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ABSTRACT: Recent work in the analysis of randomized approximation algorithms for NP-hard
optimization problems has involved approximating the solution to a problem by the solution of a
related subproblem of constant size, where the subproblem is constructed by sampling elements of
the original problem uniformly at random. In light of interest in problems with a heterogeneous
structure, for which uniform sampling might be expected to yield suboptimal results, we investigate
the use of nonuniform sampling probabilities. We develop and analyze an algorithm which uses a
novel sampling method to obtain improved bounds for approximating the Max-Cut of a graph. In
particular, we show that by judicious choice of sampling probabilities one can obtain error bounds
that are superior to the ones obtained by uniform sampling, both for unweighted and weighted versions
of Max-Cut. Of at least as much interest as the results we derive are the techniques we use. The first
technique is a method to compute a compressed approximate decomposition of a matrix as the product
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of three smaller matrices, each of which has several appealing properties. The second technique is
a method to approximate the feasibility or infeasibility of a large linear program by checking the
feasibility or infeasibility of a nonuniformly randomly chosen subprogram of the original linear
program. We expect that these and related techniques will prove fruitful for the future development of
randomized approximation algorithms for problems whose input instances contain heterogeneities.
© 2007 Wiley Periodicals, Inc. Random Struct. Alg., 32, 307–333, 2008
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1. INTRODUCTION

1.1. Background

We are interested in developing improved methods to compute approximate solutions to
certain NP-hard optimization problems that arise in applications of graph theory and that
have significant heterogeneities and nonuniformities. The methods we present here are a first
step in that direction. They make use of random sampling according to certain judiciously
chosen nonuniform probability distributions and they depend heavily on our recent work on
designing and analyzing fast Monte-Carlo algorithms for performing useful computations
on large matrices [14–16].

As an application of these methods, we design and analyze an algorithm to compute an
approximation for the Max-Cut problem. In a Max-Cut problem, also known as a maximum
weight cut problem, the input consists of the n × n adjacency matrix A of an undirected
graph G = (V , E) with n vertices, and the objective of the problem is to find a cut, i.e.,
a partition of the vertices into two subsets V1 and V2, such that the number of edges of E
that have one endpoint in V1 and one endpoint in V2 is maximized. In its weighted version,
the input consists of an n × n weighted adjacency matrix A, and the objective is to find a
cut such that the sum of the weights of the edges of E that have one endpoint in V1 and
one endpoint in V2 is maximized. The Max-Cut problem has applications in such diverse
fields as statistical physics and circuit layout design [7], and it has been extensively studied
theoretically [20, 31].

The Max-Cut problem is known to be NP-hard, both for general graphs and when
restricted to dense graphs [3], where a graph on n vertices is dense if it contains �(n2)

edges. Thus, much effort has gone into designing and analyzing approximation algo-
rithms for the Max-Cut problem. It is known that there exists a 0.878-approximation
algorithm [20]. Håstad’s classic inapproximability results [23], following the PCP results
of Arora et al., [4] proved that (unless P = NP) there exists a constant α, bounded
away from 1 such that there does not exist a polynomial time α-approximation algo-
rithm. In particular, this means that there does not exist a polynomial time approximation
scheme (PTAS) for the general Max-Cut problem. (A PTAS is an algorithm that for
every fixed ε > 0 achieves an approximation ratio of 1 − ε in time which is poly(n);
such a scheme is a fully polynomial time approximation scheme (FPTAS) if the run-
ning time is poly(n, 1/ε).) Very recently, results by Khot et al. [27] argue that approx-
imating Max-Cut with a better than 0.878-approximation algorithm is hard, unless a
conjecture (introduced by Khot in [26] and called the “Unique Games Conjecture”) is
false. Finally, we should mention that Max-Cut belongs to the class of Max-2-CSP prob-
lems, where the input consists of a set E of m distinct Boolean functions f1, f2, . . . , fm

of n Boolean variables x1, x2, . . . , xn, where each fi is a function of only 2 of the n
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variables, and where the objective of the problem is to maximize the number of func-
tions that are satisfied by an assignment to the n variables. This Max-2-CSP class of
problems is a subclass of the more general Max-CSP class of problems; see [1,25]. Numer-
ous other graph and combinatorial problems are contained in the Max-2-CSP class of
problems.

Work originating with [3] has focused on designing PTASs for a large class of
NP-hard optimization problems, such as the Max-Cut problem, when the problem instances
are dense [1, 3, 8, 17, 18, 21]. [3] and [8], using quite different methods, designed approx-
imation algorithms for Max-Cut (and other problems) that achieve an additive error of
εn2 (where ε > 0, ε ∈ �(1) is an error parameter) in a time poly(n) (and exponential
in 1/ε); this implies relative error for dense instances of these problems. In [21] it was
shown that a constant-sized (with respect to n) sample of a graph is sufficient to determine
whether a graph has a cut close to a certain value. This work investigated dense instances
of NP-hard problems from the viewpoint of query complexity and property testing and
yielded an O(1/ε5) time algorithm to approximate, among other problems, dense instances
of Max-Cut. [17] and [18] examined the regularity properties of dense graphs and devel-
oped a new method to approximate matrices with respect to the cut-norm. This led to a
PTAS for dense instances of all Max-2-CSP, and more generally for dense instances of
all Max-CSP, problems. [1] extended this and developed a PTAS for dense instances of
all Max-CSP problems in which the sample complexity was poly(1/ε) and independent

of n; when applied to the Max-Cut problem this led to an O
(

log 1/ε

ε4

)
time approximation

algorithm.
In all these cases, these approximation algorithms involve sampling elements of the input

uniformly at random in order to construct a subproblem which is then used to compute an
approximation to the original problem with additive error at most εn2 [1,3,8,17,18,21]; this
then translates into a relative error bound for dense graphs. These methods are not useful
for nondense graphs since with such an error bound a trivial approximate solution would
always suffice. This uniform sampling does have the advantage that it can be carried out
“blindly” since the “coins” can be tossed before seeing the data; then, given either random
access or one pass, i.e., one sequential read, through the data, samples from the data may be
drawn and then used to compute. Such uniform sampling is appropriate for problems that
have nice uniformity or regularity properties [17].

In many applications of graph theory problems, however, significant heterogeneities are
present [30]. For instance, the graph may have a power-law structure, or a large part of
the graph may be very sparse and a small subset of vertices (sometimes, but not always a
o(n)-sized subset) may have most of the edges (1 − o(1) of the edges) incident to them.
Similarly, in a weighted graph, the total weight of edges incident to most vertices may be
small, while among the remaining vertices the total weight of incident edges may be quite
large. Neither the adjacency matrix nor the adjacency list representation of a graph used in
property testing capture well this phenomenon [21].

With the additional flexibility of several passes over the data, we may use one pass
to assess the “importance” of a piece (or set of pieces) of data and determine the prob-
ability with which it (or they) should be sampled, and a second pass to actually draw
the sample. Such importance sampling has a long history [29]. In recent work, we have
shown that by sampling columns and/or rows of a matrix according to a judiciously-
chosen and data-dependent nonuniform probability distribution, we may obtain better
(relative to uniform sampling) bounds for approximation algorithms for a variety of common
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matrix operations [14–16]; see also [10–12]. The power of using information to construct
nonuniform sampling probabilities has also been demonstrated in recent work examining
so-called oblivious versus so-called adaptive sampling [5, 6]. For instance, it was demon-
strated that in certain cases approximation algorithms (for matrix problems such as those
discussed in [14–16]) which use oblivious uniform sampling cannot achieve the error
bounds that are achieved by adaptively constructing nonuniform sampling probabilities
[5, 6].

1.2. Summary of Main Result

In this article, we apply these methods [14–16] to develop an approximation algorithm
for both unweighted and weighted versions of the Max-Cut problem. We do so by using
nonuniform sampling probabilities in the construction of the sub-problem to be solved.
For unweighted graphs, we show that at the cost of substantial additional sampling, these
methods lead to an additive error improvement over previous results [1, 21]; for weighted
graphs, these methods lead to substantial improvements when the average edge weight
is much less than the maximum edge weight. We view our new results as a proof of
principle and expect that further work will lead to substantial additional improvement
when these methods are applied to problems with a heterogeneous and/or nonuniform
structure.

