
Sampling Sub-problems of Heterogeneous
Max-cut Problems and Approximation

Algorithms

Petros Drineas1, Ravi Kannan2, and Michael W. Mahoney3

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy,
New York 12180

drinep@cs.rpi.edu
2 Department of Computer Science, Yale University, New Haven, CT 06520

kannan@cs.yale.edu
3 Department of Mathematics, Yale University, New Haven, CT 06520

mahoney@cs.yale.edu

Extended Abstract

Abstract. Recent work in the analysis of randomized approximation al-
gorithms for NP -hard optimization problems has involved approximat-
ing the solution to a problem by the solution of a related sub-problem of
constant size, where the sub-problem is constructed by sampling elements
of the original problem uniformly at random. In light of interest in prob-
lems with a heterogeneous structure, for which uniform sampling might
be expected to yield sub-optimal results, we investigate the use of nonuni-
form sampling probabilities. We develop and analyze an algorithm which
uses a novel sampling method to obtain improved bounds for approxi-
mating the Max-Cut of a graph. In particular, we show that by judicious
choice of sampling probabilities one can obtain error bounds that are su-
perior to the ones obtained by uniform sampling, both for weighted and
unweighted versions of Max-Cut. Of at least as much interest as the re-
sults we derive are the techniques we use. The first technique is a method
to compute a compressed approximate decomposition of a matrix as the
product of three smaller matrices, each of which has several appealing
properties. The second technique is a method to approximate the feasi-
bility or infeasibility of a large linear program by checking the feasibility
or infeasibility of a nonuniformly randomly chosen sub-program of the
original linear program. We expect that these and related techniques will
prove fruitful for the future development of randomized approximation
algorithms for problems whose input instances contain heterogeneities.

1 Introduction

1.1 Background

We are interested in developing improved methods to compute approximate
solutions to certain NP -hard optimization problems that arise in applications of

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 57–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

58 P. Drineas, R. Kannan, and M.W. Mahoney

graph theory and that have significant heterogeneities and/or nonuniformities.
The methods we present here are a first step in that direction; they make use of
random sampling according to certain judiciously chosen nonuniform probability
distributions and they depend heavily on our recent work on designing and
analyzing fast Monte Carlo algorithms for performing useful computations on
large matrices [12, 13, 14].

As an application of these methods we design and analyze an algorithm to
compute an approximation for the Max-Cut problem. In a Max-Cut problem,
also known as a maximum weight cut problem, the input consists of the n × n
adjacency matrix A of an undirected graph G = (V,E) with n vertices, and the
objective of the problem is to find a cut, i.e., a partition of the vertices into two
subsets V1 and V2, such that the number of edges of E that have one endpoint
in V1 and one endpoint in V2 is maximized. In its weighted version, the input
consists of an n× n weighted adjacency matrix A, and the objective is to find a
cut such that the sum of the weights of the edges of E that have one endpoint
in V1 and one endpoint in V2 is maximized.

Work originating with [3] has focused on designing PTASs for a large class
of NP -hard optimization problems, such as the Max-Cut problem, when the
problem instances are dense [3, 6, 16, 18, 17, 1, 2]. [3] and [6], using quite different
methods, designed approximation algorithms for Max-Cut (and other problems)
that achieve an additive error of εn2 (where ε > 0, ε ∈ Ω(1) is an error parameter)
in a time poly(n) (and exponential in 1/ε); this implies relative error for dense
instances of these problems. In [18] it was shown that a constant-sized (with
respect to n) sample of a graph is sufficient to determine whether a graph has
a cut close to a certain value. This work investigated dense instances of NP -
hard problems from the viewpoint of query complexity and property testing
and yielded an O(1/ε5) time algorithm to approximate, among other problems,
dense instances of Max-Cut. [16] and [17] examined the regularity properties of
dense graphs and developed a new method to approximate matrices; this led
to a PTAS for dense instances of all Max-2-CSP, and more generally for dense
instances of all Max-CSP, problems. [1, 2] extended this and developed a PTAS
for dense instances of all Max-CSP problems in which the sample complexity
was poly(1/ε) and independent of n; when applied to the Max-Cut problem this
led to an O

(
log 1/ε

ε4

)
time approximation algorithm.

