A Proofs

We now give the details for the proof of our main re-
sults, i.e., Theorems 1 and 2. Below, we outline the
steps for the proof of FLAG’s Theorem 1. The proof
of Theorem 2 for FLARE follows the same line of
reasoning. Also, we note that, in what follows, lem-
mas/corollaries required for the proof of Theorem 2,
are given immediately after those of FLAG.

1. FLAG is essentially a combination of mirror de-
scent and proximal gradient descent steps (Lem-
mas 1 and 4).

2. Ly in Algorithm 1 plays the role of an ”effec-
tive gradient Lipschitz constant” in each iteration.
The convergence rate of FLAG ultimately depends
on Zf:l Ly = ngzl gl S 'gr. (Lemma 8 and
Corollary 3)

3. By picking Si adaptively like in AdaGrad, we
achieve a non-trivial upper bound for Zle L.
(Lemma 5)

4. FLAG relies on picking an x; at each iteration
that satisfies an inequality involving L (Corollary
1). However, because Ly, is not known prior to pick-
ing xj, we must choose an xj, to roughly satisfy the
inequality for all possible values of L. We do this
by picking xj, using binary search. (Lemmas 2 and 3
and Corollary 1)

5. Finally, we need to pick the right stepsize for each
iteration. Our scheme is very similar to the one used
in [1], but generalized to handle a different Lj each
iteration. (Lemmas 6 and 8 as well as Corollary 3).
6. Theorem 3 combines items 1, 2 and 4, above.
Finally, to prove Theorem 1, we combine Theorem 3
with items 3 and 5 above.

A.1 Proof of Theorem 1 and Theo-
rem 2

First, we obtain the following key result (simi-
lar to [4, Lemma 2.3]) regarding the vector p
—L(prox(x) — x), as in Step 3 of FLAG, which is
known as the Gradient Mapping of F on C.

Lemma 1 (Gradient Mapping)
For any x,y € C, we have

F(proz(x)) < F(y) + (L(proa(x) - x),y — X)
L 2
— S lx — proa(x)l,

where prox(x) is defined as in (3). In particu-
lar, F(proz(x)) < F(x) — £||x — prox(x)||3.
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Proof of Lemma 1 This result is the same as
Lemma 2.3 in [4]. We bring its proof here for com-
pleteness.

For any y € C, any sub-gradient, v, of h at prox(x),
i.e., v € Oh(prox(x)), and by optimality of prox(x)
in (3), we have

0 < (Vf(x)+ v+ L(prox(x) — x),y — prox(x))
= (Vf(x) + v + L(prox(x) — x),y — x) + (Vf(x)
+ v + L(prox(x) — x), x — prox(x)),
and so
(Vf(x), prox(x) — x)
< (VF() + v + L{prox(x) - %),y - x)
+ (v, x — prox(x)) — L||x — prox(x)||3,

Now from L-Lipschitz continuity of Vf as well as
convexity of f and h, we get

F(prox(x))

— J(prox(x)) + h(prox(x))

< /() + (V/(x), prox(x) - x)
+ 5 Iprox(x) — x| + h(prox(x))

< J(X) + (VS(x) + v + L{prox(x) — x),y - X)
+ (v prox(x) - 5 x - prox(x)|3
+ h(prox(x))

< Jy) + (v + L(prox(x) - x),y - X)
+ (v,x — prox(x)) — gHX — prox(x)”%
+ h(prox(x))

= f(y) + (L(prox(x) — x),y — x)
+{v,y — prox(x)) — £ |lx — prox(x)|3
+ h(prox(x))

< F(y) + {L(prox(x) - x),y - x)

L
— 5 lx— prox(x)3.

The following lemma establishes the Lipschitz con-
tinuity of the prox operator.

Lemma 2 (Prox Operator Continuity)
prox : R* — R? is a 2-Lipschitz continuous,
that is, for any x,y € C, we have

[proz(x) — proa(y)|2 < 2|x — y|l2.




Proof of Lemma 2 By Definition (3), for any
x,y,z,z € C, v € Oh(prox(x)), and w €
Oh(prox(y)), we have

<V z — prox(x))

—(V/f(x) + L(prox(x)
<W z’ — prox(y))

—(V/f(y) + L(prox(y)

—X),z — prox(x)),

—y).z' — prox(y)).

In particular, for z = prox(y) and z’ = prox(z), we
get

(v, prOX( ) — prox(x))
—(Vf(x) + L(prox(x) —

(w ,prOX( ) — prox(x))
< (Vf(y) + L(prox(y)

x), prox(y)

—¥), prox(x) — prox(y)).

By monotonicity of sub-gradient, we get

(v, prox(y) — prox(x)) < (w,prox(y) — prox(x)).

So

(Vf(x)+ L(prox(x) — x), prox(x) —
<(Vf(y) + L(prox(y)

and as a result

prox(y))
—¥),prox(x) — prox(y)),

(Vf(x) + L(prox(x) — x), prox(x) — prox(y))

— prox(x)),

Lemma 3 (Binary Search Lemma)
Let x = BinarySearch(z,y,€) defined as in Al-
gorithm 2. Then one of 3 cases happen:

(i) x =y and (prox(x) — x,x —z) > 0,

(ii) x =z and (prox(x) —x,y —x) <0, or
(i) x =ty + (1 — t)z for some t € (0,1) and
[(proz(x) — x,y — )| < 3|ly — z|3e.