Let A be the n × n weighted adjacency matrix of a graph G = (V , E), let ε be a constant
independent of n, and recall that ‖A‖2

F = ∑
ij A2

ij. A main result of this article, which
is presented in a more precise form in Theorem 4, is that there exists an algorithm that,
upon being input A, returns an approximation Z to the Max-Cut of A such that with high
probability

|Z − MAX-CUT[A]| ≤ εn‖A‖F . (1)

The algorithm makes three passes, i.e., three sequential reads, through the matrix A and then
needs constant additional space and constant additional time (constant, that is, with respect
to n) in order to compute the approximation. The algorithm uses a judiciously-chosen and
data-dependent nonuniform probability distribution in order to obtain bounds of the form
(1); these probabilities are computed in the first two passes through the matrix.

For a complete graph ‖A‖2
F = n(n − 1) since Aij = 1 for every i �= j. For gen-

eral unweighted graphs
√

2|E| = ‖A‖F < n, where |E| the cardinality of the edge set.
Thus, in general, the additive error bound (1) becomes εn

√
2|E|, which is an improve-

ment over the previous results of εn2 [1, 21]. In addition, from this bound we obtain a
PTAS for graphs with |E| = �(n2). Unfortunately, this does not translate into a PTAS
for any class of subdense graphs. Demonstrating that such a PTAS exists would be sig-
nificant application of our methodology and is the object of current work. It has been
shown by other methods that there does exist a PTAS for Max-Cut and other Max-2-CSP
problems restricted to slightly subdense, i.e., �(n2/ log n) edges, graphs [9]. Also, more
recently, Alon and Naor [2] gave an approximation algorithm for the cut-norm, which
yields a PTAS for Max-Cut on graphs with �(nα) edges with α slightly less than 2. Since
we are primarily interested in presenting a methodology to deal with heterogeneities and
nonuniformities that arise in applications of graph theory problems, we make no effort to
optimize constants or polynomial factors. In particular, although we have a PTAS, both
the sampling complexity and the running time of the algorithm are exponential in 1/ε,
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which is substantially larger than previous results [1, 21]; we expect that this may be
improved.

Our results are of particular interest for weighted graphs. Note that for weighted prob-
lems, the εn2 error bound of previous work for unweighted graphs extends easily to εn2Wmax,
where Wmax is the maximum edge weight. For these problems, ‖A‖F/n may be thought of
as the average weight over all the edges; one may then view our error bounds as replacing
Wmax in the εn2Wmax error bound by ‖A‖F/n. If only a few of the weights are much higher
than this average value, the bound of εn‖A‖F given in (1) is much better than the bound of
εn2Wmax.

1.3. Summary of Intermediate Results

To prove Theorem 4 we use two intermediate results that are of independent interest. The first
intermediate result has been presented in much more generality previously [16] and is thus
only summarized in Section 2. It involves a new compressed approximate decomposition
of a large matrix A ∈ R

m×n as the product of three smaller matrices A′ = CŨR, where C
is an m × c matrix consisting of c randomly picked columns of A, R is an r × n matrix
consisting of r randomly picked rows of A, and Ũ is a c × r matrix computed from C
and R. The sampling probabilities are crucial features of the algorithm; if they are chosen
carefully then by sampling s = O(1/ε8) columns and rows of A we have from Theorem 1
that with high probability ‖A − CŨR‖2 ≤ ε‖A‖F . The approximation can be constructed
after making three passes through the whole matrix A and the matrix Ũ can be constructed
using additional RAM space and time that is constant.

The second intermediate result relates the feasibility or infeasibility of a given Linear
Program (LP) on n variables to the feasibility or infeasibility of an induced sub-LP involving
only the variables in Q, where Q is a (small) randomly picked subset of the n variables. In
particular, if P ∈ R

r×n and b ∈ R
r , we consider a set of constraints of the form Px ≤ b,

0 ≤ xi ≤ ci, where x ∈ R
n. In Theorem 2 and Theorem 3 we show that (i) if the n-

variable LP is feasible, then the LP induced on Q is approximately feasible in the sense
that a slight relaxation of it is feasible and (ii) if the n-variable LP is infeasible, then the
LP induced on Q is approximately infeasible in the sense that a slight tightening of it
is infeasible. A similar result using uniform sampling appeared in [1] for the case when
xi ∈ [0, 1]. The current result uses nonuniform sampling probabilities, is tighter, and applies
to general bounds on the variables; the proof of this lemma is a nontrivial extension of
the previous result of [1] and makes critical use of previous work on approximating the
product of matrices by nonuniformly sampling a small number of columns and rows of the
matrices [14].

1.4. Outline of the Paper

In Section 2, we provide a review of relevant linear algebra and of our first intermediate
result which is the approximate CŨR decomposition results from [16] that will be needed
for the proofs of our results. In Section 3, we then present our second intermediate result that
deals with approximating the feasibility of a LP by considering random sub-programs of
the LP. Then, in Section 4 we present and analyze an algorithm to approximate the Max-Cut
of a matrix; in particular, we prove Theorem 4 which establishes (1). Finally, in Section 5
we provide a brief conclusion.
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2. REVIEW OF RELEVANT BACKGROUND

This section contains a review of linear algebra that will be useful throughout the article; for
more detail, see [22, 24, 36] and references therein. This section also contains a review of
the compressed approximate CŨR decomposition of a matrix. The CŨR result is presented
in much more generality in [16] and depends critically on related work on computing an
approximation to the Singular Value Decomposition (SVD) of a matrix and on computing an
approximation to the product of two matrices; see [14–16] for more details. All of the results
of [14–16], and thus of the present paper, may be formulated within the framework of the
Pass-Efficient computational model in which the three scarce computational resources are
number of passes over the data and the additional RAM space and additional time required
by the algorithm; see [12, 14]. This model of data-streaming computation may be viewed
in terms of sublinear models of computation; see [12, 14, 28] and [15, 19].

2.1. Review of Linear Algebra

For a vector x ∈ R
n we let xi, i = 1, . . . , n, denote the i-th element of x and we let

|x| = (
∑n

i=1 |xi|2)1/2. For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, denote the j-th column

of A as a column vector and A(i), i = 1, . . . , m, denote the i-th row of A as a row vector. We
denote matrix norms by ‖A‖ξ , using subscripts to distinguish between various norms. Of
particular interest will be the Frobenius norm, the square of which is ‖A‖2

F =∑m
i=1

∑n
j=1 A2

ij,

and the spectral norm, which is defined by ‖A‖2 = supx∈Rn , x �=0
|Ax|
|x| . These norms are related

to each other as: ‖A‖2 ≤ ‖A‖F ≤ √
n‖A‖2. If the SVD of A is

A = U�V T =
ρ∑

t=1

σtu
tvtT ,

where ρ is the rank of A, ut are the left singular vectors of A, vt are the right singular vectors
of A, and σt are the singular values of A such that σ1 ≥ σ2 ≥ . . . ≥ σρ , then for k ≤ ρ the
matrix Ak =∑k

t=1 σtutvtT is the best rank-k approximation to A with respect to all unitarily
invariant norms, such as the spectral and the Frobenius norms.

2.2. Review of Approximating a Matrix as the Product CŨR

In [16] we presented and analyzed two algorithms to compute compressed approximate
decompositions of a matrix A ∈ R

m×n. We will only use the second one here, which is
computed with the ConstantTimeCUR algorithm of [16]. This decomposition is of the
form

A′ = CŨR,

where C is an m×s matrix consisting of s randomly picked (and suitably rescaled) columns
of A and R is an s × n matrix consisting of s randomly picked (and suitably rescaled) rows
of A. More specifically, define two sets of probabilities {pi}m

i=1 and {qj}n
j=1 such that

pi = |A(i)|2
‖A‖2

F

and qj = |A(j)|2
‖A‖2

F

and notice that
∑m

i=1 pi = ∑n
j=1 qj = 1. These probabilities will be used to pick columns

and rows of A—to include in C and R—with probability proportional to their Euclidean
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lengths squared. To form C (resp. R), we pick in s i.i.d. trials s columns (resp. rows)
of A, such that in the t-th trial the j-th column (resp. i-th row) of A is picked with
probability qj (resp. pi). If the jt-th column of A (resp. it-th row of A) is picked in
the t-th trial, then A(jt )/

√
sqjt (resp. A(it )/

√
spit ) is included as a column of C (resp.

row of R).
Given our construction of C and R, the construction of Ũ is somewhat more complicated,

and involves an additional level of sampling. First, let {i1, i2, . . . , is} denote the indices of
the s rows of A that were sampled above in order to construct R. We will pick the same rows
of C in order to construct a s × s matrix � such that the t-th row of � is

�(t) = C(it )√
spit

.

