FLAG n’” FLARE: Fast Linearly-Coupled Adaptive Gradient
Methods

Xiang Cheng * Farbod Roosta-Khorasani '

Stefan Palombo ¥ Peter L. Bartlett

Michael W. Mahoney ¥

February 25, 2018

Abstract

We consider first order gradient methods
for effectively optimizing a composite ob-
jective in the form of a sum of smooth and,
potentially, non-smooth functions. We
present accelerated and adaptive gradient
methods, called FLAG and FLARE, which
can offer the best of both worlds. They
can achieve the optimal convergence rate
by attaining the optimal first-order ora-
cle complexity for smooth convex optimiza-
tion. Additionally, they can adaptively
and non-uniformly re-scale the gradient di-
rection to adapt to the limited curvature
available and conform to the geometry of
the domain. We show theoretically and
empirically that, through the compound-
ing effects of acceleration and adaptivity,
FLAG and FLARE can be highly effective
for many data fitting and machine learning
applications.

*Department of EECS, UC Berkeley. Email:
x.cheng@berkeley.edu

fSchool of Mathematics and Physics, University of
Queensland. Email: fred.roosta@uq.edu.au

iDepartment of EECS, UC Berkeley. Email:
s.palombo@berkeley.edu

$Department of EECS and Department of Statistics,
UC Berkeley. Email: bartlett@cs.berkeley.edu

YDepartment of Statistics, UC Berkeley. Email:
mmahoney@stat .berkeley.edu

Proceedings of the 21°" International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

1

1 Introduction

Optimization problems which exhibit particular
structure appear often in many science, engineer-
ing, data analysis and machine learning applica-
tions [7,9,42]. It is, by now, a well-known fact
that taking proper advantage of the problem struc-
ture can lead to better performance guarantees and
more effective algorithms compared to black-box,
structure-oblivious methods; see [34, Section 4.1] for
a more detailed discussion and [20, 26,30, 31, 32, 36,
37,39,40,40,44] for many practical examples.

Here, we consider the optimization problem with the
particular form

min F(x) = f(x) + h(x), (1)

where f : R* — R and h : RY — R are, respec-
tively, smooth and potentially non-smooth, closed
proper convex functions and C is a closed convex
set. Optimization problems of the form (1) are of-
ten known as composite optimization and arise in
many applications. Notable examples are those in
which h encapsulates an a priori assumption on the
sought-after parameter x, e.g., sparsity or low-rank
structure.

In problems of the form (1) with non-smooth h, sub-
gradient methods [3, 5, 9] can result in algorithms
with sub-linear convergence rate of order

Fox) - mi P9 < 0 (7).

xeC

where xj is the k-th iterate. However, if h is
“simple”, then algorithms with superior conver-
gence rates exist. In particular, the class of Itera-
tive Shrinkage-Thresholding Algorithms (ISTA) al-
gorithms, [8,12,13,37], can improve upon the slow
rate of sub-gradient methods and, indeed, recover
the convergence rate of the standard gradient de-

scent method, i.e.,
1
F(xg) — E{nelgF(x) <0 (k) .

However, ISTA, both empirically and theoretically,
has been shown to be very slow, e.g., see [8, section
6]. As aresult, there have been many efforts to accel-
erate ISTA by non-trivial modifications, all of which
are multi-step methods, i.e., the next iterate is com-
puted from several previous ones. Most notably, the
celebrated Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA) [4] exploits smoothness of f and
simple structure of h to improve the convergence rate

to
1
ﬁ)

which is known to be optimal for first order (gra-
dient) methods [29] and matches that of Nesterov’s
accelerated algorithms [33,34] for smooth problems.
Similar accelerated multi-step methods have also
been investigated for solving non-smooth problems
of the form (1), e.g., [6, 18, 35,46]. The great
theoretical properties as well as empirical perfor-
mance of such accelerated methods have prompted
many authors to try to understand the underly-
ing mechanism and the natural scope of the ac-
celeration concept, e.g., physical momentum, rela-
tions to other first-order algorithms as well as ge-
ometrical and continuous-time dynamics point of
view [1, 10,19, 25,28,43,47]. Most relevant to the
present paper is the result of [1] in which an accel-
eration scheme can was designed by an appropriate
linear coupling of the gradient and mirror descent
steps to draw upon their complementary character-
istics. The insightful idea of [1] constitutes the first
main ingredient for our proposed algorithms.

