based
on ideas from (Dasgupta et al., 2009; Clarkson et al.,
2013).

Lemma 3 (Subspace-preserving Sampling Lemma).
Given A ∈ Rn×d, let U ∈ Rn×d be an (α, β)-
conditioned basis for A. For s > 0, define

p̂i ≥ min{1, s · ‖U(i)‖1/‖U‖1}, (4)

and let S ∈ Rn×n be a random diagonal matrix with
Sii = 1/p̂i with probability p̂i, and 0 otherwise. Then
when ε < 1/2 and

s ≥ τ

1− τ
27αβ

ε2

(
d log

(
τ

1− τ
18

ε

)
+ log

(
4

δ

))
,

with probability at least 1− δ, for every x ∈ Rd,

(1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax). (5)

Remark. It is not hard to see that for any matrix S
satisfying (5), the rank of A is preserved.
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Algorithm 1 Fast Algorithm for Computing Well-
conditioned Basis (Meng & Mahoney, 2013)

1: Input: A ∈ Rn×d with full column rank.
2: Output: R−1 ∈ Rd×d such that AR−1 is an

(α, β)-conditioned basis with αβ ≤ 6d2.
3: Construct a low-distortion embedding matrix Π1 ∈

Rr1×n of (A, ‖ · ‖1).
4: Construct R̃ ∈ Rd×d such that AR̃−1 is a well-

conditioned basis for A (For example, by QR fac-
torization of Π1A).

5: Compute a (1± 1/2)-distortion embedding matrix

S̃ ∈ Rpoly(d)×n of (A, ‖ · ‖1).
6: Compute R ∈ Rd×d by ellipsoid rounding such

that S̃AR−1 is a (α, β)-conditioned basis with
αβ ≤ 2d2.

Remark. Given such a low-distortion subspace-
preserving sampling matrix, it is not hard to show
that, by solving the sub-sampled problem induced by
S, i.e., solving minx∈C ρτ (SAx), then one obtains a
(1 + ε)/(1 − ε)-approximate solution to the original
problem. For more details, see (Yang et al., 2013).

In order to apply Lemma 3, we need to compute the
sampling probabilities in Eqn. (4). This requires two
steps: first, find a well-conditioned basis U ; and sec-
ond, compute the row norms of U . We now present
two algorithms that will perform these two steps in
the allotted O(nnz(A) · log n) time.

Consider, first, Algorithm 1, which computes a well-
conditioned basis for A. This algorithm originally ap-
peared as first four steps of Algorithm 2 in (Meng
& Mahoney, 2013), but it is included here for com-
pleteness. Our main result for Algorithm 1 is given in
Lemma 4.

Lemma 4. Given A ∈ Rn×d with full rank, Algo-
rithm 1 takes O(nnz(A) · log n) time to compute a
matrix R ∈ Rd×d such that with a constant probabil-
ity, AR−1 is an (α, β)-conditioned basis for A with
αβ ≤ 6d2.

Remark. The output of Algorithm 1 is not the well-
conditioned matrix U , but instead it is the matrix R,
the inverse of which transforms A into U .

Remark. A well-conditioned basis for A can also
be computed by other (typically more expensive) ap-
proaches, e.g., the methods from (Dasgupta et al.,
2009; Sohler & Woodruff, 2011; Clarkson et al., 2013)
or the other algorithm of (Meng & Mahoney, 2013).

Consider, next, computing p̂i from U (or from A and
R−1), and note that forming U explicitly is expensive
both when A is dense and when A is sparse. In prac-

Algorithm 2 Fast Construction of (1 ± ε)-distortion
Sampling Matrix of (A, ρτ (·))
1: Input: A ∈ Rn×d, R ∈ Rd×d such that AR−1 is

(α, β)-conditioned, ε ∈ (0, 1/2), τ ∈ [1/2, 1).
2: Output: Sampling matrix S ∈ Rn×n.
3: Let Π2 ∈ Rd×r2 be a matrix of independent

Cauchys with r2 = 15 log(40n).
4: Compute R−1Π2 and construct Λ = AR−1Π2 ∈

Rn×r2 .
5: For i ∈ [n], compute λi = medianj∈[r2]|Λij |.
6: For s = τ

1−τ
81αβ
ε2

(
d log

(
τ

1−τ
18
ε

)
+ log 80

)
and i ∈

[n], compute probabilities

p̂i = min

{
1, s · λi∑

j∈[n] λj

}
.