Second, we will define yet another set of probabilities {πi}m
i=1 such that

πi = |C(i)|2
‖C‖2

F

and notice that
∑m

i=1 πi = 1. We will use these probabilities to pick s rows of C in order to
construct an s × s matrix W . More specifically, we pick in s i.i.d. trials s rows of C, such
that in the t-th trial the i-th row of C is picked with probability πi. If the it-th row of C is
picked in the t-th trial, then C(it )/

√
sπit is included as a row of W . We then compute WT W

and its singular value decomposition,

WT W =
c∑

t=1

σ 2
t (W)ztztT .

Now, we compute the Moore-Penrose [22] pseudoinverse of a low-rank approximation to
WT W . More specifically, first we discard all singular values of WT W that are smaller than
(ε/100)‖W‖2

F and then we compute the pseudovinverse of the truncated matrix, which we
denote by 
̃. Formally, if � = max{t : σ 2

t (W) ≥ γ ‖W‖2
F},


̃ =
�∑

t=1

1

σ 2
t (W)

ztztT .

Finally, we define Ũ = 
̃�T .
Notice that we need two passes through the matrix A to construct C and R. In the first pass

we compute the probabilities {pi}m
i=1 and {qj}n

j=1, and in the second pass we pick the actual
rows and columns of A to form C and R. We will not need to store C and R in RAM, instead
all we will need for our Max-Cut algorithm is Ũ. So, it suffices to store 
̃ and � in RAM,
which we can do by computing the probabilities {πi}m

i=1 in the second pass and forming

̃ and � in a third pass through A. Thus, Ũ can be computed and stored using only O(1)

additional space and time, after making three passes over the input matrix A. To clarify the
constant space claim, we note that a naive computation of the sampling probabilities would
require O(m + n) space. However, by employing a variant of reservoir sampling we can
easily implement the sampling using only O(1) additional space. This standard technique
is analyzed thoroughly in [16].
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Our main theorem regarding this ConstantTimeCUR algorithm of [16] is the following.

Theorem 1. Suppose A ∈ R
m×n and let C, Ũ, and R be constructed as described earlier.

Let δ, ε > 0. If we set s = �(1/ε8), then with probability at least 7/8 each of the following
holds:

‖C‖F = ‖A‖F (2)

‖Ũ‖2 ≤ O(1/ε)/‖A‖F (3)

‖R‖F = ‖A‖F (4)

‖A − CŨR‖2 ≤ ‖A − Ak‖2 + ε‖A‖F . (5)

If we let ε ′ = 2ε and choose k = 1/ε2 then (5) becomes

‖A − CŨR‖2 ≤ ε ′‖A‖F . (6)

Notice that (6) follows from (5) since ‖A − Ak‖2 is exactly equal to the (k + 1)-st singular
value of A, and since σk+1(A) ≤ ‖A‖F/

√
k. Also notice that (5) implies that the CŨR

decomposition may be thought of as a low rank approximation to the matrix A. (See [16]
for a discussion of this issue and a comparison of this low rank approximation with that of
the Singular Value Decomposition.)

3. SAMPLING SUBPROGRAMS OF A LINEAR PROGRAM

In this section, we examine relating the feasibility or infeasibility of a Linear Program (LP) to
the feasibility or infeasibility of a randomly sampled version of that LP. More specifically, we
sample a small number of variables, and prove that determining the feasibility or infeasibility
of the resulting subprograms can provide information as to whether the original LP was
feasible or infeasible. The main novel aspect of our algorithms is that the sampling is done
nonuniformly. Indeed, we keep variables whose associated coefficients in the original LP
are large with higher probability. This allows us to improve on the results of [1] which
employed uniform sampling to achieve weaker results than ours. This improvement is
critical in obtaining the improved Max-Cut algorithm.

We now state and prove Theorems 2 and 3; these two theorems provide results that are
complementary, as we discuss at the end of this section. An important ingredient of our
proofs is to bound the loss in accuracy when sampling variables from the LPs by reducing
the problem to approximating matrix-vector products by sampling a few columns of the
matrix and the corresponding elements of the vectors. The latter is much easier to bound
directly, and has been thoroughly studied in [11, 14]. The proof in [1] employs only first
principles from probability theory and does not seem to easily generalize to our non-uniform
sampling.

Theorem 2. Let P be a r × n matrix and b be a r × 1 vector. Let P(i) denote the i-th
column of P and consider the following LP:

Px =
n∑

i=1

P(i)xi ≤ b 0 ≤ xi ≤ ci. (7)
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Suppose q is a positive integer and Q is a random subset of {1, 2, . . . n} with |Q| = q formed
by picking elements of {1, 2, . . . n} in q i.i.d. trials, where, in each trial, the probability of
picking the i-th element is

pi = Pr[it = i] = ci|P(i)|
N , (8)

where N =∑n
i=1 ci|P(i)|. Let �1r denote the r × 1 all-ones vector and η = 1 +√8 log(1/δ).

If the LP (7) is feasible then, with probability at least 1 − δ

∑
i∈Q

1

qpi
P(i)xi ≤ b + ηN√

q
�1r 0 ≤ xi ≤ ci, i ∈ Q (9)

is feasible as well. If the LP (7) is infeasible then, with probability at least 1 − δ

∑
i∈Q

1

qpi
P(i)xi ≤ b − ηN√

q
�1r 0 ≤ xi ≤ ci , i ∈ Q (10)

is infeasible as well.

Proof. We first show that the vector
∑

i∈Q
1

qpi
P(i)xi in (9) and (10) is with high probability

close to the vector
∑n

i=1 P(i)xi in (7); then we prove (9) and finally we prove (10).
Construct P̃ and x̃ as follows. Randomly pick in i.i.d. trials q columns of P and the

corresponding q “rows” of x (here “rows” of x are elements of x), where the probability
of picking the i-th column-row pair is pi. Let P̃ be the r × q matrix with columns equal to
the columns that were picked divided by

√
qpi, and x̃ be the q × 1 vector whose elements

are those elements of x that were picked divided by
√

qpi. Thus if {it}c
t=1 is the sequence

of elements of {1, · · · , n} chosen, then ˜P(t) = 1√qpit
P(it ) and x̃t = 1√qpit

xit . Furthermore,

P̃x̃ =∑c
t=1

1
qpit

P(it )xit =∑i∈Q
1

qpi
P(i)xi.

We first claim that Px is well approximated by P̃x̃, i.e., that

Pr

[
‖Px − P̃x̃‖F ≤ η√

q

n∑
i=1

ci|P(i)|
]

≥ 1 − δ. (11)

To establish the claim, note that

E[‖Px − P̃x̃‖F] ≤
(

1

q

n∑
i=1

1

pi
|P(i)|2|xi|2

)1/2

≤ 1√
q

n∑
i=1

ci|P(i)|. (12)

The first inequality can be derived by analyzing

E



∥∥∥∥∥

n∑
i=1

P(i)xi −
q∑

t=1

P̃(it )x̃it

∥∥∥∥∥
2

F


 = E



∥∥∥∥∥

n∑
i=1

P(i)xi −
q∑

t=1

1

qpit

P(it )xit

∥∥∥∥∥
2

F


 ,

where i1, i2, . . . , iq are the indices of the columns of P that were included in the sample Q.
Notice that

∑q
t=1

1
qpit

P(it )xit is an unbiased estimator for
∑n

i=1 P(i)xi, and the result follows
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by bounding the variance of the estimator. The second inequality follows from the form of
the probabilities of (8) and since xi ≤ ci. Next, define the event E1 to be

‖Px − P̃x̃‖F ≥ η√
q

n∑
i=1

ci|P(i)|

and the event E2 to be

‖Px − P̃x̃‖F ≥ E[‖Px − P̃x̃‖F] +√(8/q) log (1/δ)

n∑
i=1

ci|P(i)|,

and note that Pr[E1] ≤ Pr[E2] due to (12). Thus, to prove the claim it suffices to prove
that Pr[E2] ≤ δ. To that end, note that P̃ and x̃ and thus P̃x̃ are formed by randomly
selecting c elements {it}c

t=1 from {1, . . . , n}, independently and with replacement; thus,
P̃x̃ = P̃x̃(i1, . . . , ic). Consider the function

F(i1, . . . , ic) = ‖Px − P̃x̃‖F .