In all these cases, these approximation algorithms involve sampling elements
of the input uniformly at random in order to construct a sub-problem which
is then used to compute an approximation to the original problem with addi-
tive error at most εn2 [3, 6, 16, 18, 17, 1, 2]; this then translates into a relative
error bound for dense graphs. These methods are not useful for nondense graphs
since with such an error bound a trivial approximate solution would always suf-
fice. This uniform sampling does have the advantage that it can be carried out
“blindly” since the “coins” can be tossed before seeing the data; then, given
either random access or one pass, i.e., one sequential read, through the data,
samples from the data may be drawn and then used to compute. Such uniform

Sampling Sub-problems of Heterogeneous Max-cut Problems 59

sampling is appropriate for problems that have nice uniformity or regularity
properties [16].

In many applications of graph theory problems, however, significant hetero-
geneities are present [22]. For instance, the graph may have a power-law struc-
ture, or a large part of the graph may be very sparse and a small subset of
vertices (sometimes, but not always a o(n)-sized subset) may have most of the
edges (1−o(1) of the edges) incident to them. Similarly, in a weighted graph, the
total weight of edges incident to most vertices may be small, while among the
remaining vertices the total weight of incident edges may be quite large. Neither
the adjacency matrix nor the adjacency list representation of a graph used in
property testing captures well this phenomenon [18].

With the additional flexibility of several passes over the data, we may use
one pass to assess the “importance” of a piece (or set of pieces) of data and de-
termine the probability with which it (or they) should be sampled, and a second
pass to actually draw the sample. Such importance sampling has a long his-
tory [21]. In recent work, we have shown that by sampling columns and/or rows
of a matrix according to a judiciously-chosen and data-dependent nonuniform
probability distribution, we may obtain better (relative to uniform sampling)
bounds for approximation algorithms for a variety of common matrix opera-
tions [12, 13, 14]; see also [8, 9, 10]. The power of using information to construct
nonuniform sampling probabilities has also been demonstrated in recent work
examining so-called oblivious versus so-called adaptive sampling [4, 5]. For in-
stance, it was demonstrated that in certain cases approximation algorithms (for
matrix problems such as those discussed in [12, 13, 14]) which use oblivious uni-
form sampling cannot achieve the error bounds that are achieved by adaptively
constructing nonuniform sampling probabilities [4, 5].

1.2 Our Main Result

In this paper we develop an approximation algorithm for both weighted and
unweighted versions of the Max-Cut problem. We do so by using nonuniform
sampling probabilities in the construction of the sub-problem to be solved. For
weighted graphs, these methods lead to substantial improvements when the av-
erage edge weight is much less than the maximum edge weight; for unweighted
graphs, we show that at the cost of substantial additional sampling, these meth-
ods lead to an additive error improvement over previous results [18, 2].

Let A be the n × n weighted adjacency matrix of a graph G = (V,E), let ε

be a constant independent of n, and recall that ‖A‖2
F =

∑
ij A

2
ij . A main result

of this paper, which is presented in a more precise form in Theorem 3, is that
there exists an algorithm that, upon being input A, returns an approximation
Z to the Max-Cut of A such that with high probability

|Z − MAX-CUT [A]| ≤ εn ‖A‖F . (1)

The algorithm makes three passes, i.e., three sequential reads, through the ma-
trix A and then needs constant additional space and constant additional time
(constant, that is, with respect to n) in order to compute the approximation.

60 P. Drineas, R. Kannan, and M.W. Mahoney

The algorithm uses a judiciously-chosen and data-dependent nonuniform proba-
bility distribution in order to obtain bounds of the form (1); these probabilities
are computed in the first two passes through the matrix.

Our results are of particular interest for weighted graphs. Note that for
weighted problems, the εn2 error bound of previous work for unweighted graphs
extends easily to εn2Wmax, where Wmax is the maximum edge weight. For these
problems, ‖A‖F /n may be thought of as the average weight over all the edges;
one may then view our error bounds as replacing Wmax in the εn2Wmax error
bound by ‖A‖F /n. If only a few of the weights are much higher than this aver-
age value, the bound of εn ‖A‖F given in (1) is much better than the bound of
εn2Wmax.