F(x) —min F(x) <O

xeC

In addition to acceleration through a multi-step
scheme and employing information from previous it-
erates, another approach to improve the empirical as
well as the theoretical properties of first order meth-
ods for (1) is by incorporating previous sub-gradients
in the form of adaptively choosing a preconditioner
for each gradient (mirror) step. This idea was first
pioneered in Adagrad [17], a sub-gradient method
designed for online learning, [21]. Through the use
of the history of the sub-gradients from previous it-
erations, Adagrad scales the current sub-gradient
to adapt to the geometry of the domain. In par-
ticular, the coordinates of the search direction are
non-uniformly scaled in order to take larger steps
along the coordinates with smaller sub-derivatives
and, correspondingly, smaller steps along those with

2

larger sub-derivatives. Loosely speaking, this makes
the optimization problem better-conditioned. For
these reasons, Adagrad has been shown to be highly-
suited to data fitting problems with, for example,
sparse data [16,38]. This work has led to many
related algorithms that have been widely used in
machine learning applications, e.g., RMSProp [45],
ESGD [14], Adam [24], and Adadelta [48]. The sec-
ond critical ingredient for our algorithmic design is
based on this successful idea of adaptivity for non-
uniform scaling of the search direction’s coordinates.

In this paper, we present methods which offer the
best of both worlds. More precisely, we draw upon
the ideas of linear coupling [1] and adaptivity [17],
introduce a fast linearly-coupled adaptive gradient
method (FLAG) along with its relaxation (FLARE),
and demonstrate their theoretical and empirical per-
formance for solving the composite problem (1). We
show that FLAG and FLARE can be equivalently
regarded as adaptive versions of FISTA or alterna-
tively, as accelerated versions of AdaGrad adopted
for problem (1). In other words, like Nesterov’s ac-
celerated algorithm and its proximal variant, FISTA,
our methods achieve the optimal convergence rate
of 1/k? and like AdaGrad our methods adaptively
choose a regularizer, in a way that performs almost
as well as the best choice of regularizer in hind-
sight. These two desirable effects contribute to the
improved theoretical properties as well as practical
performance of FLAG and FLARE.

The rest of this paper in organized as follows. No-
tation, assumptions and definitions used throughout
the paper are introduced in Section 1.1. Our main
algorithm, FLAG, and its theoretical properties are
presented in Section 2. FLAG can, at times, re-
quire more computational effort than FISTA due to
the sub-routine involving the linear coupling. As
a result, in Section 3, we present a relaxed version
of FLAG, dubbed FLARE, which by replacing this
potentially expensive step of FLAG, alleviates this
problem. Sections 4 contains extensive numerical ex-
periments demonstrating the performance of FLAG
and FLARE as compared with FISTA. Conclusions
and further thoughts are gathered in Section 5. The
details of the proofs are deferred to Appendix A.

1.1 Notation, Assumptions and Defi-
nitions

Notation: In what follows, vectors are considered
as column vectors and are denoted by bold lower case
letters, e.g., x and matrices are denoted by regular
capital letters, e.g., A. We overload the “diag” oper-

ator as follows: for a given matrix A and a vector x,
diag(A) and diag(x) denote the vector made from
the diagonal elements of A and a diagonal matrix
made from the elements of v, respectively. Vector
norms ||x||1, ||x]]2 and ||x||s denote the standard
l1, ¢y and f respectively. We adopt the Matlab
notation for accessing the elements of vectors and
matrices, i.e., i*» components of a vector x is indi-
cated by x(i) and A(3, :) denotes the entire i*" row of
the matrix A. Finally, A < [Ag_1, V] signifies that
Ay is the augmentation of the matrix Ay_; with the
column vector v. The optimal value of F' is denoted
by F* = mingec F(x). Finally, the sub-differential
of a convex function, h, at a point, x, is denoted by

Oh(x).
Assumptions: Throughout this paper, we make
the following assumptions for f and h.

A.1 fisconvex and continuously differentiable with
L-Lipschitz continuous gradient, i.e.,

IVFx) = VI(y)llz < Llix = yll2,

and
A.2 his convex (but possibly non-smooth)

vx,y €C, (2)

Definitions: The proximal operator [37] associ-
ated with f, h and L is defined as

2

L 1
prox(x) := arg min hy) + S lly - (x — fo(X)) 13-

(3)
For a symmetric positive definite (SPD) matrix S,
define 9(x) := xTSx/2 = ||x||%. The Bregman di-
vergence associated with v is defined as By (x,y) :=
b(x) = (y) = (Vo(y),x —y) = 05]x - y[|3. Ttis
easy to see that the dual of ¥ (x) is given by

P (x)

1
sup (x,v) —(v) = ixTS_lx = ||x[|3-:.
veR?
(4)
Note that 1 is 1-strongly convex with respect to the

norm ||x||s := vxTSx, i.e., Vx,y € C, we have

b(x) = P(y) + (Vi (y),x —y) + 5[x — v} Finally,
throughout our analysis, we will use the fact that,
for any z € C,

(Sx—y)x—12)

1 1 1
=3l = ¥l% + 5 lx = 2l - 5l — 2l

: 5)

2 FLAG

In this section, we present our main algorithm,
FLAG (Algorithm 1), and give its main convergence

3

properties in Theorem 1. As mentioned in Section 1,
FLAG incorporates techniques from linear coupling
of [1] and adaptivity of [17]. At a very high-level, the
core of FLAG consists of the following five essential
ingredients.

