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ABSTRACT: Mass spectrometry imaging enables label-free,
high-resolution spatial mapping of the chemical composition of
complex, biological samples. Typical experiments require
selecting ions and/or positions from the images: ions for
fragmentation studies to identify keystone compounds and
positions for follow up validation measurements using
microdissection or other orthogonal techniques. Unfortunately,
with modern imaging machines, these must be selected from
an overwhelming amount of raw data. Existing techniques to
reduce the volume of data, the most popular of which are
principle component analysis and non-negative matrix
factorization, have the disadvantage that they return difficult-
to-interpret linear combinations of actual data elements. In this work, we show that CX and CUR matrix decompositions can be
used directly to address this selection need. CX and CUR matrix decompositions use empirical statistical leverage scores of the
input data to provide provably good low-rank approximations of the measured data that are expressed in terms of actual ions and
actual positions, as opposed to difficult-to-interpret eigenions and eigenpositions. We show that this leads to effective
prioritization of information for both ions and positions. In particular, important ions can be found either by using the leverage
scores as a ranking function and using a deterministic greedy selection algorithm or by using the leverage scores as an importance
sampling distribution and using a random sampling algorithm; however, selection of important positions from the original matrix
performed significantly better when they were chosen with the random sampling algorithm. Also, we show that 20 ions or 40
locations can be used to reconstruct the original matrix to a tolerance of 17% error for a widely studied image of brain lipids; and
we provide a scalable implementation of this method that is applicable for analysis of the raw data where there are often more
than a million rows and/or columns, which is larger than SVD-based low-rank approximation methods can handle. These results
introduce the concept of CX/CUR matrix factorizations to mass spectrometry imaging, describing their utility and illustrating
principled algorithmic approaches to deal with the overwhelming amount of data generated by modern mass spectrometry
imaging.

Recent advances in chemical imaging techniques have
enabled detailed investigation of metabolic processes at

length scales ranging from subcellular to centimeter resolution.
One of the most promising chemical imaging techniques is
mass spectrometry imaging (MSI).1,2 Typically in MSI, a laser
or ion beam is raster scanned across a surface. At each location,
molecules are desorbed from the surface, often with the
assistance of a matrix coating or specially prepared surface that
enables the formation of gas phase ions. These ions are
collected and analyzed by mass spectrometry.3

MSI presents many data analysis and interpretation
challenges due to the size and complexity of the data. MSI
acquires one or more mass spectra at each location. Each
spectrum is digitized into 104 to 106 m/z bins. Depending on
the sample and analysis technique, it is common to have tens of

thousands of intense, sharp peaks at each location. Likewise,
MSI data sets containing up to a million pixels are possible with
existing technology. This results in a situation where each file is
10s to 100s of gigabytes, and careful analysis requires
sophisticated computational tools, infrastructure, and algo-
rithms to reduce the large volume of measured data into easier
to interpret smaller blocks with the goal of prioritizing ions and
positions according to their importance. The two most widely
used techniques for this are principle component analysis
(PCA) and non-negative matrix factorization (NMF).4,5 These

Received: October 28, 2014
Accepted: March 31, 2015
Published: March 31, 2015

Article

pubs.acs.org/ac

© 2015 American Chemical Society 4658 DOI: 10.1021/ac5040264
Anal. Chem. 2015, 87, 4658−4666

pubs.acs.org/ac
http://dx.doi.org/10.1021/ac5040264


approaches express the original data in terms of concise but in
general difficult-to-interpret components.6−10