We will show that changing one it at a time does not change F too much; this will enable
us to apply a martingale inequality. To this end, consider changing one of the it to i′t while
keeping the other it’s the same. Then, construct the corresponding P̃′ and x̃′. Note that P̃′

differs from P̃ in only a single column, x̃′ differs from x̃ in only a single row. Thus,

‖P̃x̃ − P̃′x̃′‖F =
∥∥∥∥∥P(it )xit

qpit

− P(i′t )xi′t
qpi′t

∥∥∥∥∥
F

(13)

≤ 2

q
max

ξ

∥∥∥∥P(ξ)xξ

pξ

∥∥∥∥
F

(14)

≤ 2

q

n∑
i=1

ci

∣∣P(i)
∣∣ (15)

(15) follows from the particular form of the probabilities used and since xi ≤ ci. Define
� = 2

q

∑n
i=1 ci|P(i)|. Then, we see that

‖Px − P̃x̃‖F ≤ ‖Px − P̃′x̃′‖F + �

and that
‖Px − P̃′x̃′‖F ≤ ‖Px − P̃x̃‖F + �.

Thus F satisfies

|F(i1, . . . , ik , . . . , iq) − F
(
i1, . . . , i′k , . . . , iq

)| ≤ �.

Define γ =√2q log(1/δ)� and consider the associated Doob martingale. By the Hoeffding-
Azuma inequality,

Pr[E2] ≤ exp (−γ 2/2q�2) = δ.

This completes the proof of the claim.
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In order to prove (9), note that (11) implies that with probability at least 1−δ there exists
some vector v such that P̃x̃ = Px + v and such that |v| ≤ η√

q (
∑n

i=1 ci|P(i)|). (9) follows

since Px ≤ b by assumption and since v ≤ η√
q (
∑n

i=1 ci|P(i)|)�1r componentwise. Next, we
prove (10).

Using a variant of Farkas’ lemma (Corollary 7.1e, p. 89 of [34]), the hypothesis of the
theorem implies that there exists a non-negative r × 1 vector u such that the following LP
is infeasible

n∑
i=1

uT P(i)xi ≤ uT b 0 ≤ xi ≤ ci, i = 1, 2, . . . n

Choosing x∗ such that x∗
i = ci if (uT P)i < 0 and x∗

i = 0 if (uT P)i ≥ 0, this implies that

n∑
i=1

ci(u
T P)−

i > uT b (16)

Since |uT Px − uT P̃x̃| ≤ ‖u‖F‖Px − P̃x̃‖F and ‖u‖F = ‖u‖2 = (
∑r

i=1 u2
i )

1/2 ≤∑r
i=1 |ui| =∑r

i=1 ui we can use (11) to see that with probability at least 1 − δ

|uT Px − uT P̃x̃| ≤
(

r∑
i=1

ui

)
η√
q

n∑
i=1

ci|P(i)|.

Thus, with probability at least 1 − δ,

uT P̃x̃ ≥ uT Px −
(

r∑
i=1

ui

)
η√
q

n∑
i=1

ci|P(i)| (17)

Define event E3 to be the event that

∑
i∈Q

ci

qpi
(uT P)−

i > uT b −
(

r∑
i=1

ui

)
η√
q

n∑
i=1

ci|P(i)|

By applying (17) to the x∗ defined above and using (16) it follows that Pr[E3] ≥ 1 − δ.
Under E3, we claim that the following Linear Program is infeasible:

∑
i∈Q

1

qpi
P(i)xi ≤ b − η√

q

(
n∑

i=1

ci|P(i)|
)

�1 0 ≤ xi ≤ ci, ∀i ∈ Q (18)

This is because, if the above LP had a feasible solution x, then (since u is a non-negative
vector) x would also satisfy

∑
i∈Q

1

qpi
(uT P)ixi ≤ uT b −

(
r∑

i=1

ui

)
η√
q

n∑
i=1

ci|P(i)|

contradicting E3. The theorem then follows.

We next present Theorem 3, which is quite similar to Theorem 2, except that we construct
the sample Q according to the probability distribution (20).
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Theorem 3. Let P be a r × n matrix and b be a r × 1 vector. Let P(i) denote the i-th
column of P and consider the following Linear Program:

Px =
n∑

i=1

P(i)xi ≤ b 0 ≤ xi ≤ ci. (19)

Suppose q is a positive integer and Q is a random subset of {1, 2, . . . n} with |Q| = q formed
by picking elements of {1, 2, . . . n} in q i.i.d. trials, where, in each trial, the probability of
picking the i-th element is

pi = Pr[it = i] = |P(i)|2
‖P‖2

F

. (20)

Let �1r denote the r × 1 all-ones vector. If the LP (19) is feasible then, with probability at
least 1 − δ ∑

i∈Q

1

qpi
P(i)xi ≤ b + 1

δ
√

q
|x|‖P‖F

�1r 0 ≤ xi ≤ ci , i ∈ Q (21)

is feasible as well. If the Linear Program (19) is infeasible then, with probability at least
1 − δ ∑

i∈Q

1

qpi
P(i)xi ≤ b − 1

δ
√

q
|x|‖P‖F

�1r 0 ≤ xi ≤ ci, i ∈ Q (22)

is infeasible as well.

Proof. We follow reasoning similar to that used in the proof of Theorem 2. We first claim
that Px is well approximated by P̃x̃ =∑i∈Q

1
qpi

P(i)xi, i.e., that

Pr
[
‖Px − P̃x̃‖F ≤ 1

δ
√

q
|x|‖P‖F

]
≥ 1 − δ. (23)

To establish the claim, first note that

E[‖Px − P̃x̃‖F] ≤
(

1

q

n∑
i=1

1

pi
|P(i)|2|xi|2

)1/2

≤ 1√
q
|x|‖P‖F , (24)

and then apply Markov’s inequality. (21) then follows immediately since there exists a
vector v such that with high probability P̃x̃ = Px +v, where |v| ≤ 1

δ
√

q |x|‖P‖F . (22) follows
by using LP duality in a manner similar to the proof of Theorem 2.

Note that establishing (23) in Theorem 3 (respectively, (11) in Theorem 2) uses ideas that
are very similar to those used in [14] for approximating the product of two matrices. Once
we are given (23) (respectively, (11)) then the proof of (21) (respectively, (9)) is immediate;
we simply show that if the original LP has a solution then the sampled LP also has a solution
since P̃x̃ is sufficiently close to Px. On the other hand, proving (22) (respectively, (10)) is
more difficult; we must show that the nonexistence of a solution of the original LP implies
the same for the randomly sampled version of the LP. Fortunately, by LP duality theory
the nonexistence of a solution in the LP implies the existence of a certain solution in a
related LP.
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Fig. 1. Diagram illustrating feasible subprograms (9) and (21).

To illustrate the action of Theorems 2 and 3, consider Figs. 1 and 2. Figure 1 illustrates
that when LP, e.g., (19), is feasible each of the (Px)i is less than the corresponding bi. Let
δb = ηN√

q for Theorem 2 and let δb = 1
δ
√

q |x|‖P‖F for Theorem 3. Recall that with high

probability (P̃x̃)i is not much more than (Px)i; thus, if the right hand side of the constraint
is increased by that small amount, i.e., bi is replaced by bi + δb then we will still have that
(P̃x̃)i ≤ bi + δb. Similarly, Fig. 2 illustrates that when LP (7) is infeasible at least one of
the (Px)i is greater than the corresponding bi. Recall also that with high probability (P̃x̃)i

is not much less than (Px)i; thus, if the right hand side of the constraint is decreased by that
small amount, i.e., bi is replaced by bi − δb then we will still have that (P̃x̃)i ≥ bi − δb and
the constraint will still not be satisfied.

A special case of these results occurs when ci = 1 for all i, since in that case the Cauchy-
Schwartz inequality implies

∑n
i=1 |P(i)| ≤ √

n‖P‖F . The induced LPs (21) and (22) in
Theorem 3 may then be replaced by

∑
i∈Q

1

qpi
P(i)xi ≤ b ± 1

δ

√
n

q
‖P‖F

�1r 0 ≤ xi ≤ ci , i ∈ Q. (25)

Similarly, the induced LPs (9) and (10) in Theorem 2 may then be replaced by

∑
i∈Q

1

qpi
P(i)xi ≤ b ± η

√
n

q
‖P‖F

�1r 0 ≤ xi ≤ 1 , i ∈ Q. (26)

Note that these two theorems are complementary in the following sense. Using the
Select algorithm of [14] (a simple variant of reservoir sampling) we see that computing
the probabilities (20) of Theorem 3 requires O(1) space [14]. On the other hand, computing

Fig. 2. Diagram illustrating infeasible subprograms (10) and (22).
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the probabilities (8) of Theorem 2 requires, to the best of our knowledge, O(m + n) space.
Also, notice that using (8) we can obtain the results we want with probability at least
1 − δ with a sampling complexity of q = O(η2) = O(log 1/δ), while with (20) we require
q = O(1/δ2) samples. In our Max-Cut application, since we want a sampling complexity
and running time that are constant, independent of n, we will use the probabilities (20)
and Theorem 3. As a result, this will require q = O(1/δ2) samples, which will translate
into substantially worse sampling complexity as a function of 1/ε. It is an open problem
whether, for an LP problem, one can construct sampling probabilities in O(1) space while
needing a sampling complexity of only q = O(log 1/δ).