7: Let S ∈ Rn×n be diagonal with independent en-
tries

Sii =

{
1
p̂i
, with probability p̂i;

0, with probability 1− p̂i.

tice, however, we will not need to form U explicitly,
and we will not need to compute the exact value of
the `1-norm of each row of U . Indeed, it suffices to get
estimates of ‖U(i)‖1, in which case we can adjust the
sampling complexity s to maintain a small approxima-
tion factor. Algorithm 2 provides a way to compute
the estimates of the `1 norm of each row of U fast and
construct the sampling matrix. The same technique
was used in (Clarkson et al., 2013). Our main result
for Algorithm 2 is presented in Lemma 5, the proof of
which can be found in (Yang et al., 2013)

Lemma 5 (Fast Construction of (1 ± ε)-distortion
Sampling Matrix). Given a matrix A ∈ Rn×d, and
a matrix R ∈ Rd×d such that AR−1 is a (α, β)-
conditioned basis for A, Algorithm 2 takes O(nnz(A) ·
log n) time to compute a sampling matrix S ∈ Rt×n
(with only one nonzero per row), such that with prob-
ability at least 0.9, S is a (1 ± ε)-distortion sampling
matrix. That is for all x ∈ Rd,

(1− ε)ρτ (Ax) ≤ ρτ (SAx) ≤ (1 + ε)ρτ (Ax). (6)

Further, with probability at least 1 − o(1), t =
O
(
µαβd log (µ/ε) /ε2

)
, where µ = τ

1−τ .

3.2. Main algorithm

Here, we state our main algorithm for computing an
approximate solution to the quantile regression prob-
lem. Recall that, to compute a relative-error approxi-
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Algorithm 3 Fast Randomized Algorithm for Quan-
tile Regression

1: Input: A ∈ Rn×d with full column rank, ε ∈
(0, 1/2), τ ∈ [1/2, 1).

2: Output: An approximate solution x̂ ∈ Rd.
3: Compute R ∈ Rd×d such that AR−1 is a well-

conditioned basis for A via Algorithm 1.
4: Compute a (1± ε)-distortion embedding S ∈ Rs×n

of (A, ρτ (·)) via Algorithm 2.
5: Return x̂ ∈ Rd that minimizes ρτ (SAx) with re-

spect to x ∈ C.

mate solution, it suffices to compute a (1±ε)-distortion
embedding matrix S. To construct S, we first com-
pute a well-conditioned basis U by Algorithm 1, and
we then apply Algorithm 2 to approximate the `1 norm
of each row of U . These procedures are summarized
in Algorithm 3. The main quality-of-approximation
result for this algorithm is stated in Theorem 1, the
proof of which can be found in (Yang et al., 2013)

Theorem 1 (Fast Quantile Regression). Given A ∈
Rn×d and ε ∈ (0, 1/2), Algorithm 3 returns a vector x̂
that, with probability at least 0.8, satisfies

ρτ (Ax̂) ≤
(

1 + ε

1− ε

)
ρτ (Ax∗),

where x∗ is an optimal solution to the original problem.
In addition, the algorithm to construct x̂ runs in time

O(nnz(A) · log n) + φ
(
O(µd3 log(µ/ε)/ε2), d

)
,

where µ = τ
1−τ and φ(s, d) is the time to solve a quan-

tile regression problem of size s× d.

4. Empirical Evaluation

Here, we present a brief summary of our empirical eval-
uation of Algorithm 3. We considered both simulated
data and real data, and we considered both medium-
sized data as well as terabyte-scale data. Many more
details may be found in (Yang et al., 2013).

4.1. Medium-scale Quantile Regression

We start with a test on simulated data with size 1e6×
12 which is generated in the following way.

1. Each row of the design matrix A is a canonical
vector. The number of measurements on the j-th
column is twice as that on the (j − 1)-th column,
for j = 2, . . . , 12. A is roughly a 1e6× 12 matrix.

2. The true coefficient vector x∗ is a vector of size 12
with independent Gaussian entries. Let b∗ = Ax∗.

3. The noise vector ε is generated with independent
Laplacian entries. The response vector is given by

bi =

{
500εi with probability 0.001;

b∗i + εi otherwise.