In PCA and NMF, synthetic matrices are created from the
original data such that these synthetic matrices can be
combined to give a close approximation of the original data
set. For example, by comparing the ions and locations with
relatively large coefficients, one can quickly distinguish regions
that have overall different spectra.11 This approach can
accelerate the interpretation of the large data sets generated
by MSI by providing a manageable approximation that can be
analyzed in a timely manner. Unfortunately, the synthetic
coefficients are typically difficult to interpret: for example,
eigenvectors are often not meaningful in terms of the physical
processes of metabolism, sample preparation, and data
collection; and in addition, it is not always clear whether a
single ion is the distinguishing characteristic of a region or
whether it is a complex combination of relative ion-intensities
that distinguish regions.
In contrast, CUR and the related CX matrix decompositions

are relatively new algorithmic approaches that allow scientists
to provide a low-rank approximation of the measured data that
is expressed in terms of actual data elements.12,13 CX and CUR
decompositions are provably almost as good as the low-rank
approximation provided by the SVD, but instead of the blocks
containing eigenions and eigenpositions, as they do with the
SVD, the low rank approximation provided by CX/CUR is
expressed in terms of actual rows and/or columns, i.e., actual
ions and/or actual positions.
In this paper, CX/CUR matrix decompositions are applied to

mass spectrometry imaging data sets and we show that this can
lead to effective prioritization of information, both in terms of
identifying important ions as well as in terms of identifying
important positions. Previously, this approach has been applied
to the study of gene expression and astronomy.12,14,15 Here, we
briefly introduce the concepts of CX/CUR matrix decom-
positions to the MSI literature, and we study in detail how they
can be applied to identify (in a tractable manner for moderately
large MSI data) important ions and locations in MSI data.

■ METHODS

Notation and Backgrounds. We start with some notation
and basic linear algebra. For any m × n matrix A, consisting of
m rows and n columns, we use ai and aj to denote the ith row
and jth column of A, respectively. We also use aji to denote the
jth element of the ith row of A. Suppose rank (A) = r. Let A =
UΣVT be the singular value decomposition (SVD) of A, where
U and V are orthonormal matrices consisting of the left- and
right-singular vectors and Σ = Diag (σ1,...,σr) is a diagonal
matrix containing the singular values. In particular, these satisfy
σ1 ≥ ... ≥ σr ≥ 0, and this means that the columns of U and V
are sorted by the order given by the singular values. Finally, we
use A† to denote the pseudoinverse of A.16

Leverage Scores and CX Decompositions. Given an m
× n matrix A, the CX decomposition decomposes A into two
matrices C and X, where C is an m × c matrix that consists of c
actual columns of A, and X is a c × n matrix such that A ≈ CX.
(CUR decompositions can then be constructed by choosing
rows from A to construct a matrix R by applying the CX
decomposition to AT.) That is, linear combinations of the
columns of C can recover most of the “information” of the
matrix A. A quantitative measurement of the closeness between
CX and A is obtained by using the matrix Frobenius norm of

the difference: if the residual error ∥A − CX∥F is smaller, then
CX provides a better quality approximation to A.
The construction of C follows the following two steps. First,

compute (either exactly or approximately) the statistical
leverage scores of the columns of A; and second, use those
scores to select c columns from A. Once the matrix C is
determined, the optimal matrix X that minimizes ∥A − CX∥F
can be computed by a least-squares approximation as X = C†A.
In the following, we will elaborate more on the two steps of
constructing C.
Given an m × n matrix A and a target rank parameter k ≥ 0,

for j = 1, ..., n, the jth leverage score can be defined as

∑=
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These scores {lj}i = 1
n can be interpreted as how much “leverage”

or “influence” the jth column of A exerts on the best rank-k
approximation to A.12 To be more specific, recall that, for any
matrix A, the best rank-k approximation of A is Ak = ∑i = 1

k

σiuivi
T. In other words, Ak gives the lowest possible error ∥A −

B∥F among all the rank-k matrix B. In fact, Ak can be viewed as
the projection of A onto the top-k left singular space spanned
by the columns of (u1...uk). Since multiplying each column by
the corresponding singular value does not alter the subspace,
we can view (σ1u1...σkuk) as a basis for this space. Then, for each
column of A, we have that
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That is, the jth column of A can be expressed as a linear
combination of the basis of the top-k left singular space with vji
as the coefficients. On the other hand, the scores {lj}j = 1

n equal
to the diagonal elements of the projection matrix onto the top-k
right singular subspace spanned by (v1...vk), and thus these
statistical leverage scores are a generalization of the diagonal
elements of the “hat matrix” in regression diagnostics.12 For j =
1,...,n, if we define the normalized leverage scores as