4. AN APPROXIMATION ALGORITHM FOR MAX-CUT

In this section we present and analyze a new approximation algorithm for the Max-Cut
problem. Recall that the Max-Cut of a graph G with weighted adjacency matrix A is:

MAX-CUT[G] = MAX-CUT[A] = max
x∈{0,1}n

xT A(�1n − x), (27)

where �1n is the all-ones n × 1 vector and x is the characteristic vector of the cut, i.e., it is a
0–1 vector whose i-th entry denotes whether vertex i is on the left or right side of the cut.
In Section 4.1 we introduce and describe the ApproximateMaxCut algorithm, in Section
4.2 we provide a discussion of sampling and running time issues, and in Section 4.3 we
present Theorem 4, which establishes the correctness of the algorithm. Then, in Section 4.4
we present the intuition behind the proof of Theorem 4 and in Section 4.5 we present the
proof of Theorem 4.

4.1. The Algorithm

Consider the ApproximateMaxCut algorithm which is presented in Fig. 3 and which takes
as input an n×n matrix A, which is the weighted adjacency matrix of a weighted undirected
graph G on n vertices, and computes an approximation ZLPQ to MAX-CUT[A]. To compute
ZLPQ, the ApproximateMaxCut algorithm uses the ConstantTimeCUR algorithm, as
described in [16] and Section 2, to compute a constant-sized description of three matrices,
C, Ũ, and R, whose product CŨR ≈ A. In addition, from the (not explicitly constructed)
matrices C and R two constant-sized matrices, denoted C̃ and R̃, consisting of q (see (52) for
the exact value of q) rows of C and the corresponding q columns of R, each appropriately
rescaled, are constructed. These matrices are used in the construction of the linear programs
LPQ(u, v); the algorithm then checks whether a constant number of these LPs (each on a
constant number q of variables) are feasible and returns the maximum of an easily-computed
function of the feasible vectors as the approximation ZLPQ of MAX-CUT[A]. Notice that
we are only returning an approximation to the value of the maximum cut, and not an
approximation to the actual cut; indeed, it is not clear that our techniques can return the
latter approximation in either an explicit or an implicit form.

To prove Theorem 4, which establishes the correctness of the algorithm, we will
require four levels of approximation and we will have to show that each level does
not introduce too much error. At the first level of approximation we will use the
ConstantTimeCUR algorithm of [16] and Section 2 in order to compute a constant-sized
description of C, Ũ, and R. This will enable us to reduce approximating MAX-CUT[A]
Random Structures and Algorithms DOI 10.1002/rsa
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ApproximateMaxCut Algorithm

Input: A ∈ R
n×n, the weighted adjacency matrix of a graph G = (V , E) with n vertices,

and ε, an error parameter.

Output: ZLPQ, an approximation to MAX-CUT[A].

• Let s = �(1/ε8) be the number of columns/rows of A that are sampled for the CŨR
approximation, let q = poly(1/ε) exp(poly(1/ε)) be the dimension of the randomly
sampled Linear Program, and let Q be the set of indices of the sampled variables.

• Compute, using the ConstantTimeCUR algorithm (as described in Section 2), and
store the s × s matrix Ũ.

• Compute the matrices C and R (as described in Section 2), but do not store them.
Instead, compute sampling probabilities {wi}n

i=1

wi = |C(i), R(i)|2∑n
j=1 |C(j), R(j)|2 , (28)

where |C(i), R(i)|2 =∑s
j=1(C

2
ij + R2

ji). Pick q integers from [n] in q i.i.d. trials, where in
the t-th trial, i is picked with probability wi. Let Q be the set of the q sampled integers.

• Compute and store C̃ (resp. R̃), a q × s (resp. s × q) matrix that contains the rows of
C (resp. columns of R) whose indices are in Q, rescaled by 1/qwi for i ∈ Q.

• Construct all possible vector pairs (u, v) ∈ [−√
n‖A‖F ,

√
n‖A‖F]2s in increments of

(ε/4s)
√

n‖A‖F . Let �� be the set of all such pairs.
• For every pair (u, v) ∈ �� check whether the Linear Program LPQ(u, v)

u − ε

4s

√
n‖A‖F

�1s ≤ ∑
i∈Q

1
qwi

C(i)xi ≤ u + ε

4s

√
n‖A‖F

�1s

v − ε

4s

√
n‖A‖F

�1s ≤ R�1n −∑i∈Q
1

qwi
R(i)xi ≤ v + ε

4s

√
n‖A‖F

�1s

xi ∈ [0, 1], i ∈ Q

is feasible, and select (ū, v̄) such that uT Ũv is maximized among all feasible pairs.
• Return ZLPQ = ūT Ũv̄.

Fig. 3. The ApproximateMaxCut algorithm.

to MAX-CUT[CŨR]. At the second level of approximation we will reduce approximating
MAX-CUT[CŨR] to checking the feasibility of a large but constant number of Integer
Programs (IPs) IP(u, v) and returning the maximum of an easily-computed function of
them. At the third level of approximation we will consider the LP relaxation of these IPs
and construct a large but constant number of LPs LP(u, v). Finally, at the fourth level of
approximation we will sample from each of these LPs and construct the constant-sized
randomly-sampled LPQ(u, v). By combining these results, we will see that approximat-
ing MAX-CUT[A] can be reduced via four approximation steps to testing the feasibility
of LPQ(u, v) for every (u, v) ∈ ��, where �� is a large but constant-sized set that is
defined below. Note that sampling and thus failure probabilities enter only at the first
and fourth level of approximation, i.e., they enter when approximating MAX-CUT[A]
by MAX-CUT[CŨR] since with some (small) probability CŨR may fail to provide a
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good approximation to A, and they enter when approximating LP(u, v) by LPQ(u, v) since
with some (small) probability the sampled version of the LP may fail to be close to the
original LP.

4.2. Analysis of the Implementation and Running Time

In the ApproximateMaxCut algorithm, three passes over the matrix are performed. In
the first pass, the row and column probabilities with which to sample from A in order to
construct C and R are chosen in constant additional space and time. In the second pass,
probabilities are chosen with which to sample rows of C in order to construct a matrix from
which the approximate SVD may be performed and thus from which Ũ may be computed;
this requires constant additional space and time. In addition, in the second pass probabilities
are chosen with which to sample rows of C and the corresponding columns of R in order to
construct a matrix for the sampled version of the linear program; since we use probabilities
(20) this also requires constant additional space and time. Then, in the third pass, the
relevant quantities are extracted and the computations are performed to compute the CŨR
decomposition. In addition, in the third pass, rows of C and the corresponding columns
of R are chosen and from them C̃ and R̃ and thus the sampled LP (48) are constructed;
in particular, R�1n ∈ R

s (and thus the right hand side of the LP written as (45)) can be
computed in constant additional space and time. Note that the sampling for the sampled
LP is independent of and thus does not conflict with the sampling for CŨR. Overall, our
algorithm keeps the s × s matrix Ũ, an O(s)-lengthed description of C and R and the q × s
matrix C̃ and the s × q matrix R̃. Since s = O(1/ε8) and q = poly(1/ε) exp(poly(1/ε)) the
total additional space and time is exp(poly(1/ε)).

4.3. The Main Theorem

Theorem 4 is our main theorem; note that the 3/4 is arbitrary and can be boosted to any
number less than 1 using standard methods.

Theorem 4. Let A be the n × n weighted adjacency matrix of a graph G = (V , E),
let ε be fixed, and let ZLPQ be the approximation to the MAX-CUT[A] returned by the
ApproximateMaxCut algorithm. Then, with probability at least 3/4

|ZLPQ − MAX-CUT[A]| ≤ εn‖A‖F .