For a complete graph ‖A‖2
F = n(n − 1) since Aij = 1 for every i �= j. For

general unweighted graphs
√
2 |E| = ‖A‖F < n, where |E| the cardinality of

the edge set. Thus, in general, the additive error bound (1) becomes εn
√
2 |E|,

which is an improvement over the previous results of εn2 [18, 2]. In addition,
from this bound we obtain a PTAS for graphs with |E| = Ω(n2). Unfortu-
nately, this does not translate into a PTAS for any class of sub-dense graphs.
Demonstrating that such a PTAS exists would be significant application of our
methodology and is the object of current work; it has been shown recently by
other methods that there does exist a PTAS for Max-Cut and other Max-2-
CSP problems restricted to slightly subdense, i.e., Ω(n2/ log n) edges, graphs
[7]. Since we are primarily interested in presenting a methodology to deal with
heterogeneities and nonuniformities that arise in applications of graph theory
problems, we make no effort to optimize constants or polynomial factors. In
particular, although we have a PTAS, both the sampling complexity and the
running time of the algorithm are exponential in 1/ε, which is substantially
larger than previous results [18, 2]; we expect that this may be substantially
improved.

1.3 Outline of the Paper

In Section 2 we provide a review of relevant linear algebra and of our first
intermediate result which is the approximate CŨR decomposition results from
[14] that will be needed for the proofs of our results. In Section 3 we then present
our second intermediate result that deals with approximating the feasibility of
a LP by considering random sub-programs of the LP. Then, in Section 4 we
present and analyze an algorithm to approximate the Max-Cut of a matrix; in
particular, we summarize a proof of Theorem 3 which establishes (1).

1.4 Technical Report and Journal Paper

For the proofs of the results presented here, as well as for more details and
discussion related to these results, see the associated technical report [15]. Also,
see the associated journal paper [11].

Sampling Sub-problems of Heterogeneous Max-cut Problems 61

2 Review of Relevant Background

This section contains a review of linear algebra that will be useful throughout
the paper; for more detail, see [19, 20, 23] and references therein. This section
also contains a review of the compressed approximate CŨR decomposition of a
matrix. The CŨR result is presented in much more generality in [14] and depends
critically on related work on computing an approximation to the Singular Value
Decomposition (SVD) of a matrix and on computing an approximation to the
product of two matrices; see [12, 13, 14] for more details.

2.1 Review of Linear Algebra

For a vector x ∈ R
n we let xi, i = 1, . . . , n, denote the i-th element of x and we

let |x| = (∑n
i=1 |xi|2

)1/2. For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, de-

note the j-th column of A as a column vector and A(i), i = 1, . . . ,m, denote the
i-th row of A as a row vector. We denote matrix norms by ‖A‖ξ, using subscripts
to distinguish between various norms. Of particular interest will be the Frobe-
nius norm, the square of which is ‖A‖2

F =
∑m

i=1

∑n
j=1 A2

ij , and the spectral

norm, which is defined by ‖A‖2 = supx∈Rn, x �=0
|Ax|
|x| . These norms are related

to each other as: ‖A‖2 ≤ ‖A‖F ≤ √
n ‖A‖2. If the SVD of A is A = UΣV T

=
∑ρ

t=1 σtu
tvtT

, where ρ is the rank ofA, then for k ≤ ρ defineAk=
∑k

t=1σtu
tvtT

.

2.2 Review of Approximating a Matrix as the Product CŨR

In [14] we presented and analyzed two algorithms to compute compressed ap-
proximate decompositions of a matrix A ∈ R

m×n. The second approximation
(computed with the ConstantTimeCUR algorithm of [14]) is of the form
A′ = CŨR, where C is an m × c matrix consisting of c randomly picked (and
suitably rescaled) columns of A, R is an r × n matrix consisting of r randomly
picked (and suitably rescaled) rows of A; the algorithm constructs the w× c ma-
trix W consisting of w randomly picked (and suitably rescaled) rows of C, and
from the SVD of WTW constructs the c×r matrix Ũ . The CŨR approximation
may be defined after making three passes through the data matrix A, and Ũ
can be constructed using additional RAM space and time that is O(1). In the
following theorem we let c = w = r = s for simplicity. Note also that γ is a
parameter and k is the rank of the approximation; see [14] for a full discussion
and definition of notation.