=
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and choose columns from A according to those normalized
leverage scores, then the selected columns are able to
reconstruct the matrix A nearly as well as Ak does.
To compute the normalized leverage scores exactly, i.e., using

eqs 1 and 2, one needs to compute the full SVD. This takes
(mn × min(m,n)) time, which becomes inapplicable when
dealing with data sets of even moderately large size. For
completeness and as a control, we will use this naive method on
a smaller data set, but to apply CX/CUR decompositions to
larger data we will use the faster algorithms of Drineas et al.17

These algorithms compute high-quality approximations to the
normalized leverage scores of the input matrix, and the running
time of these algorithms depends on the time to apply a
random projection to the input matrix, which is much faster
than computing the full (or even a truncated) SVD. We
summarize the two ways of computing leverage scores of a
given matrix as follows.
(a) ExactLev: Compute the normalized leverage scores

exactly by using eqs 1 and 2.
(b) ApprLev: Compute approximations to the normalized

leverage scores by using Algorithm 4 or Algorithm 5, proposed
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by Drineas et al.;17 we will refer to these as SPECTRALAPPR-
LEV and FROBENIUSAPPRLEV, respectively.
Then, with these normalized leverage scores at hand, one can

select columns from A either by viewing pj’s as an importance
sampling distribution over the columns and randomly sampling
columns according to it or by viewing pj’s as a ranking function
and greedily selecting the columns with highest scores.
(a) RANDCOLSELECT: Select c columns from A, each of

which is randomly sampled according to the normalized
leverage scores {pj}j = 1

n .
(b) DETERCOLSELECT: Select the c columns of A

corresponding to the largest c normalized leverage scores pj’s.
Finally, our main algorithm CX DECOMPOSITION is the

following. It takes as input an m × n matrix, A, a rank
parameter, k, and desired number of columns c as inputs.
(1) Compute the leverage scores by either ExactLev or

ApprLev.
(2) Select c columns from A according to RandColSelect or

DeterColSelect.
(3) Let X = C†A.
It has been shown by Drineas et al. that if RANDCOLSE-

LECT is used and the sampling size c = (k log k/ϵ2), then
with probability at least 0.99, the output of CX DECOM-
POSITION, C, X will satisfy

|| − || ≤ + ϵ || − ||A CX A A(1 )F k F (3)

where Ak is the best rank-k approximation to A.13 A freely
available implementation of CUR decomposition in the R
programming language is available and provides an excellent
reference.18

As is illustrated in Figure 1, the CX decomposition uses the
leverage score structure within SVD to find actual rows and
actual columns of an MSI matrix that are most informative. In

each computation that will be described in the next section,
after having specified which scheme is used to compute the
leverage scores, i.e., EXACTLEV or APPRLEV, we will,
respectively, use randomized CX decomposition and determin-
istic CX decomposition to denote the algorithm CX
DECOMPOSITION with RANDCOLSELECT or DETER-
COLSELECT scheme.

■ RESULTS AND DISCUSSION

Data and Approach. In the following we use two data sets
to demonstrate the utility of CX decompositions for MSI.
These two data sets are publicly available on the OpenMSI
Web gateway, and they are selected from two diverse
acquisition modalities, including one NIMS image of the left
coronal hemisphere of a mouse brain acquired using a time-of-
flight (TOF) mass analyzer and one MSI data set of a lung
acquired using an Orbitrap mass analyzer.19−22 These files are
previously described elsewhere and were chosen because of the
commonality of brain-lipid images and the large number of m/z
bins generated by Orbitrap detectors, respectively. To illustrate
the utility of CX, we focus initially on results obtained from the
NIMS image of a coronal brain section. For the analyses
described for the NIMS brain image, the data were processed
using peak-finding. The peak-finding identifies the most intense
ions and integrates the peaks, so that each peak is represented
by a single image, rather than a series of images spanning a
range of m/z values. Using this approach, the original data is
reduced from 100 000 m/z values to the most intense ions.
The size of the brain section data set is (122 × 120 × 1926).
The (i,j,l)th value of the matrix represents the intensity of the
ion with the lth m/z value at position (i,j) in a (122 × 120)
regular lattice which discretizes physical space. To compute the
CX decomposition and select ions and spectra, we reshape the