The algorithm makes three passes, i.e., three sequential reads, through the matrix A and
then uses constant (with respect to n) additional space and constant additional time. The
algorithm chooses a random sample of A according to a nonuniform probability distribution.

4.4. Intuition behind the Proof of Theorem 4

To prove Theorem 4, we will require four levels of approximation, and we will have to
show that each level does not introduce too much error. We note that the algorithm and
its analysis use ideas similar to those used in [1, 18] for the case of uniform sampling.
In particular, [18] introduced the idea of using linear programming relaxations of integer
programs in a grid in order to approximate the value of the Max-Cut. [1] use the same ideas,
but tailored to the cut-norm matrix approximation scheme that they employed. Here, we
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use the same general outline, appropriately modified to fit the CŨR matrix decomposition
that we employ to approximate the adjacency matrix of weighted graphs. Thus, although
the general algorithmic framework outlining the use of linear algebraic approaches for
combinatorial problems appeared in [18], all the implementation details are significantly
different depending on the matrix decomposition that is used, and thus merit a detailed
exposition.

In the first level of approximation we will use the ConstantTimeCUR algorithm of
[16] and Section 2, and sample s = �(1/ε8) rows and columns of the matrix A in order
to compute a constant-sized description of C, Ũ, and R. The description consists of the
explicit matrix Ũ and labels indicating which s columns of A and which s rows of A
are used in the construction of C and R, respectively. From Theorem 1 we see that under
appropriate assumptions on the sampling probabilities (which we will satisfy) CŨR is close
to A in the sense that ‖A − CŨR‖2 ≤ ε‖A‖F with high probability. A good approximation
to MAX-CUT[A] is provided by MAX-CUT[CŨR], which is the Max-Cut of the graph
whose weighted adjacency matrix is CŨR. This is shown in Lemma 1. Thus, it suffices to
approximate well

MAX-CUT[CŨR] = max
x∈{0,1}n

xT CŨR(�1n − x).

We will see that with high probability |CT x| ≤ √
n‖A‖F and |R(�1n − x)| ≤ √

n‖A‖F .
Thus, both CT x and R(�1n−x) lie in [−√

n‖A‖F ,
√

n‖A‖F]s. Let � = [−√
n‖A‖F ,

√
n‖A‖F]2s

and consider the set of vectors (u, v) ∈ �. Suppose we pick the vector pair (ū, v̄) that satisfies
the following two conditions:

1. Feasibility: There exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) satisfies

CT x̄ = ū and R(�1n − x̄) = v̄,

2. Maximization: (ū, v̄) maximizes the value uT Ũv over all such possible pairs.

For such a (ū, v̄) the vector x̄ defines a Max-Cut of the graph with weighted adjacency
matrix CŨR and thus ūT Ũv̄ = MAX-CUT[CŨR].

We will then perform a second level of approximation and discretize the set of candidate
vector pairs. Let �� denote the discretized set of vector pairs, where the discretization � is
defined below. Consider the set of vectors (u, v) ∈ �� and suppose we pick the vector pair
(ū, v̄) that satisfies the following two conditions:

1′. Approximate feasibility: There exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄)
satisfies

ū − ε

s

√
n‖A‖F

�1s ≤ CT x̄ ≤ ū + ε

s

√
n‖A‖F

�1s and

v̄ − ε

s

√
n‖A‖F

�1s ≤ R(�1n − x̄) ≤ v̄ + ε

s

√
n‖A‖F

�1s,

i.e., there exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) satisfies

CT x̄ ≈ ū and R(�1n − x̄) ≈ v̄,

2′. Maximization: (ū, v̄) maximizes the value uT Ũv over all such possible pairs.
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In this case, we are checking whether every vector pair (u, v) ∈ �� in the discretized set
is approximately feasible in the sense that a nearby vector pair (u, v) ∈ � satisfies the
feasibility condition exactly. This test of approximate feasibility is formalized as the integer
program IP (36). If we choose the discretization in each dimension as � = ε

4s

√
n‖A‖F ,

then every vector pair (u, v) ∈ � is near a vector pair (u, v) ∈ ��. Thus, (subject to
a small failure probability) we will not “miss” any feasible vector pairs, i.e., for every
exactly feasible (u, v) ∈ � there exists some approximately feasible (u, v) ∈ ��. Equally
importantly, with this discretization, we only have to check a large but constant number
of candidate vector pairs. Taking the maximum of uT Ũv over the feasible vector pairs
(u, v) ∈ �� will lead to an approximation of MAX-CUT[CŨR]. This is formalized in
Lemma 3. At this point, we have reduced the problem of approximating MAX-CUT[A] to
that of checking the feasibility of a large but constant number of IPs (of the form (36)) and
returning the maximum of an easily computed function of them.

Next, we reduce this to the problem of checking the feasibility of a large but constant
number of constant-sized LPs on a constant number q of variables (of the form (48)) and
returning the maximum of an easily computed function of them. We do this in two steps.
First, we will perform a third level of approximation and consider the LP relaxation of the IP.
Since this LP has a very special structure, i.e., even though the LP lies in an n-dimensional
space the number of the constraints is a constant independent of n, there exists a feasible
solution for the LP that has at most a constant number of non-integral elements. We will
exploit this and will consider an LP (see LP (44)) which is a slight tightening of the LP
relaxation of the IP; in Lemma 4 we will prove that if the IP is infeasible then the LP is
infeasible as well. Then, we will perform a fourth level of approximation and construct
a constant-sized randomly-sampled LP on a constant number q of variables, such that the
infeasibility of the LP on n variables implies, with probability at least 1−δ∗, the infeasibility
of the LP on q variables; see LP (48) and Lemma 5. This last level of approximation involves
sampling and thus a failure probability. Since there are a constant number

(
8s
ε

)2s
of values

of (u, v) ∈ �� to check, by choosing δ∗ to be a sufficiently small constant independent of
n, the probability that any one of the large but constant number of sampling events involved
in the construction of the constant-sized LPs will fail can be bounded above by 1/8. From
Lemmas 6 and 7, Theorem 4 will then follow.

4.5. Proof of Theorem 4

We will prove that |ZLPQ − MAX-CUT[A]| ≤ O(ε)n‖A‖F , where ZLPQ is the output of the
ApproximateMaxCut algorithm and is also defined in (50); by suitable choice of constants
it will then follow that |ZLPQ − MAX-CUT[A]| ≤ ε ′n‖A‖F , establishing Theorem 4. The
first step of our proof is to compute the CŨR approximation to A. Lemma 1 guarantees that
MAX-CUT[CŨR] and MAX-CUT[A] are close.

Lemma 1. With probability at least 7/8

|MAX-CUT[CŨR] − MAX-CUT[A]| ≤ εn‖A‖F/2.

Proof. By submultiplicitivity we have that for all x ∈ R
n

|xT (A − CŨR)(�1n − x)| ≤ |x||�1n − x|‖A − CŨR‖2.
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In addition, for every x ∈ {0, 1}n we have that |x||�1n − x| ≤ n/2. Since CŨR is constructed
with the ConstantTimeCUR algorithm of [16] and Section 2, ‖A−CŨR‖2 ≤ ε‖A‖F holds
with probability at least 7/8. In the remainder of the proof, let us condition on this event
holding. Thus, for all x ∈ {0, 1}n,

|xT (A − CŨR)(�1n − x)| ≤ εn‖A‖F/2. (29)

Let x1 be a vector that maximizes MAX-CUT[CŨR] and let x2 be a vector that maximizes
MAX-CUT[A], i.e., x1 and x2 are such that

xT
2 A(�1n − x2) = MAX-CUT[A] (30)

xT
1 CŨR(�1n − x1) = MAX-CUT[CŨR]. (31)

Clearly then

xT
1 A(�1n − x1) ≤ MAX-CUT[A] (32)

xT
2 CUR(�1n − x2) ≤ MAX-CUT[CŨR]. (33)

Since (29) holds for every x ∈ {0, 1}n it follows from (29), (30), and (33) that

MAX-CUT[A] − MAX-CUT[CŨR] ≤ εn‖A‖F/2. (34)

Similarly, it follows from (29), (31), and (32) that

MAX-CUT[CŨR] − MAX-CUT[A] ≤ εn‖A‖F/2. (35)

The lemma follows by combining (34) and (35).