1. A gradient descent step (Step 2 of Algorithm 1),
2. Construction of the adaptive regularization
(Steps 3-7 of Algorithm 1),

3. Update of the adaptive stepsize (Step 9 of Algo-
rithm 1),

4. A mirror descent step (Step 10 of Algorithm 1),
5. Linear combination of the gradient and the mirror
descent directions (Step 11 of Algorithm 1).

Algorithm 1 FLAG
Input: x; =y; = 21, 9o = 0, Go = [empty |,
§>0,T, and € = 1/(6dT?)

1: for k=1 to T do
2. Yg+1 ¢ prox(xg)
3 Pr— —L(yrt1 — Xk)

4: gL Tk

1P ll2
5: G + [Gk_l,g}g]
6: Sk(l) — HGk(l,)HQ
7. Sk < diag(sg) + oI
8 L+ LgZSk_lgk

1 77;%_1Lk—1

1
9: —
Tk iz Li

2Ly

10: Zpy1 < argrzneiélmkpbz —z) + §||z — z;€||?3,c
11: Xpy1 ¢ BinarySearch(zp41,Yk+1,€)

12: end for
Output: yr41

The subroutine BinarySearch is given in Algo-
rithm 2, where Bisection(r,0,1,¢) is the usual bi-
section routine for finding the root of a single vari-
able function r(¢) in the interval (0,1) and to the
accuracy of €. More specifically, for a root r* such
that r(t*) = 0 and given r(0) - 7(1) < 0, the sub-
routine Bisection(r,0, 1, €) returns an approximation
t € (0,1) to t* such that |t —¢*| < € and this is done
with only log(1/¢€) function evaluations; see [2, Sec-
tion 3.2] for details and example Matlab code.

Algorithm 2 BinarySearch

Input: z, y, and €
1: Define the univariate function 7r(t)
(prox (ty + (1 —t)z) — (ty + (1 -)z) .y — 2)
if (1) > 0 then
Return y
end if
if 7(0) < 0 then
Return z
end if
t = Bisection(r,0,1,¢€)
Return x =ty + (1 — t)z

We are now ready to present our main result, The-
orem 1, which gives the convergence properties of
Algorithm 1.

Theorem 1 (Convergence of FLAG)
Let Assumptions A.1 and A.2 hold and define
Dy = sup |[|Xx — ¥|leo- For anyu €C, after T

x,y€eC
iterations of Algorithm 1, we get
BLD?
F(yT+1)_F(u)SO< TQOO ’

for some 8 € [1,d]. Furthermore, each iteration
takes time at most O(T, . -log(dT?)), where T,

prox prox

is the cost of evaluating prox in (3).

Remark 1: Recall that the convergence rate of
FISTA is given by

. LD?
F(yT+1)_F <O(T22>7

where Dy := sup ||x — yl||2 [4, Theorem 4.4]. A

x,yeC
quick comparison between FISTA’s upper bound
with that of FLAG in Theorem 1 implies that the

“competitive factor” of FLAG over FISTA is

BD%,
D?

Competitive Factor =

For (1), consider a box-constraint of the form C =
{x; [|X]loc < 1}. It is easy to see that since Do

dDs, we have Competitive Factor € [1/d,1]. In
such settings, the adaptivity introduced by FLAG
can offer a significant improvement in the conver-
gence properties. This is indeed similar to the im-

4

provement obtained by Adagrad over proximal sub-
gradient methods!.
Remark 2: From the proof of Theorem 1, we can

see that
(=% \/zf_l[gA%)Q

T b
where g; := g;/||g:||. For illustration purposes only,
let us consider d = 4, and T' = 3. Indeed, for the

following gradient histories, we can verify that S €
[1,4], e.g.,

8=

1 -1 -1
U 0 0 0
[glagQagS]_ 0 0 0 :>ﬁ_1;
0 0 0
1 0 0]
U 0 1 0
[glagQag?)] = 0 0 0 :>/8:35
o o 1]
1 1 1
2 2 2
1 1 1
~ ~ ~ 2 2 2
[81,82,83]= |1 1 _i|=pB=4
2 2 2
1 1 1
_2 2 2
3 FLARE