Recall, as we point out in a remark after Lemma 4,
that we can use other methods for the conditioning
step, i.e., for finding the well-conditioned basis U =
AR−1 in the first step of Algorithm 3. Here, we will
consider the empirical performance of five methods for
doing so, namely, ISPC, SPC, SC, NOCO, and UNIF:
ISPC is the implementation of Algorithm 3 where
ISPC stands for the Improved Sparse Cauchy Trans-
form (called SPC2 in (Yang et al., 2013)); SPC, SC
and NOCO are the variations of Algorithm 3 by using,
respectively, the Sparse Cauchy Transform (Meng &
Mahoney, 2013), the Slow Cauchy Transform (Sohler
& Woodruff, 2011), and no conditioning (for all these,
we compute the row norms of the well-conditioned ba-
sis exactly instead of estimating them, as this may
reduce the error due to the estimating step); and, fi-
nally, UNIF is the uniform sampling method, which
we add here for completeness.

Rather than determining the sample size from a given
tolerance ε, we let the sample size s vary from 100 to
1e5 as an input of the algorithm. Consider Figure 1,
where we show the results when τ = 0.95, where we
draw the first and the third quartiles of the relative
errors of the objective value and solution measured in
infinity norm from 50 independent trials. We limit the
Y axis to 100 to show more details. The relative per-
formance of each method doesn’t change substantially
when τ takes other values.
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Figure 1. Setting τ = 0.95, the plot on left shows the first
(solid) and the third (dashed) quartiles of the relative error
of the objective value using five different methods, while
the one on right shows the relative `∞ error of the solution.
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From the plots we may see, for the objective value, all
the three conditioning-based methods perform simi-
larly. They give 2-digit accuracy when the sampling
complexity is about 1000. Among these, ISPC per-
forms slightly better. As expected, the two naive
methods UNIF and NOCO yield large relative error
when the sampling complexity s is below 1e4. They
are not reliable if we want to solve the problem quickly
while maintaining reasonable accuracy.

Although our theory is about estimating the objective
value, our conditioning-based methods also yield high
accuracy on the solution, i.e., the vector achieving the
optimum. See Table 1. As we can see, ISPC performs
the best. NOCO is likely to sample the outliers and
UNIF performs badly due the the imbalance measure-
ments in the design matrix. In order to see better the
difference in the behavior of these methods, we fix the
sample size to be 5000 and record the relative errors
on solutions measured in three different norms.

Table 1. The first and the third quartiles of relative errors
in `1, `2, and `∞ norms. ISPC clearly performs the best.
SC and SPC have slightly worse accuracy. NOCO and
UNIF generate large errors.

‖x− x∗‖2/‖x∗‖2 ‖x− x∗‖1/‖x∗‖1 ‖x− x∗‖∞/‖x∗‖∞
ISPC [0.024, 0.036] [0.026, 0.307] [0.019, 0.033]
SPC [0.031, 0.058] [0.032, 0.053] [0.026, 0.051]
SC [0.034, 0.071] [0.035, 0.060] [0.027, 0.081]

NOCO [0.160, 5.3× 107] [0.152, 3.5× 107] [0.133, 5.4× 107]

UNIF [0.155, 6.0× 106] [0.146, 3.8× 107] [0.131, 6.3× 107]

Next, we consider a real data set consisting of a 5%
sample of the U.S. 2000 Census data1, consisting of
annual salary and related features on people who re-
ported that they worked 40 or more weeks in the pre-
vious year and worked 35 or more hours per week. The
size of the design matrix is 5 × 106 by 11. The per-
formance of the methods on objective value is similar
to that on the simulated data. Here, we will explore
more on the running times. In particular, we compare
the running time of our method with some compet-
ing methods when the data size increases. They are
the primal-dual method, referred to as ipm, and that
with preprocessing, referred to as prqfn; see (Portnoy
& Koenker, 1997) for more details. Fix d = 11, we
let n, the large dimension, changes from 5e5 to 5e6.
For each n, we extract the leading n× d submatrix of
the census data, and record the running time of each
method. The result is shown in Figure 2. From the
plot we can see, ISPC runs faster than prqfn in most
cases and appears to have a linear rate.

1http://www.census.gov/census2000/PUMS5.html
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Figure 2. The running time in seconds for each method as
the data size changes from 5e5 to 5e6. ipm is the standard
interior-point method and prqfn is the ipm with prepro-
cessing. ISPC is the implementation of Algorithm 3.

4.2. Large-scale Quantile Regression

We continue our empirical evaluation with a terabyte-
scale problem that we generate by stacking 2000 copies
of the census data we used in the previous section.
This leads to a problem of size roughly 1010×12 whose
optimal solutions at different quantiles are known. At
this terabyte scale, ipm has two major issues: mem-
ory requirement and running time. Though shared
memory machines with more than a terabyte of RAM
exist, they are rare in practice. When n = 1010, even
we have enough RAM to use, it might take a very long
time to solve the problem using ipm.