At this point, it is not obvious that computing the MAX-CUT[CŨR] is any faster or simpler
than computing the MAX-CUT[A]. However, we can exploit the special structure in CŨR.
Towards that end, let u, v be s dimensional vectors such that u, v ∈ [−√

n‖A‖F ,
√

n‖A‖F]s,
where s = O(1/ε8) is the number of rows/columns that determines the size of the matrices
in the CŨR decomposition, and define

IP(u, v) =




u − ε

s

√
n‖A‖F

�1s ≤ CT x ≤ u + ε

s

√
n‖A‖F

�1s

v − ε

s

√
n‖A‖F

�1s ≤ R(�1n − x) ≤ v + ε

s

√
n‖A‖F

�1s

x ∈ {0, 1}n.

(36)

The vectors u and v will be used to approximate possible values for CT x and R(�1n − x),
respectively. Recall that

� = [−√
n‖A‖F ,

√
n‖A‖F]2s

and that �� is the discretized set of vector pairs, where the discretization is � = ε

4s

√
n‖A‖F

in each of the 2s directions. Let

FIP = {(u, v) ∈ �� : IP(u, v) is feasible} (37)
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denote the set of all pairs (u, v) such that the IP(u, v) is feasible and let (ū, v̄) be the pair
that maximizes uT Ũv over all pairs (u, v) ∈ FIP, and let

ZIP = max
(u,v)∈FIP

uT Ũv. (38)

By the fineness of the discretization, FIP is not empty. (Note that with the error permitted
in IP (36) it would suffice to discretize � with the coarser discretization ε

s

√
n‖A‖F ; in

particular, doing so would suffice (up to failure probability which can be made small) to
check whether there existed any (u, v) ∈ � for which x was exactly feasible. We opt for the
finer discretization since, although it is wasteful in terms of constant factors at this point in
the discussion, we will need the finer discretization later and in the interests of simplicity
we prefer to work with a single grid.)

The next step of the proof is to show that ZIP is close to MAX-CUT[CŨR], where ZIP is
defined in (38). To this end, we first note the following lemma.

Lemma 2. After accounting for the failure probability of Lemma 1, both of the following
hold:

|CT x| ≤ √
n‖A‖F (39)

|R(�1n − x)| ≤ √
n‖A‖F . (40)

Proof. Note that |CT x| ≤ ‖C‖F |x|, that by Theorem 1 ‖C‖F = ‖A‖F , and also that
|x| ≤ √

n since x ∈ {0, 1}n. Similarly for |R(�1n − x)|.
The following lemma shows that ZIP is an approximation to MAX-CUT[CŨR].
Lemma 3.

|ZIP − MAX-CUT[CŨR]| ≤ O(ε)n‖A‖F .

Proof. Let x1 be such that xT
1 CŨR(�1n − x1) = MAX-CUT[CŨR]. Then, there will exist

some point (u1, v1) in FIP such that the integer program IP(u1, v1) is feasible with x = x1.
Thus,∣∣xT

1 CŨR(�1n − x1) − uT
1 ŨR(�1n − x1)

∣∣ ≤ ∣∣xT
1 C − uT

1

∣∣‖Ũ‖2‖R‖2

∣∣�1n − x1

∣∣
≤
(

ε√
s

√
n‖A‖F

)(
O(1/ε)

‖A‖F

)
‖A‖F

√
n (41)

≤ O(ε)n‖A‖F . (42)

(41) follows from Theorem 1 and since

∣∣xT
1 C − uT

1

∣∣ ≤ ε

s

√
n‖A‖F

(
s∑

i=1

1

)1/2

= ε

s

√
n‖A‖F

√
s,

and (42) follows since s = O(1/ε8). Similarly,∣∣uT
1 ŨR(�1n − x1) − uT

1 Ũv1

∣∣ ≤ ∣∣uT
1

∣∣‖Ũ‖2

∣∣R(�1n − x1) − v1

∣∣
≤ (

√
n‖A‖F)

(
O(1/ε)

‖A‖F

)(
ε√
s

√
n‖A‖F

)
≤ O(ε)n‖A‖F . (43)
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By summing (42) and (43) and noticing that

MAX-CUT[CŨR] ≥ ZIP = max
(u,v)∈FIP

uT Ũv ≥ uT
1 Ũv1

the lemma follows.

By combining Lemmas 1 and 3, we have reduced the problem of approximating
MAX-CUT[A] to the problem of finding the pair (ū, v̄) that maximizes uT Ũv over all
pairs (u, v) ∈ FIP and then returning ZIP. Thus, to prove Theorem 4, it suffices to prove that
ZLPQ, which is returned by the ApproximateMaxCut algorithm and which is defined in
(50), is with high probability an approximation to ZIP to within additive error O(ε)n‖A‖F .

To this end, let us consider a single (u, v) pair. We relax the IP (36) by removing the
integrality constraints and we also slightly tighten the other constraints by ε

2s

√
n‖A‖F . Note

that we do not need a finer discretization since the original discretization was overly fine
for the IPs (36). Define

LP(u, v) =




u − ε

2s

√
n‖A‖F

�1s ≤∑n
i=1 C(i)xi ≤ u + ε

2s

√
n‖A‖F

�1s

v − ε

2s

√
n‖A‖F

�1s ≤∑n
i=1 R(i)(1 − xi) ≤ v + ε

2s

√
n‖A‖F

�1s

xi ∈ [0, 1].

(44)

The particular tightening chosen above guarantees that if IP(u, v) is infeasible then LP(u, v)
is infeasible, as is proven in Lemma 4. Let us first write LP (44) in the form (19):

Px =




CT

−R
−CT

R


 x ≤




u + ε

2s

√
n‖A‖F

�1s

v + ε

2s

√
n‖A‖F

�1s − R�1n

−u + ε

2s

√
n‖A‖F

�1s

−v + ε

2s

√
n‖A‖F

�1s + R�1n


 = b, (45)

where P ∈ R
4s×n and b ∈ R

4s. Note that the following lemma does not involve randomization
and thus always holds.

Lemma 4. If IP(u, v) is infeasible, then LP(u, v) is infeasible.

Proof. Assume that LP(u, v) has a feasible solution. Then, since there are at most 4s
constraints in (45), there exists a feasible solution LP(u, v) with at most 4s fractional values.
By rounding these fractional values up to 1, the constraints of (45) may be violated, but
not by more than 4s maxi,j{|Cij|, |Rij|} ≤ 4s‖A‖F . Since asymptotically s2 ≤ ε

√
n/8, if

the constraints of LP (45) are relaxed by (ε/2s)
√

n‖A‖F , then the new constraints are
satisfied by the integral-valued solution. Thus, IP(u, v)has a feasible solution, and the lemma
follows.

Since each LP(u, v) of the form (44) or (45) is an LP over n variables, checking its feasibility
is easy, but unfortunately requires poly(n) time. (Recall that we will provide a constant time
algorithm for Max-Cut.) Thus, we will now use the results of Section 3 to reduce the problem
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to checking the feasibility of an induced linear program with a constant (independent of n)
number of variables. So, we perform random sampling and construct a q-variable LP which
is a subprogram of the LP(u, v). To sample from the original LP, we randomly sample q
columns of P; we do this by choosing q elements from {1, 2, . . . n} in i.i.d. trials, where the
probability of picking i is

wi = |C(i), R(i)|2∑n
j=1 |C(j), R(j)|2 , (46)

where |C(i), R(i)|2 = ∑s
j=1(C

2
ij + R2

ji). Since x is such that 0 ≤ xi ≤ 1 for every i, these
probabilities are of the form (20) for the P matrix given by (45). Let Q denote the sub-
set of {1, 2, . . . , n} that is picked. Let P̃ be the corresponding sampled (and appropriately
rescaled) matrix, and let C̃ and R̃ be the corresponding sampled and rescaled versions of
C and R (formed from the sampled q rows of C and the corresponding q columns of R).
Since ‖P‖2

F = 4‖A‖2
F , if we tighten the constraints by 2

δ∗√
q

√
n‖A‖F , where δ∗ is a failure

probability in Lemma 5 below, then the constraints from the sampled version of the LP take
the form:

u −
(

ε

2s
− 2

δ∗√q

)√
n‖A‖F

�1s ≤
∑
i∈Q

1

qwi
C(i)xi ≤ u +

(
ε

2s
− 2

δ∗√q

)√
n‖A‖F

�1s

v −
(

ε

2s
− 2

δ∗√q

)√
n‖A‖F

�1s ≤ R�1n −
∑
i∈Q

1

qwi
R(i)xi ≤ v +

(
ε

2s
− 2

δ∗√q

)√
n‖A‖F

�1s,

or equivalently,

P̃x̃ =




C̃T

−R̃
−C̃T

R̃


 x̃ ≤




u +
(

ε

2s − 2
δ∗√

q

)√
n‖A‖F

�1s

v +
(

ε

2s − 2
δ∗√

q

)√
n‖A‖F

�1s − R�1n

−u +
(

ε

2s − 2
δ∗√

q

)√
n‖A‖F

�1s

−v +
(

ε

2s − 2
δ∗√

q

)√
n‖A‖F

�1s + R�1n




. (47)