The “BinarySearch” in Step 11 of Algorithm 1 can
be the bottleneck of the computations. Indeed, from
Theorem 1 it can be seen that the running time of
FLAG, in the worst case, is dominated by the num-
ber of prox evaluations involved in the root finding
procedure of Algorithm 2. As a result, despite the
fact that FLAG achieves the same accelerated con-
vergence rate as FISTA, its per-iteration cost can
be much higher than what adaptivity can make up
for; see examples of Section 4. In this section, we
modify FLAG to obtain a relaxed version, FLARE,
whose per-iteration complexity is theoretically simi-
lar to FLAG, but empirically is shown to be almost
identical to that of FISTA, i.e., O(Tprox)-

The proposed relaxation in FLARE will be done
by “guessing” Lj in FLAG, i.e., Step 8 of Algo-
rithm 1, at iteration k£ and performing the update
without immediately resorting to “BinearySearch”.
We subsequently verify in the next iteration that the
guessed Ly is not too far from the truth; otherwise,
we repeat the previous iteration with a better guess.
The resulting relaxation is given in Algorithm 3.

'For the non-smooth settings considered by Adagrad,
the competitive factor is in the form of \/BDOO/ D>

Algorithm 3 FLARE

Algorithm 4 A&V: Advance and Verify

Input: x; =y = 21, 99 = 0, Gy = [empty |,
§>0,v>1,A>1,T,and € < 1/(6dT3)
while k£ < T do
accept < FALSE
140
while accept # TRUEdoi=1i+1
if i < logg then
Lk — Lk—l . ’}/2
[k Xk, Giy Sky Ly Y1, Zry1, accept] <—
A&V (Gr—1, Sk—1,Mk—1, L1, Yk 2k, Lic, M)
else
(ks Xks Gy Sks L, Vit 1, Zy1]

%

FLAGIteration(Gi—1, Sk—1,Mk—1, L—1, Yk %k, L)

10: accept < TRUE
11: end if

12: end while

13: end while

Algorithm 3 involves three main steps. Step 6 aims
at guessing a viable value for Lj, which can be
used at the present iteration. As depicted here and
used in our numerical experiments, we have consid-
ered guessing L with some multiple of the known
Ly_1. However, Step 6 can be replaced by any rea-
sonable subroutine that tries to guess the valid ra-
tio for Ly. Step 7 contains a subroutine, dubbed
“A&V” (short for Advance and Verify), which com-
putes Xg, yi+1 and zg4; using the guess ik, and
returns “accept=TRUE” if L, is a sufficiently good
guess. Finally, Step 9 involves the “Flaglteration”
subroutine, which, by reverting back to using “Bina-
rySearch”, computes xj, yr+1 and zg41. This step
is almost identical to one full iteration of FLAG in
(1), though the statements are ordered differently.
As shown in the proof of Theorem 3, the resulting
updates generated from this step are always accept-
able. In all of our numerical simulations, however,
we have never observed FLARE performing Step 9.
In fact, most often, the very first guess in Step 6
is deemed acceptable by Step 7 leading to FLARE
requiring only one “prox” evaluation per iteration

(as in FISTA).

The following result describes the main convergence
properties of FLARE.

Theorem 2 (Convergence of FLARE)
Let Assumptions A.1 and A.2 hold and define

Dy := sup ||x — ¥l|leo- For anyu € C, after T
x,y€C

5

Input: Gy_1,Sk—1,Mk—1, Lk—1, Yk, Zks Li, A

1 1 2 Ly
oL, \ 42 I
1
2: Xk(—(l— = >Yk+ —Z
Nk L, ML

3! Y41 ¢ prox(xg)

P ¢ —L(yrt1 — xx)
Pk

8k <

[Prll2

G, + [Gi-1, 8]

sk(i) < [|Gr (i,)|

Sk + diag(sg) + 01

Ly « Lgi S, ‘e

1
Zjy1 ¢ arg Igleig@?kpk, z—zp) + §||Z -z 3,

11: accept « Ly, € [Li, ALy

Algorithm 5 Flaglteration

Input: Gk—h Sk—h Nk—1, I~/k—1; Yk, Zg, Ek, €
xj < BinarySearch(zy, y, €)

Vk+1 < prox(xy)

Pk ¢ —L(yrt1 — xx)

gk

_bPE

[Pk ll2

Gr, + [Gr-1, 8]
sk(i) < [|Gr(i,)2
Sk + diag(sg) + 01
Ly« ngSglgk
ik — Lk

1 1 2 L
PRI DS/ bl
Ly,

10: = =
2L, 4Li

Mk

. 1 9
11: Zp1q < arg Izllelél<77kpk, zZ— Zg) + §||z — 715,

iterations of Algorithm 3, we get
F(yT+1) - F(u) <0

for some B € [1,d], where X is a constant
specified in the input to Algorithm 3. Further-
more, each iteration takes time at most O(T,

proz '
log(dT?)), where T, is the cost of evaluating
proz in (3).