Figure 1. Mass spectrometry imaging collects one or more spectra at each location in a sample. Because of the scale and complexity of MSI data,
computational tools are required to reach an understanding of the underlying physical processes. Panels A−D: A traditional processing workflow
where raw data is cleaned and processed using traditional clustering and dimension reduction methods. Panel E: Multivariate statistics, such as PCA,
yield informative combinations of ions and pixels, but they do not lend themselves to intuitive interpretation in terms of the biological processes
generating the data. Panel F: In contrast, CX decomposition yields the most informative actual ions and actual positions instead of linear
combinations of ions and positions.
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three-dimensional MSI data cube into a two-dimensional
(14640 × 1926) matrix A, where each row of A corresponds
to the spectrum of a pixel in the image, and where each column
of A corresponds to the intensities of an ion over all pixels,
describing the distribution of the ion in physical space. For
finding informative ions and pixels, we perform CX
DECOMPOSITION with exact computations for leverage
scores, i.e., EXACTLEV, on A and AT, respectively. In each
case, for clarity, we only report the results with a fixed small
value of the rank parameter k. Varying in a range of small values
does not have a large effect on the reconstruction errors. This
behavior may indicate that the information that the
corresponding top-k singular spaces contain does not vary a
lot as k varies in this range.
Finding Important Ions. Figure 2A shows the recon-

struction errors ∥A − CX∥F/∥A∥F using CX decomposition for
selection of c = 20, 30, 40, 50, 60 ions, using a rank parameter k
= 5 and using both randomized and deterministic CX
decompositions. For completeness, we also show the
reconstruction errors using uniform sampling for varying
numbers of selected ions and that of the optimal rank-k
approximation of A. Figure 2B,C shows the distribution of the
leverage scores of A, relative to the best rank-k space, and their
relative magnitudes. Figure 3 then presents the spatial
distributions of the 20 most important ions selected using
deterministic CX decomposition with k = 5 and c = 20.
The selection of important ions from the brain data set

(Figure 2A) shows clearly that using deterministic CX
decomposition will lead to a smaller error than using
randomized CX decomposition with the same parameters.
The reason for this behavior lies in distribution of the leverage

scores for the ions, as shown in Figure 2B,C. These leverage
scores are very nonuniform: a few dozen leverage scores are
much larger, e.g., 50 times larger than the average score. Hence,
since the leverage scores are highly nonuniform, the
corresponding ions can be considered as very informative in
reconstructing the matrix, and keeping the ions with the top
leverage scores leads to a good basis. The randomized CX
decomposition carries a large variance, for the values of the
parameters used here, since in many trials it failed to select
those important ions, and thus it resulted in a large error. Not
surprisingly, uniformly selecting columns do not give
particularly meaningful results, i.e., many irrelevant ions were
chosen and informative ions were not chosen.
As for the absolute magnitude of the error, we use that of the

best rank-k approximation of A, i.e., Ak, as a reference scale
suggested by eq 3. In Figure2A,D, we can see that the
reconstruction error of the CX decomposition is close to that of
Ak. In some cases, CX decomposition can even produce a lower
error. This is because the matrix CX returned by CX
DECOMPOSITION is a rank-c matrix with c > k. It is possible
to choose X to be a rank-k matrix; see section 4.3 in Drineas et
al. for detailed construction.13

Finding Important Pixels/Spectra. Similar to Figure 2A−
C, Figure 2D−F provide an overview of the reconstruction
errors and the distribution and magnitude of the leverage
scores, relative to the best rank-k approximation, for the
application of CX decomposition to AT for selection of pixel. In
Figure 4, we illustrate the application of both randomized and
deterministic CX decompositions, with k = 15 and c = 20, on
AT for finding informative pixels. The first subplot (Figure 4A)
shows the result returned by the deterministic CX decom-