Theorem 1. Suppose A ∈ R
m×n and let C, Ũ , and R be constructed from the

ConstantTimeCUR algorithm by sampling s columns of A (and then sampling
s rows of C) and s rows of A. Let δ, ε > 0. If a spectral norm bound is desired,
and hence the ConstantTimeCUR algorithm of [14] is run with γ = Θ(ε)
and s = Ω

(
1/ε8

)
, then under appropriate assumptions on the sampling proba-

bilities we have that with probability at least 1 − δ each of the following holds:
‖C‖F = ‖A‖F ,

∥∥∥Ũ∥∥∥
2
≤ O(1/ε)/ ‖A‖F , ‖R‖F = ‖A‖F , and

∥∥∥A− CŨR
∥∥∥

2

62 P. Drineas, R. Kannan, and M.W. Mahoney

≤ ‖A−Ak‖2 + ε ‖A‖F . Thus, if we choose k = 1/ε2 (and s = Ω
(
1/ε8

)
) then

with probability at least 1− δ∥∥∥A− CŨR
∥∥∥

2
≤ ε ‖A‖F . (2)

3 Sampling Sub-programs of a Linear Program

In this section, we examine relating the feasibility or infeasibility of a Linear
Program to the feasibility or infeasibility of a randomly sampled version of that
LP.

Theorem 2. Let P be a r × n matrix and b be a r × 1 vector. Let P (i) denote
the i-th column of P and consider the following Linear Program:

Px =
n∑

i=1

P (i)xi ≤ b 0 ≤ xi ≤ ci. (3)

Suppose q is a positive integer and Q is a random subset of {1, 2, . . . n} with
|Q| = q formed by picking elements of {1, 2, . . . n} in q i.i.d. trials, where, in
each trial, the probability of picking the i-th element is

pi = Pr [it = i] =

∣∣P (i)
∣∣2

‖P‖2
F

. (4)

Let 1r denote the r×1 all-ones vector. If the Linear Program (3) is feasible then,
with probability at least 1− δ∑

i∈Q

1
qpi

P (i)xi ≤ b+
1

δ
√
q
|x| ‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q (5)

is feasible as well. If the Linear Program (3) is infeasible then, with probability
at least 1− δ∑

i∈Q

1
qpi

P (i)xi ≤ b− 1
δ
√
q
|x| ‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q (6)

is infeasible as well.

Proof: We first claim that Px is well approximated by P̃ x̃ =
∑

i∈Q
1

qpi
P (i)xi,

i.e., that

Pr
[∥∥∥Px− P̃ x̃

∥∥∥
F
≤ 1

δ
√
q
|x| ‖P‖F

]
≥ 1− δ. (7)

To establish the claim, first note that

E
[∥∥∥Px− P̃ x̃

∥∥∥
F

]
≤

(
1
q

n∑
i=1

1
pi

∣∣∣P (i)
∣∣∣2 |xi|2

)1/2

≤ 1√
q
|x| ‖P‖F , (8)

Sampling Sub-problems of Heterogeneous Max-cut Problems 63

and then apply Markov’s inequality. (5) then follows immediately since there
exists a vector v such that with high probability P̃ x̃ = Px + v, where |v| ≤

1
δ
√

q |x| ‖P‖F . (6) follows by using LP duality. For details (and for a related
theorem), see [15].

�
Note that establishing (7) in Theorem 2 uses ideas that are very similar

to those used in [12] for approximating the product of two matrices. Once we
are given (7) then the proof of (5) is immediate; we simply show that if the
original LP has a solution then the sampled LP also has a solution since P̃ x̃ is
sufficiently close to Px. On the other hand, proving (6) is more difficult; we must
show that the non-existence of a solution of the original LP implies the same for
the randomly sampled version of the LP. Fortunately, by LP duality theory the
non-existence of a solution in the LP implies the existence of a certain solution
in a related LP.

A special case of these results occurs when ci = 1 for all i, since in that case
the Cauchy-Schwartz inequality implies

∑n
i=1

∣∣P (i)
∣∣ ≤ √

n ‖P‖F . The induced
LPs (5) and (6) in Theorem 2 may then be replaced by

∑
i∈Q

1
qpi

P (i)xi ≤ b± 1
δ

√
n

q
‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q. (9)

4 An Approximation Algorithm for Max-cut

In this section we present and analyze a new approximation algorithm for the
Max-Cut problem. Recall that the Max-Cut of a graph G with weighted adja-
cency matrix A is:

MAX-CUT [G] = MAX-CUT [A] = max
x∈{0,1}n

xTA(1n − x), (10)

where 1n is the all-ones n×1 vector and x is the characteristic vector of the cut,
i.e., it is a 0-1 vector whose i-th entry denotes whether vertex i is on the left or
right side of the cut.