Note that by Theorem 2, the overall worst-case iter-
ation complexity of FLARE (Algorithm 3), is simi-
lar to that of FLAG (Algorithm 1). This is mainly

due to the fact that, in worst case, Algorithm 3 can
end up resorting to “BinarySearch” when repeated
guessing fails. However, through extensive numer-
ical experiments, we have observed that we rarely
require more than one “prox” evaluation per iter-
ation. In particular, Step 6 and 7 of Algorithm 3,
most often, are only performed once, while Step 9 is
never executed.

4 Numerical Experiments

We now numerically illustrate the performance of
FLAG and FLARE in comparison to FISTA. We
first consider comparing the performance of these
algorithms with respect to the total number of it-
erations. Admittedly, “performance vs. iterations”
is an unfair measure of comparing these algorithms.
Indeed, each iteration of FLAG and FLARE can in-
volve more “prox” evaluations than FISTA, and as
noted in Section 2, in the worst case such “prox”
evaluations can dominate the running time. There-
fore, we subsequently evaluate these algorithms
as measured by total number of prox evaluations,
which is arguably more indicative of real world
performance. In this light, we demonstrate that
FLARE and FISTA perform favorably with respect
to FLAG, with FLARE consistently outperforming
the rest.

We compare FLAG, FLARE and FISTA on both re-
gression and classification tasks. For regression ex-
periments, we utilized squared loss f(x) = 1| Ax —
b||2, where A € R"*? and b € R™ are, respectively,
the data matrix and the response vector. For classi-
fication experiments, we employed a softmax classi-
fier. In such a classifier, given C' classes and a data
point a, the probability that a belongs to a class

ce{l,2,...,C} is given as

e(a,xu)

7XC) - chl'_l o(ax.))

where x. € RP is the weight vector corresponding
to class ¢. Recall that here there are only C' — 1
degrees of freedom, i.e., probabilities all must sum to
one. Consequently, for a training data {a;, b}, C
RPx{1,2,...,C}, the cross-entropy loss function for
3 Xo-1] € R(C=1DP can be written as

Pr(ca,xy,...

X = [X1;X2;. .

Note that here d = (C — 1)p. It then follows that

the gradient of f with respect to x. is

n (ai,xc)

e

Vi f(x) = E (o] —1(b; = c)) a;.
S \1+ >, elaixe)

For each regression and classification formulation
of f(x), we consider two variants for h(x) and
C: unconstrained ¢; regularization, ie., h(x) =
Mx[l1, € = R% as well as unregularized box-
constrained as h(x) =0, C = {Xx; [|xX]lcc < ¢}, where
A and c are, respectively, the regularization param-
eter for /1 norm and the infinity ball radius. Re-
call that for regression, the former variant amounts
to the celebrated Lasso [44]. In our experiments,
we choose A = 0.1 and ¢ = 1. It is well-known
that “prox” operator for ¢; regularization is read-
ily given via soft-thresholding [37], while in the case
of box constraints, it involves the projection of the
gradient step onto the infinity ball of the given ra-
dius. We tested regression and classification tasks on
multiple real data sets. Tables 1 and 2, respectively,
summarize the data sets used for these tasks.

Table 1: Data Sets for Classification Experiments.
“#Test” indicates the size of the test set. “Var.”
refers to variants used for h(x) and C, i.e., “Box” for
box-constrained and “¢1” for ¢;-regularized variants,
as mentioned in Section 4.

Name 20 HARUS| Gisette| Forest
Newsgroups Covertype
n 10,142 7,767 6,000 435,759
#Test 1,127 3,162 1,000 145,253
P 53,975 561 5,000 54
C 20 12 2 7
Var. Box Box /1 /1
Ref. [27] [15] [22] [11]

Table 2: Data Sets for Regression Experiments.
“#Test” indicates the size of the test set. “Var.”
refers to variants used for h(x) and C, i.e., “Box” for
box-constrained and “¢;” for ¢1-regularized variants,
as mentioned in Section 4.

Name | Blog Feedback | Facebook CVD
n 47,157 36,854
#Test 5,240 4,095
d 280 53
Var. Box 4
Ref. 23] [41]

We ran FLAG, FLARE, and FISTA for 1000 itera-
tions each on softmax classification for the data sets
enumerated in 1. Both variants of h(x) and C are
represented. The per iteration loss and test accuracy
are displayed in Figures 1, 2, 3, and 4.