Figure 2. Analysis of the reconstruction error used to determine the most appropriate CX-based schemes and settings for selection of ions and
locations/spectra on the brain data set. Panels A and D: Reconstruction error of the CX decomposition for selection of ions (panel A) and locations
(panel D) using randomized and deterministic selection schemes with a varying parameter c. Panels B and E: Distribution of leverage scores of A and
AT, relative to the best rank-k space, respectively. Panels C and F: Sorted distribution of the leverage scores of A and AT, respectively. The blue
horizontal line denotes the mean/average leverage score. Because of the fairly nonuniform shape of the leverage score distribution for ions,
deterministic CX selection outperforms randomized CX sampling for ions. In contrast, pixel selection is best achieved by randomized CX sampling,
since the leverage score distribution for pixels is much more uniform.
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position, meaning the pixels with the top leverage scores are
greedily selected and plotted. The remaining subplots in Figure
4B−F we show the results returned by running randomized CX
decomposition in five independent trials.
In contrast with the selection of ions, deterministic CX

decomposition results in larger reconstruction errors than
randomized CX decomposition (Figure 2D). Also, the pixels
selected using CX tend to be more localized in specific regions
of the images, rather than selecting characteristic pixels from
different physical components of the sample images. The
reason for this behavior lies in the distribution of the leverage
scores for the pixels, as shown in Figure 2E,F. These leverage
scores are fairly uniform: most of them are less than 20 times
the average. Also, there are many more pixels than ions, and
thus we can consider the distribution of leverage scores to be
fairly uniform. Furthermore, since each row in A represents a
pixel in the image, many rows will contain a similar spectrum.
Similar locations tend to “split up” the leverage scores, resulting
in smaller values for the score at each location. Importantly,

applying random sampling here may still be able to identify
pixels from the important regions (i.e., those with high total
leverage scores), even when the value of any of its single pixel is
small.

Comparison with Established Factorization Methods.
As is mentioned above, non-negative matrix factorization
(NMF) has been widely applied in the MSI literature. Like
principle component analysis (PCA), NMF factors the MSI
data into two matrices whose product serves as a low rank
approximation to the original matrix. Because of the positive
values in the coefficients, the factored data from NMF has a
more meaningful appearance and is often preferred by
experimentalists. Shown in Figure 5 is a three-component
visualization of the brain data set using NMF. In each of the
three components, an image and a spectrum are shown. The
images corresponding to spatial-component coefficients guide
the identification of regions characterized by a component, and
the spectra corresponding to the ion-component coefficients

Figure 3. Ion-intensity visualization of the 20 most important ions selected via deterministic CX decomposition with k = 5 and c = 20 on brain data
set. The distribution of leverage scores is presented in Figure 2B. Some of these ions map to distinct regions in the brain. Particular regions of the
cortex, pons, and corpus collosum stand out as distinct anatomically identifiable regions. Also in the list are likely background ions and contaminants
from the embedding material. Of the 20 ions, little redundancy is present, pointing to the effectiveness of the CX approach for information
prioritization.
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show what a characteristic spectrum could look like for those
regions.
In comparison to NMF retrieving characteristic spectra that

describe a linear combination of measured spectra, CUR and
CX methods retrieve individual spectra from specific locations.
Likewise, in comparison to retrieving overall images, the CUR
and CX methods retrieve images of specific ions. Thus, CUR

and CX methods allow the reconstruction of the original data
set using a limited set of spectra from specific locations and
specific ions. On the other hand, with NMF and PCA, the
factorization produces matrices containing weighted coeffi-
cients for all ions and all locations. Consequently, it is hard with
NMF and PCA to tell the significance of specific ions or pixels
given the components. In fact, all the ions and locations are

Figure 4. Visualization of the selection of important pixels using CX decompositions on the brain data set. All visualizations show a gray scale image
of a selected ion as context, and the 20 locations selected using the CX decomposition with k = 15 and c = 20 are highlighted via red circles. Panel A
shows the result of using the deterministic CX decomposition. With this approach, the algorithm selects locations clustered around a few regions. In
comparison, panels B−F show the results from five independent trials using the randomized CX decomposition. Because of the uniformity in
leverage scores for pixels, the randomized selection outperforms the deterministic approach for comprehensive sampling of important locations. The
distribution of leverage scores is presented in Figure 2E.