The MapReduce framework is now the de facto stan-
dard parallel environment for large data analysis.
Apache Hadoop2, an open source implementation of
MapReduce, is extensively used by many companies
and institutions, e.g., Facebook, LinkedIn, and Ya-
hoo!. Since our sampling algorithm only needs a few
passes through the data and is embarrassingly parallel,
it is straightforward to implement it on Hadoop.

In Table 2, we list part of the solution computed by
our randomized algorithm with a sample size 1e5 at
different quantiles, as well as the corresponding opti-
mal solution. As we may see, for most coefficients,
our algorithm provides 2-digit accuracy. The quantile
regression result reveals some interesting facts. For
example, marriage may entail a higher salary in lower

2Apache Hadoop, http://hadoop.apache.org/

http://www.census.gov/census2000/PUMS5.html
http://hadoop.apache.org/
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Table 2. Quantile regression results for the U.S. Census 2000 data. The response is the total annual income. Except for
the intercept and the terms involved with education, all the covariates are {0, 1} binary indicators.

Covariate τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

intercept
8.9812 9.3022 9.6395 10.0515 10.5510

[8.9673, 8.9953] [9.2876, 9.3106] [9.6337, 9.6484] [10.0400, 10.0644] [10.5296, 10.5825]

female
-0.2609 -0.2879 -0.3227 -0.3472 -0.3774

[ -0.2657, -0.2549] [ -0.2924, -0.2846] [-0.3262, -0.3185] [-0.3481, -0.3403] [ -0.3792, -0.3708]

Age ∈ [30, 40)
0.2693 0.2649 0.2748 0.2936 0.3077

[0.2610, 0.2743] [0.2613, 0.2723] [0.2689, 0.2789] [ 0.2903, 0.2981] [0.3027, 0.3141]

Age ∈ [40, 50)
0.3173 0.3431 0.3769 0.4118 0.4416

[0.3083, 0.3218] [ 0.3407, 0.3561] [ 0.3720, 0.3821] [ 0.4066, 0.4162] [ 0.4386, 0.4496]

Age ∈ [50, 60)
0.3316 0.3743 0.4188 0.4612 0.5145

[ 0.3190, 0.3400] [ 0.3686, 0.3839] [0.4118, 0.4266] [0.4540, 0.4636] [ 0.5071, 0.5230]

Age ∈ [60, 70)
0.3237 0.3798 0.4418 0.5072 0.6027

[0.3038, 0.3387] [0.3755, 0.3946] [0.4329, 0.4497] [0.4956, 0.5162] [0.5840, 0.6176]

Age ≥ 70
0.3206 0.4132 0.5152 0.6577 0.8699

[0.2962, 0.3455] [0.4012, 0.4359] [0.5036, 0.5308] [ 0.6371, 0.6799] [ 0.8385, 0.8996]

non white
-0.0953 -0.1018 -0.0922 -0.0871 -0.0975

[-0.1023, -0.0944] [-0.1061, -0.0975] [-0.0985, -0.0902] [-0.0932, -0.0860] [-0.1041, -0.0932]

married
0.1175 0.1117 0.0951 0.0870 0.0953

[0.1121, 0.1238] [ 0.1059, 0.1162 ] [ 0.0918, 0.0989] [0.0835, 0.0914] [ 0.0909, 0.0987]

education
-0.0152 -0.0175 -0.0198 -0.0470 -0.1062

[ -0.0179, -0.0117] [-0.0200, -0.0149] [-0.0225, -0.0189] [-0.0500, -0.0448] [-0.1112, -0.1032]

education2
0.0057 0.0062 0.0065 0.0081 0.0119

[0.0055, 0.0058] [0.0061, 0.0064] [0.0064, 0.0066] [0.0080, 0.0083] [0.0117, 0.0122]

quantiles. Education2, whose value ranged from 0 to
256, has a strong impact on the total income, espe-
cially in the higher quantiles. Also, the difference in
age doesn’t affect the total income much in lower quan-
tiles, but becomes a significant factor in higher quan-
tiles.

To summarize, our algorithm can handle terabyte-
sized quantile regression problems easily, e.g., obtain-
ing 2 digits of accuracy by sampling about 1e5 rows
on a problem of size 1e10 × 11; and the running time
is competitive with the best existing random sampling
algorithms, and it can be applied in parallel and dis-
tributed environments.
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