4.1 The Algorithm

Consider the ApproximateMaxCut algorithm which is presented in Figure
1 and which takes as input an n × n matrix A, which is the weighted adja-
cency matrix of a weighted undirected graph G on n vertices, and computes an
approximation ZLPQ to MAX-CUT [A]. In order to compute ZLPQ, the Ap-
proximateMaxCut algorithm uses the ConstantTimeCUR algorithm of [14]
to compute a constant-sized description of three matrices, C, Ũ , and R, whose
product CŨR ≈ A. In addition, from the (not explicitly constructed) matrices
C and R two constant-sized matrices, denoted C̃ and R̃, consisting of q rows
of C and the corresponding q columns of R, each appropriately rescaled, are

64 P. Drineas, R. Kannan, and M.W. Mahoney

ApproximateMaxCut Algorithm

Input: A ∈ R
n×n, the weighted adjacency matrix of a graph G = (V, E), and ε, an

error parameter.

Output: ZLPQ, an approximation to MAX-CUT [A].

– Let s = Θ(1/ε8) be the number of columns/rows of A that are sampled for the
CŨR approximation, let q = poly(1/ε) exp(poly(1/ε)) be the dimension of the
randomly sampled Linear Program, and let Q be the set of indices of the sampled
variables.

– Compute (using the ConstantTimeCUR algorithm of [14]) and store the s × s
matrix Ũ .

– Compute and store the matrices C̃ and R̃.
– Construct all possible vector pairs (u, v) ∈ [−√

n ‖A‖F ,
√

n ‖A‖F]
2s in increments

of (ε/4s)
√

n ‖A‖F . Let Ω∆ be the set of all such pairs.
– For every pair (u, v) ∈ Ω∆ check whether the Linear Program LPQ(u, v)

u − ε
4s

√
n ‖A‖F 1s ≤ ∑

i∈Q
1

qwi
C(i)xi ≤ u + ε

4s

√
n ‖A‖F 1s

v − ε
4s

√
n ‖A‖F 1s ≤ R1n − ∑

i∈Q
1

qwi
R(i)xi ≤ v + ε

4s

√
n ‖A‖F 1s

xi ∈ [0, 1], i ∈ Q

is feasible, and select (ū, v̄) such that uT Ũv is maximized among all feasible pairs.
– Return ZLPQ = ūT Ũ v̄.

Fig. 1. The ApproximateMaxCut Algorithm

constructed. These matrices are used in the construction of the linear programs
LPQ(u, v); the algorithm then checks whether a constant number of these LPs
(each on a constant number q of variables) are feasible and returns the maxi-
mum of an easily-computed function of the feasible vectors as the approximation
ZLPQ of MAX-CUT [A].

4.2 Analysis of the Implementation and Running Time

The ApproximateMaxCut algorithm may be implemented with three passes
over the matrix and constant (with respect to n, but exponential in 1/ε) addi-
tional space and time. For details, see [15].

4.3 The Main Theorem

Theorem 3 is our main theorem; note that the 3/4 is arbitrary and can be boosted
to any number less than 1 using standard methods.

Theorem 3. Let A be the n × n weighted adjacency matrix of a graph G
= (V,E), let ε be fixed, and let ZLPQ be the approximation to the MAX-CUT [A]

Sampling Sub-problems of Heterogeneous Max-cut Problems 65

returned by the ApproximateMaxCut algorithm. Then, with probability at
least 3/4

|ZLPQ − MAX-CUT [A]| ≤ εn ‖A‖F .

The algorithm makes three passes, i.e., three sequential reads, through the ma-
trix A and then uses constant (with respect to n) additional space and constant
additional time. The algorithm chooses a random sample of A according to a
nonuniform probability distribution.

4.4 Intuition Behind the Proof of Theorem 3

In order to prove Theorem 3, we will require four levels of approximation, and
we will have to show that each level does not introduce too much error. We note
that the algorithm and its analysis use ideas similar to those used in [17, 2] for
the case of uniform sampling.