Figure 5. Visualization of three components returned by using NMF on the brain data set. They are shown in the three panels, respectively, each of
which shows the image corresponding to the spatial-component coefficients and the spectrum corresponding to given ion-component coefficients.
Many of the informative ions identified by CX in Figure 3 have large-magnitude coefficients in the spectra corresponding to given ion-components.
For the NMF approach, however, the relative importance of each ion and pixel corresponding to each component is not provided.
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combined in a linear model, and it is their combination that
facilitates the recreation of the original data set. Used together,
NMF and CUR/CX methods have the potential to be
synergistic. The leverage scores computed by the CUR and
CX methods can provide a measure of how informative the
high intensity coefficients in the various NMF components are.
Scalability of the CX Algorithm. Here, we investigate the

quality of the approximation of the leverage scores using
APPLEV, by which we mean one of the two algorithms,
Algorithms 4 and 5 of Drineas et al.,17 that can be used to
approximate quickly the leverage scores of the Brain data set.
We call them SPECTRALAPPRLEV and FROBENIUSAPPR-
LEV, respectively, since the returned approximate leverage
scores are a good approximation to those of a matrix that is
close to Ak, when measured in spectral norm and Frobenius
norm, respectively.17

Our evaluation is conducted in two parts. First, we evaluate
these algorithms for approximating leverage scores on the Brain
data set where we know the ground truth, i.e., which are small
enough that we can compute the exact scores with the full SVD.
Second, we apply these algorithms on the raw lung data set on

which EXACTLEV cannot be performed, and we check if the
outputs are still meaningful in MSI applications.
For the Brain data set, we evaluate the quality of

approximation of the ion leverage scores with k = 5. For
SPECTRALAPPRLEV, there is a parameter q that indicates the
number of power iteration steps to do within the algorithm. In
general, the larger q is, the more accurate the resulting
approximation will be. In Figure 6A we present the value of β =
min1<i<n{pî/pi}, where pis and pîs are the exact and the
approximate normalized leverage scores. In Figure 6B, the
Euclidean distance between the approximate leverage scores
and the exact ones, i.e., ∥p − p ̂∥/∥p∥ where p = (p1...pn) and p ̂
= (p1̂...pn̂). In Figure 6C, we show the running time of
SPECTRALAPPRLEV and FROBENIUSAPPRLEV compared
to that of using EXACTLEV. Lastly, in Figure 6D, we present
the corresponding CX reconstruction errors by using
randomized CX decomposition. In all the figures, the mean
value among 10 independent trials is reported. In Figure 6D,
the standard deviation is also reported.
As we can clearly see, using both SPECTRALAPPRLEV or

FROBENIUSAPPRLEV can retain a fairly high accuracy in
approximating the leverage scores, while they run orders of

Figure 6. Quality of the normalized leverage scores using APPRLEV on the Brain data set. Both algorithm SPECTRALAPPRLEV and algorithm
FROBENIUSAPPRLEV are used. Above, pi and p̂i denote the exact normalized leverage scores and the approximate normalized leverage scores,
respectively; and p and p ̂i are vector in n, the n-dimensional Euclidean space, with elements pi and pî, respectively. Panel A shows the approximation
quality of the normalized leverage scores β = mini {p̂i/pi}. Panel B shows the L2 distance between exact and approximate normalized leverage scores,
i.e., ∥p ̂ − p∥/∥p∥. Panel C shows the running time, and panel D shows the reconstruction error of randomized CX decomposition.
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magnitude faster than the exact computation via the full SVD
(and also faster, but relatively less faster, than more
sophisticated computations via thin or truncated SVDs).
Since leverage scores are used to identify the most influential
or important ions/pixels, and since approximate leverage scores
still identify these ions/pixels, little quality is lost by using the
much faster approximate leverage scores.
Finally, we consider a moderately large data set on which

performing the full SVD exactly will take hours to finish. In
particular, we present the result on the raw lung data before
peak-finding, which has a size approximately 20k by 500k. We
apply SPECTRALAPPRLEV, with k = 15 and with q = 5, to
compute the approximate leverage scores of the raw lung data
set.