5 Objective Function

Test Accuracy

—

% 200 400 600 800 1000 0 200 400 600 800 1000
No. of Iterations No. of Iterations

Figure 1: FLAG, FLARE, and FISTA on box-
constrained classification for the 20 Newsgroups
data set.

s Objective Function Test Accuracy

200 400 600 800 1000 0 200 400 600 800 1000
No. of Iterations No. of Iterations

Figure 2: FLAG, FLARE, and FISTA on box-
constrained classification for the HARUS data set.

Objective Function

Test Accuracy

200 400 600 800 1000 0 200 400 600 800 1000
No. of Iterations No. of Iterations

Figure 3: FLAG, FLARE, and FISTA on ¢; regu-
larized classification for the Gisette data set.

«10° Objective Function Test Accuracy

T

0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Iterations No. of Iterations

Figure 4: FLAG, FLARE, and FISTA on ¢; regu-
larized classification for the Forest Covertype data
set.

We note that on the classification tasks, FLAG and
FLARE perform as well as, or better than FISTA,
as expected from the theoretical analysis. In partic-
ular, on the 20 Newsgroups and Forest Covertype
data sets, both FLAG and FLARE significantly out-
perform FISTA.

For the regression task we also ran FLAG, FLARE,
and FISTA for 1000 iterations. The data sets used
are enumerated in Table 2. The per iteration loss
and test error are displayed in Figures 5 and 6.

107 Objective Function %10° Test Error

Figure 5: FLAG, FLARE, and FISTA on box-
constrained regression for the BlogFeedback data
set.

«10’ Objective Function %108
2.45(—FISTA

Test Error

0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Iterations No. of Iterations

Figure 6: FLAG, FLARE, and FISTA on ¢; regu-
larized classification for the Facebook CVD data set.

Similarly to classification tasks, FLAG and FLARE
perform as well as or superior to FISTA. Particularly
on the Facebook CVD data set, FLAG significantly
outperforms both FISTA and FLARE.

As previously noted, each iteration of FLAG and
FLARE can involve more prox evaluations than
FISTA, which can dominate the run time. Thus,
comparing the performance of these methods as
measured by the number of prox evaluations is more
representative of real world cost than that measured
by iterations. We thus repeat the above experiments
with the exception that this time we ran each algo-
rithm for 1000 prox evaluations and tracked the loss
and test accuracy versus the number of prox eval-
uations. The results of these trials are displayed in
Figures 7 — 12.

It can be seen that, as measured by the number of

;7 Prox evaluations, FLARE and FISTA can outper-

form FLAG due to the possibly significant number
of prox evaluations involved in FLAG’s “Binary-
Search”, i.e., Step 11 of Algorithm 1. For all ex-
amples, FLARE performs at least as well as FISTA
with FLARE outperforming all other algorithms on
certain datasets, e.g., Figures 7 and 10. Empiri-
cally, after relaxing the “BinarySearch” in FLAG,
FLARE continues to enjoy the performance advan-
tages afforded by leveraging acceleration and adap-
tivity, while maintaining the low per-iteration cost
of FISTA.

108 Objective Function %0 Test Accuracy
—FISTA
—FLAG
—FLARE
) \
~———

10° o
0 200 400 600 800 1000 0 200 400 600 800 1000

No. of Prox Evaluations No. of Prox Evaluations

Figure 7: FLAG, FLARE, and FISTA on box-
constrained classification for the 20 Newsgroups
data set.

Objective Function Test Accuracy

0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Prox Evaluations No. of Prox Evaluations

Figure 8: FLAG, FLARE, and FISTA on box-
constrained classification for the HARUS data set.

" Objective Function Test Accuracy

100

50
0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Prox Evaluations No. of Prox Evaluations

Figure 9: FLAG, FLARE, and FISTA on ¢; regu-
larized classification for the Gisette data set.

5 Conclusions

Following the advantages of employing acceleration,
e.g., Nesterov’s scheme, as well as adaptivity, e.g.,
Adagrad, here, we considered algorithms that can

.10° Obijective Function

Test Accuracy

— P——— 0
0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Prox Evaluations No. of Prox Evaluations

Figure 10: FLAG, FLARE, and FISTA on ¢; regu-
larized classification for the Forest Covertype data
S <107

3.2

Objective Function x10° Test Error

3
28
26

24

2.2

0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Prox Evaluations No. of Prox Evaluations

Figure 11: FLAG, FLARE, and FISTA on box-
constrained regression for the BlogFeedback data
S 107

25

Test Error

Objective Function x10°

0 200 400 600 800 1000 0 200 400 600 800 1000
No. of Prox Evaluations No. of Prox Evaluations

Figure 12: FLAG, FLARE, and FISTA on ¢; regu-
larized regression for the Facebook CVD data set.

offer the best of both worlds. Specifically, in the
context of composite optimization problem, we the-
oretically as well as empirically studied FLAG and
its relaxation, FLARE, which can achieve this by a
particular linear coupling of a simple gradient step
with that of a properly scaled mirror update.