In the first level of approximation we will use the ConstantTimeCUR
algorithm of [14] and sample s = Θ(1/ε8) rows and columns of the matrix A in
order to compute a constant-sized description of C, Ũ , and R. As discussed in
[14] the description consists of the explicit matrix Ũ and labels indicating which
s columns of A and which s rows of A are used in the construction of C and
R, respectively. From Theorem 1 we see that under appropriate assumptions
on the sampling probabilities (which we will satisfy) CŨR is close to A in the
sense that

∥∥∥A− CŨR
∥∥∥

2
≤ ε ‖A‖F with high probability. A good approximation

to MAX-CUT [A] is provided by MAX-CUT
[
CŨR

]
, which is the Max-Cut

of the graph whose weighted adjacency matrix is CŨR. Thus, it suffices to
approximate well

MAX-CUT
[
CŨR

]
= max

x∈{0,1}n
xTCŨR(1n − x).

Since with high probability
∣∣CTx

∣∣ ≤ √
n ‖A‖F and |R(1n − x)| ≤ √

n ‖A‖F ,
both CTx and R(1n − x) lie in [−√

n ‖A‖F ,
√
n ‖A‖F]

s. Consider the set of
vectors (u, v) ∈ Ω, where Ω = [−√

n ‖A‖F ,
√
n ‖A‖F]

2s. Suppose we pick the
vector pair (ū, v̄) that satisfies the following two conditions:

1. (feasibility) There exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) sat-
isfies

CT x̄ = ū and R(1n − x̄) = v̄,

2. (maximization) (ū, v̄) maximizes the value uT Ũv over all such possible
pairs.

For such a (ū, v̄) the vector x̄ defines a Max-Cut of the graph with weighted
adjacency matrix CŨR and thus ūT Ũ v̄ = MAX-CUT

[
CŨR

]
.

We will then perform a second level of approximation and discretize the set of
candidate vector pairs. Let Ω∆ denote the discretized set of vector pairs, where
the discretization ∆ is defined below. Consider the set of vectors (u, v) ∈ Ω∆ and
suppose we pick the vector pair (ū, v̄) that satisfies the following two conditions:

66 P. Drineas, R. Kannan, and M.W. Mahoney

1’. (approximate feasibility) There exists a vector x̄ ∈ {0, 1}n such that the
pair (ū, v̄) satisfies

ū− ε

s

√
n ‖A‖F 1s ≤ CT x̄ ≤ ū+

ε

s

√
n ‖A‖F 1s and

v̄ − ε

s

√
n ‖A‖F 1s ≤ R(1n − x̄) ≤ v̄ +

ε

s

√
n ‖A‖F 1s,

i.e., there exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) satisfies

CT x̄ ≈ ū and R(1n − x̄) ≈ v̄,

2’. (maximization) (ū, v̄) maximizes the value uT Ũv over all such possible
pairs.

In this case, we are checking whether every vector pair (u, v) ∈ Ω∆ in the dis-
cretized set is approximately feasible in the sense that a nearby vector pair
(u, v) ∈ Ω satisfies the feasibility condition exactly. If we choose the discretiza-
tion in each dimension as ∆ = ε

4s

√
n ‖A‖F , then every vector pair (u, v) ∈ Ω

is near a vector pair (u, v) ∈ Ω∆. Thus, (subject to a small failure probabil-
ity) we will not “miss” any feasible vector pairs, i.e., for every exactly feasible
(u, v) ∈ Ω there exists some approximately feasible (u, v) ∈ Ω∆. Equally im-
portantly, with this discretization, we only have to check a large but constant
number of candidate vector pairs. Taking the maximum of uT Ũv over the feasible
vector pairs (u, v) ∈ Ω∆ will lead to an approximation of MAX-CUT

[
CŨR

]
.

At this point we have reduced the problem of approximating MAX-CUT [A]
to that of checking the feasibility of a large but constant number of IPs and
returning the maximum of an easily computed function of them.