With this tightening, the infeasibility of LP (45) implies, with high probability, the infeasi-
bility of the sampled LP, as is proven in Lemma 5. Since δ∗ and q are at our disposal, let us
choose them such that 1/δ∗q = ε/4s; then we may define

LPQ(u, v) =




u − ε

4s

√
n‖A‖F

�1s ≤∑i∈Q
1

qwi
C(i)xi ≤ u + ε

4s

√
n‖A‖F

�1s

v − ε

4s

√
n‖A‖F

�1s ≤ R�1n −∑i∈Q
1

qwi
R(i)xi ≤ v + ε

4s

√
n‖A‖F

�1s

xi ∈ [0, 1], i ∈ Q

(48)

to be the sampled version of the LP (44). The following lemma is an immediate consequence
of Theorem 3 when LP (44) is written in the form (45).

Lemma 5. If LP(u, v) is infeasible, then with probability at least 1 − δ∗ LPQ(u, v) is
infeasible.
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Proof. Apply Theorem 3, noting that the sampling probabilities (46) are of the form (20).

Thus, by combining Lemmas 4 and 5 we see that, for every (u, v) pair, subject to a failure
probability which is less than δ∗, the feasibility of LP (48) implies the feasibility of IP (36).

Let us now consider again all (u, v) pairs. Let

FLPQ = {(u, v) ∈ �� : LPQ(u, v) is feasible} (49)

denote the set of all pairs (u, v) such that the LPQ(u, v) is feasible, let (ū, v̄) be the pair that
maximizes uT Ũv over all pairs (u, v) ∈ FLPQ, and let

ZLPQ = max
(u,v)∈FLPQ

uT Ũv (50)

be the value returned by the ApproximateMaxCut algorithm. Thus, to prove Theorem 4,
it suffices to prove that ZLPQ is a good approximation to ZIP; we do this in Lemmas 6 and 7.

To this end, note that |��| = (8s/ε)2s. Since s = κ/ε8 for some constant κ , let us choose

δ∗ = 1

8

(
ε9

8κ

)2κ/ε8

, (51)

and then let us choose

q = 32κ

ε9

(
8κ

ε9

)2κ/ε8

= poly(1/ε) exp(poly(1/ε)). (52)

Lemma 6. With probability at least 7/8, ZLPQ ≤ ZIP.

Proof. By combining Lemmas 4 and 5 we see that the for every (u, v) ∈ �� the feasi-
bility of LPQ(u, v) implies, with probability at least 1 − δ∗ the feasibility of IP(u, v). The
probability that there exists a (u, v) ∈ �� for which the implication fails to hold is bounded
above by

∑|��|
i=1 δ∗, which by the choice of δ in (51) is at most 1/8. Thus, with probability

at least 7/8, FLPQ ⊂ FIP; in this case, the maximization in (38) is over a larger set than the
maximization in (50), and the lemma follows.

Lemma 7. After accounting for the failure probability of Lemma 6 and Lemma 1,

ZIP − O(ε)n‖A‖F ≤ ZLPQ.

Proof. Let (ū, v̄) be a pair that achieves the maximum of uT Ũv over all (u, v) ∈ FIP; i.e.,
ūT Ũv̄ = ZIP. Although (ū, v̄) may not be in FLPQ, note that by the error permitted in IP (36)
and by the choice of the discretization �, there exists a (u, v) ∈ FLPQ that is close to (ū, v̄).
More precisely, subject to the failure probability of Lemma 6, there exists a (u, v) ∈ FLPQ

such that u = ū+α and v = v̄+β for some vectors α, β ∈ R
s, where every element of α and

β is no greater than ε

s

√
n‖A‖F . In this case, |α| ≤ ε√

s

√
n‖A‖F and |β| ≤ ε√

s

√
n‖A‖F . Recall

that ‖Ũ‖2 ≤ O(1/ε)/‖A‖F , subject to the failure probability of Lemma 1. In addition, note
that

|ū| ≤ |CT x + ε

s

√
n‖A‖F

�1s| ≤
(

1 + ε√
s

)√
n‖A‖F ,
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and similarly that

|v̄| ≤
∣∣∣R(�1s − x) + ε

s

√
n‖A‖F

�1s

∣∣∣ ≤ (1 + ε√
s

)√
n‖A‖F .

Thus, since uT Ũv = (ūT + αT )Ũ(v̄ + β), we have that

|uT Ũv − ūT Ũv̄| ≤ |ūT Ũβ| + |αT Ũv̄| + |αŨβ|
≤ O(ε)n‖A‖F .

Thus,
ZIP = ūT Ũv̄ ≤ uT Ũv + O(ε)n‖A‖F ≤ ZLPQ + O(ε)n‖A‖F ,

where the second inequality is since (u, v) ∈ FLPQ. The lemma follows.

Theorem 4 follows by combining Lemmas 6 and 7 with Lemmas 1 and 3.

5. CONCLUSION

We have been interested in developing improved methods to compute approximate solutions
to certain NP-hard optimization problems that arise in applications of graph theory and that
have significant heterogeneities and/or nonuniformities. We should note that our results
do not assume that the matrix A has positive elements; we note also that, although it is
less relevant to the Max-Cut problem, our CŨR decomposition and our LP lemmas do not
assume that the matrix A is symmetric; thus, e.g., they would apply to problems involving
directed and weighted directed graphs.

It is worth considering how our Linear Programming results relate to previous work
on perturbed LPs, e.g., [32, 33, 35]. Renegar was interested in developing a complexity
theory in which problem instance data is allowed to consist of real, and not simply rational,
data; customary measures of size were replaced with condition measures [32, 33]. If one
considers the linear program with constraints Px ≤ b, x ≥ 0, then in order to decide
whether an instance D = (P, b) is a consistent system of constraints, the condition measure
of instance D with respect to the feasibility decision problem is defined such that its inverse
is the minimal relative perturbation of the data vector D to obtain a system from D whose
answer for the decision problem is different than the answer for D. Spielman and Teng were
interested in studying the performance of algorithms under small random perturbation of
their inputs in order to, e.g., explain why certain algorithms with inconclusive or negative
theoretical results perform quite well in practice [35]. They considered LP of the form:
max zT x s.t. Px ≤ b, and they studied the performance of the algorithm under slight random
perturbations on the inputs. In particular, they replace the previous LP with one of the form:
max zT x s.t. (P + σG)x ≤ b, where G is a matrix of independently chosen Gaussian
random variables of mean 0 and variance 1 and where σ is a polynomially small variance
parameter.

Our perturbed LP results are somewhat different in that we only consider perturbations
of the left hand side of Px ≤ b of a particular form and we then construct a right hand side,
i.e., b ± δb�1r , where δb ∈ R, such that the new LP has a feasibility status that is relatable to
that of the original LP. This is different than but related to the intuition that if the LP is “very
feasible” or “very infeasible” (in the sense that all of the inequalities are easily satisfied or

Random Structures and Algorithms DOI 10.1002/rsa



SAMPLING SUBPROBLEMS OF HETEROGENEOUS MAX-CUT PROBLEMS 331

that there exists an inequality that is far from being satisfied) then a slight perturbation of
the data matrix (P, b) should not change the feasibility status of the LP.

Several directions present themselves for future work. The first and most obvious is
to improve upon the present results by improving the sampling complexity with respect
to 1/ε. A more ambitious improvement would be developing a PTAS for certain classes
of subdense graphs. Another extension would be to construct nonuniformly an induced
sub-problem, from which the solution to the original problem could be approximated;
this would be more in line with the results of [1]. A final extension involves generalizing
this work to all Max-2-CSP and more generally to all Max-r-CSP problems. Extending
our results to all problems in Max-r-CSP, r > 2, necessitates the design of an efficient
CŨR-type approximation for multi-dimensional arrays. The significant challenges involved
in the design of a multi-dimensional version of our algorithm are worth considering
since such an algorithm might be useful in applications where multi-dimensional data are
involved.
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