We showed that FLAG and FLARE can be equiv-
alently regarded as adaptive versions of FISTA or
alternatively, as accelerated versions of AdaGrad.
In other words, like Nesterov’s accelerated algo-
rithm and its proximal variant, FISTA, our methods
achieve the optimal convergence rate of O(1/k?) and
like AdaGrad our methods adaptively choose a reg-
ularizer, in a way that performs almost as well as
the best choice of regularizer in hindsight. These
two effects contribute to the improved theoretical
properties and empirical performance of FLAG and
FLARE compared to alternatives, e.g., FISTA.

Acknowledgments

We gratefully acknowledge the support of the NSF
through grant I1S-1619362, the Australian Research
Council through an Australian Laureate Fellow-
ship (FL110100281) and through the Australian Re-
search Council Centre of Excellence for Mathemat-
ical and Statistical Frontiers (ACEMS), as well as
grants from DARPA and ARO. The Forest Cover-
type is Copyrighted 1998 by Jock A. Blackard and
Colorado State University.

References

[1]

Zeyuan Allen-Zhu and Lorenzo Orecchia. Lin-
ear coupling: An ultimate unification of gra-
dient and mirror descent. arXiv preprint
arXiw:1407.1537, 2014.

Uri M Ascher and Chen Greif. A First Course
on Numerical Methods. SIAM, 2011.

Adil Bagirov, Napsu Karmitsa, and Marko M
Maékela. Introduction to Nonsmooth Optimiza-

tion: theory, practice and software. Springer,
2014.

Amir Beck and Marc Teboulle. A fast itera-
tive shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sci-
ences, 2(1):183-202, 2009.

Dimitri P Bertsekas and Athena Scientific. Con-
vex optimization algorithms. Athena Scientific
Belmont, 2015.

José M Bioucas-Dias and Mario AT Figueiredo.
A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restora-
tion. IEEE Transactions on Image processing,
16(12):2992-3004, 2007.

Léon Bottou, Frank E Curtis, and Jorge
Nocedal. Optimization methods for large-
scale machine learning. arXiv preprint
arXiw:1606.04838, 2016.

Kristian Bredies and Dirk A Lorenz. Lin-
ear convergence of iterative soft-thresholding.

Journal of Fourier Analysis and Applications,
14(5):813-837, 2008.

Sébastien Bubeck et al. Convex optimization:
Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231-357,
2015.

[10]

[12]

[13]

[14]

[17]

Sébastien Bubeck, Yin Tat Lee, and Mohit
Singh. A geometric alternative to Nesterov’s
accelerated gradient descent. arXiv preprint
arXiww:1506.08187, 2015.

Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and
Technology, 2:27:1-27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

Patrick L Combettes and Valérie R Wayjs.
Signal recovery by proximal forward-backward
splitting. Multiscale Modeling & Simulation,
4(4):1168-1200, 2005.

Ingrid Daubechies, Michel Defrise, and Chris-
tine De Mol. An iterative thresholding algo-
rithm for linear inverse problems with a spar-

sity constraint. Communications on pure and
applied mathematics, 57(11):1413-1457, 2004.

Yann Dauphin, Harm de Vries, and Yoshua
Bengio. Equilibrated adaptive learning rates
for non-convex optimization. In Advances in
Neural Information Processing Systems, pages
1504-1512, 2015.

Luca Oneto Xavier Parra Davide Anguita,
Alessandro Ghio and Jorge L. Reyes-Ortiz.
A public domain dataset for human activity
recognition using smartphones. In 21th Euro-
pean Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learn-
ing, ESANN 2013, Bruges, Belgium, apr 2013.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Mark Mao, Andrew Se-
nior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Ad-
vances in neural information processing sys-
tems, pages 1223-1231, 2012.

John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. The Journal
of Machine Learning Research, 12:2121-2159,
2011.

Michael Elad, Boaz Matalon, and Michael
Zibulevsky. Coordinate and subspace optimiza-
tion methods for linear least squares with non-
quadratic regularization. Applied and Com-
putational Harmonic Analysis, 23(3):346-367,
2007.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[19]

[28]

[29]

[30]

Nicolas Flammarion and Francis Bach. From
averaging to acceleration, there is only a step-
size. In Conference on Learning Theory, pages
658-695, 2015.

Jerome Friedman, Trevor Hastie, and Robert
Tibshirani. The Elements of Statistical Learn-
ing, volume 1. Springer series in statistics
Springer, Berlin, 2001.

Elad Hazan. Introduction to online convex op-
timization. Foundations and Trends®) in Opti-
mization, 2(3-4):157-325, 2016.