As no peak-finding was done on the raw data set, some ions
with high leverage scores have similar m/z values. In Figure 7A,
we present the spatial distributions of the four most
representative ions selected from different groups. In Figure
6B,C, the approximate leverage scores and the total sensitivities
versus the m/z values are plotted, respectively. In addition, a
“zoom-in” version of the above two plots, overlaid on each
other, on ions with m/z values in the range between 866.02 and
866.75 is shown in Figure 7D.
Since the exact leverage scores are unavailable, we are not

able to evaluate the accuracy of the approximation of the
leverage scores, but the convergence results from Figure 6
suggest these scores are reliable. In addition, the results suggest
that the ion at m/z = 392 (a drug administered to the tissue)

Figure 7. Quality of the normalized leverage scores using APPRLEV on the lung data set. Algorithm SPECTRALAPPRLEV with q = 5 is used. In
panel A, we select four ions that are the most representative from the 30 most important ions returned by running deterministic CX decomposition
with SPECTRALAPPRLEV. In panel B, we plot the approximate normalized leverage scores versus the m/z value. The ions with the highest leverage
scores are marked by red stars. Note, for a group of ions with similar m/z values and high leverage scores, only the one with the highest leverage
score is plotted. In panel C, the total sensitivities are plotted. The same ions marked in panel B are marked. In panel D, a zoom-in version of panel
B,C when the m/z value is ranging from 866.02 to 866.75 is shown. The black and red curves are the leverage scores and sensitivities, respectively.
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was identified as the highest leverage ion, and ions specific to
regions of the lung were also identified. That the administered
drug was identified as the highest importance ion could be
significant for pharmacokinetics/pharmacology and could also
be a marker to accelerate identification of degradation products
or byproducts that are of unexpected/unpredetermined m/z
values.
What is most significant in this approach is the lack of

reliance on peak-finding. By applying scalable factorization
approaches like CX and CUR to raw, profile spectra, a
multitude of previously ignored features can be considered. As
can be seen in Figure 7D, the zoomed in portion of the leverage
score overlaid with the total intensity spectra shows a large
number of recognizable features with high intensity. Strikingly,
only one of these features has a high leverage score. This
prioritization allows accelerated interpretation of results by
pointing a researcher toward which ions might be most
informative in a mathematically more objective manner.

■ CONCLUSION
In this work, we have introduced CX and CUR factorizations as
a new concept to mass spectrometry imaging. We have also
demonstrated that using this approach can lead to prioritization
of specific ions and locations. The algorithms described here
give a step-by-step method for these factorization methods to
be applied as an alternative strategy to the PCA, NMF, and
related clustering-based approaches that are currently widely
used. By using CX factorizations, the empirical statistical
leverage scores are used to represent the measured data in
terms of a smaller number of actual ions and actual locations.
This leads to an easier to interpret low-rank approximation of
the original data than PCA-based methods that construct
eigenions and eigenpositions. In addition, we have shown here
the specific ranking methods for identifying important ions
differs from that of selecting important pixels. By considering
the distribution of leverage scores a probability distribution, a
random-sampling algorithm can yield the best selection of
important locations. In comparison, ions can be selected
greedily by taking those with the highest leverage scores. This
difference is due to the uniformity of the leverage score for
locations, i.e., many pixels can represent similar information
content and thus no particular pixels have particularly large
leverage. In the case of ions, the leverage scores are much more
nonuniform, and thus a small number of ions gives very unique
images. Lastly, because MSI is generating ever larger and more
complex data sets, we use a scalable implementation of this
algorithm that is suitable for more large-scale data sets.
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