Next, we reduce this to the problem of checking the feasibility of a large but
constant number of constant-sized LPs on a constant number q of variables and
returning the maximum of an easily computed function of them. We do this in
two steps. First, we will perform a third level of approximation and consider the
LP relaxation of the IP. Since this LP has a very special structure, i.e., even
though the LP lies in an n-dimensional space the number of the constraints is
a constant independent of n, there exists a feasible solution for the LP that
has at most a constant number of non-integral elements. We will exploit this
and will consider an LP which is a slight tightening of the LP relaxation of the
IP; we will prove that if the IP is infeasible then the LP is infeasible as well.
Then, we will perform a fourth level of approximation and construct a constant-
sized randomly-sampled LP on a constant number q of variables, such that the
infeasibility of the LP on n variables implies, with probability at least 1−δ∗, the
infeasibility of the LP on q variables.This last level of approximation involves
sampling and thus a failure probability. Since there are a constant number

(
8s
ε

)2s

of values of (u, v) ∈ Ω∆ to check, by choosing δ∗ to be a sufficiently small
constant independent of n, the probability that any one of the large but constant
number of sampling events involved in the construction of the constant-sized LPs
will fail can be bounded above by a small constant. Theorem 3 will then follow.

For details of the proof, see [15].

Sampling Sub-problems of Heterogeneous Max-cut Problems 67

References

1. N. Alon, W.F. de la Vega, R. Kannan, and M. Karpinski. Random sampling and
approximation of MAX-CSP problems. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pages 232–239, 2002.

2. N. Alon, W.F. de la Vega, R. Kannan, and M. Karpinski. Random sampling and
approximation of MAX-CSPs. Journal of Computer and System Sciences, 67:212–
243, 2003.

3. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pages 284–293, 1995.

4. Z. Bar-Yossef. The Complexity of Massive Data Set Computations. PhD thesis,
University of California, Berkeley, 2002.

5. Z. Bar-Yossef. Sampling lower bounds via information theory. In Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, pages 335–344, 2003.

6. W.F. de la Vega. MAX-CUT has a randomized approximation scheme in dense
graphs. Random Structures and Algorithms, 8(3):187–198, 1996.

7. W.F. de la Vega and M. Karpinski. A polynomial time approximation scheme
for subdense MAX-CUT. Technical Report TR02-044, Electronic Colloquium on
Computational Complexity, 2002.

8. P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large
graphs and matrices. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 291–299, 1999.

9. P. Drineas and R. Kannan. Fast Monte-Carlo algorithms for approximate matrix
multiplication. In Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 452–459, 2001.

10. P. Drineas and R. Kannan. Pass efficient algorithms for approximating large ma-
trices. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 223–232, 2003.

11. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of heteroge-
neous MAX-2-CSP problems and approximation algorithms. manuscript.

12. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algo-
rithms for matrices I: Approximating matrix multiplication. Technical Report
YALEU/DCS/TR-1269, Yale University Department of Computer Science, New
Haven, CT, February 2004.

13. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for
matrices II: Computing a low-rank approximation to a matrix. Technical Report
YALEU/DCS/TR-1270, Yale University Department of Computer Science, New
Haven, CT, February 2004.

14. P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for ma-
trices III: Computing a compressed approximate matrix decomposition. Technical
Report YALEU/DCS/TR-1271, Yale University Department of Computer Science,
New Haven, CT, February 2004.

15. P. Drineas, R. Kannan, and M.W. Mahoney. Sampling sub-problems of het-
erogeneous Max-Cut problems and approximation algorithms. Technical Report
YALEU/DCS/TR-1283, Yale University Department of Computer Science, New
Haven, CT, April 2004.

16. A. Frieze and R. Kannan. The regularity lemma and approximation schemes for
dense problems. In Proceedings of the 37th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 12–20, 1996.

68 P. Drineas, R. Kannan, and M.W. Mahoney

17. A. Frieze and R. Kannan. Quick approximation to matrices and applications.
Combinatorica, 19(2):175–220, 1999.

18. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. In Proceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Science, pages 339–348, 1996.

19. G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 1989.

20. R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, New
York, 1985.

21. J.S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, 2001.

22. M.E.J. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

23. G.W. Stewart and J.G. Sun. Matrix Perturbation Theory. Academic Press, New
York, 1990.

	Introduction
	Background
	Our Main Result
	Outline of the Paper
	Technical Report and Journal Paper

	Review of Relevant Background
	Review of Linear Algebra
	Review of Approximating a Matrix as the Product C\~{U}R

	Sampling Sub-programs of a Linear Program
	An Approximation Algorithm for Max-cut
	The Algorithm
	Analysis of the Implementation and Running Time
	The Main Theorem
	Intuition Behind the Proof of Theorem 3

	References