Asa Ben-Hur Gideon Dror Isabelle Guyon,
Steve R. Gunn. Result analysis of the nips 2003
feature selection challenge. In NIPS, Bruges,
Belgium, 2004.

Buza K. Feedback prediction for blogs. In In
Data Analysis, Machine Learning and Knowl-
edge Discovery, volume 14, pages 145-152.
Springer International Publishing, 2014.

Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv
preprint arXiw:1412.6980, 2014.

Walid Krichene, Alexandre Bayen, and Peter L
Bartlett. Accelerated mirror descent in contin-
uous and discrete time. In Advances in Neural

Information Processing Systems, pages 2827—
2835, 2015.

Brian Kulis. Metric learning: a survey.
Foundations and Trends in Machine Learning,
5(4):287-364, 2012.

Ken Lang. Newsweeder: Learning to filter
netnews. In Proceedings of the 12th inter-
national conference on machine learning, vol-
ume 10, pages 331-339, 1995. Available at
http://qwone.com/~jason/20Newsgroups/.

Laurent Lessard, Benjamin Recht, and Andrew
Packard. Analysis and design of optimization
algorithms via integral quadratic constraints.
SIAM Journal on Optimization, 26(1):57-95,
2016.

A.S. Nemirovskii and D.B. IUdin. Problem
Complezity and Method Efficiency in Optimiza-
tion. A Wiley-Interscience publication. Wiley,
1983.

Y. Nesterov and A. Nemirovskii. Interior-
Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied
Mathematics, 1994.

10

[31]

[32]

[39]

[40]

[41]

Yu Nesterov. Smooth minimization of non-
smooth functions. Mathematical programming,
103(1):127-152, 2005.

Yu Nesterov. Rounding of convex sets and effi-
cient gradient methods for linear programming
problems. Optimisation Methods and Software,
23(1):109-128, 2008.

Yurii Nesterov. A method of solving a convex
programming problem with convergence rate
O(1/k?). In Soviet Mathematics Doklady, vol-
ume 27, pages 372-376, 1983.

Yurii Nesterov. Introductory lectures on convex
optimization, volume 87. Springer Science &
Business Media, 2004.

Yurii Nesterov. Gradient methods for
minimizing composite objective func-
tion, 2007. CORE report, available at

http://www.ecore.be/DPs/dp 1191313936.pdf.

Daniel P Palomar and Yonina C Eldar. Convex
optimization in signal processing and commumni-
cations. Cambridge university press, 2010.

Neal Parikh and Stephen P Boyd. Proximal al-
gorithms. Foundations and Trends in optimiza-
tion, 1(3):127-239, 2014.

Jeffrey Pennington, Richard Socher, and
Christopher D Manning. Glove: Global vectors
for word representation. In EMNLP, volume 14,
pages 1532-1543, 2014.

Farbod Roosta-Khorasani, Gabor J. Székely,
and Uri Ascher. Assessing stochastic algo-
rithms for large scale nonlinear least squares
problems using extremal probabilities of lin-
ear combinations of gamma random variables.
SIAM/ASA Journal on Uncertainty Quantifi-
cation, 3(1):61-90, 2015.

Farbod Roosta-Khorasani, Kees van den Doel,
and Uri Ascher. Stochastic algorithms for in-
verse problems involving PDEs and many mea-
surements. SIAM J. Scientific Computing,
36(5):83-522, 2014.

Kamaljot Singh, Ranjeet Kaur Sandhu, and
Dinesh Kumar. Comment volume prediction
using neural networks and decision trees. In
IEEE UKSim-AMSS 17th International Con-
ference on Computer Modelling and Simulation,
UKSim2015 (UKSim2015), Cambridge, United
Kingdom, mar 2015.

http://qwone.com/~jason/20Newsgroups/

[42]

[43]

[45]

[48]

Suvrit Sra, Sebastian Nowozin, and Stephen J
Wright. Optimization for Machine Learning.
Mit Press, 2012.

Weijie Su, Stephen Boyd, and Emmanuel Can-
des. A differential equation for modeling Nes-
terovs accelerated gradient method: Theory
and insights. In Advances in Neural Infor-
mation Processing Systems, pages 2510-2518,
2014.

Robert Tibshirani. Regression shrinkage and
selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological),
pages 267288, 1996.

Tijmen Tieleman and Geoffrey Hinton. Lecture
6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4, 2012.

Paul Tseng. On accelerated proximal gradi-
ent methods for convex-concave optimization.

SIAM Journal on Optimization, 2008.

Andre Wibisono, Ashia C Wilson, and
Michael T Jordan. A variational perspective
on accelerated methods in optimization. arXiv
preprint arXiw:1605.04245, 2016.

Matthew D Zeiler. Adadelta: an adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

11