Proof of Lemma 3 Items (i) and (ii), are simply
Steps 2 and 5, respectively. For item (iii), we have

[ — wl|2
=ty + (1 -t)z =ty — (1 = t")z||2
= ||t =)y — (t —t")z[2
<elly — zll2-
Now it follows that
|(prox(x) — x,y — z)|
= [(prox(x) — x,y — z) — (prox(w) — w,y — z)|

< ||{prox(x)
< ||prox(x)

—prox(w),y —z)[2 + |(x —w,y — 2)|
— prox(w)|2[ly -zl
+x = wll2lly — 22
< 2|x — wllally — 2l

= (Vf(x) + L (prox(x) — prox(y) + prox(y) — x) + [[x = wll2[ly — 2|2

,prox(x) — prox(y)) =3|x — wll2[ly — 2|2

2

= L|[prox(x) - prox(y)|} < Selly ==z

+ (Vf(x) + L(prox(y) — x), prox(x) — prox(y)) ~ Where the third inequality follows by Lemma 2 |}
< (Vf(y) + L(prox(y) — y), prox(x) — prox(y)), . .

Using the above result, we can prove the following:
which gives
L||prox(x) — prox(y)|3 Corollary 1
<(Vf(y) = Vf(x)+ L(x —y),prox(x) — prox(y))| Letxg, yi, Zr and ¢; be defined as in Algorithm
< (IVf(y) = V)2 1 and nLy > 1. Then for all k > 1,
+L|Ix — y|l2) [lprox(x) — prox(y)|l2 DL Ly,

< 2L|jx — ya lprox(x) - prox(y)|z, i,k = k) < (L = 1)k, b =) + ==pg—
and the result follows. |

Using prox operator continuity Lemma 2, we can
conclude that given any y, z € C, if (prox(y)—y,y—
z) < 0 and (prox(z) —z,y —z) > 0, then there must
be a t* € (0,1) for which w = t*y + (1 — t*)z gives
(prox(w) — w,y — z) = 0. Algorithm 2 finds an
approximation to w in O(log L/¢) iterations.

13

Proof of Corollary 1 Note that by Step 3 of Al-
gorithm 1), pr = —L(prox(xy) — xi). For k = 1,
since x; = y1 = 21, the inequality is trivially true.
For k > 2, we consider the three cases of Lemma 3:
(i) if xx = yx, the right hand side is 1/T" > 0 and
the left hand side is (pg, xx —2zx) = (—L(prox(xx)—
Xk), X — 2g) < 0, (ii) if xx = 2z, the left hand side




is 0 and (pg,yr — xx) = (—L(prox(xx) — Xx), Yk —
xg) > 0, so the inequality holds trivially, and (iii) in
this last case, for some ¢ € (0,1), we have

(Prs Xk — Zk)

= (—L(prox(x;) — xi), tyx + (1 — t)z), — z,)

= —Lt<(pI'OX(Xk) - Xk:)a Ye — Zk>7

and
(Pr, Y& — X&)
= (—L(prox(xx) — Xx), Y& — tyr — (1 — t)zx)
= —L(1 — t)((prox(xx) — Xk), (Y& — zk))-
Hence

(kL — 1)(Pr> Y — Xk)
< (Prs Xk — Zk) — (ML — 1)(Pk, Y — Xk)|
= (=Lt + (mLr — 1)L(1 - 1))
((prox(xx) — xk), (Vi — z))|
< 3|(—Lt + (L — DL(L = 6)[[lyx — zel5ex
= 3L (1 = t) + 1[L|lyx — z&3ex
= 3(mLi + 1) Llyr — z& 3
= 61 Ly Ll|lyx — 21 |5ex
_ 6D LiLllyr — z]3 1
D 6dT3
< DL;Zng’
where in the last line we used the fact that |lyx —
wl3<Dd 1

<pkaxk - Zk> -

Similar to 1 for Algorithm 1, the following Lemma
proves an analogous result for Algorithm 3.

Corollary 2
Let Xy, Yk, zr and € be defined as in Algorithm

3 and npLy > 1. Then for all k > 1,

DLy, Ly,

Xk> + T3

(P, X1 — 1) < (ML, — 1) (Pr, i —

Proof of Corollary 2 We consider two cases:

1. If x; is generated through Algorithm 5, then
X = BinarySearch(yy,z,€) and Ly = Lg, so the
statement follows from Corollary 1.

2. If xy, is generated through Algorithm 4, then x5 =
(1= )ve+;

<pkaxk - Zk> =

AR and so satisfies

(e Ly, — 1) (Pry Y& — Xi)
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Next, we state a result regarding the mirror descent
step. Similar results can be found in most texts on
online optimization, e.g. [1].

Lemma 4 (Mirror Descent Inequality)
Let z41 = argmingec(NiPr,z — Zk) + %Hz —
zi ||, and D = sup, ycc|lx — y|2, be the di-
ameter of C measured by infinity norm. Then
for any u € C, we have

T T n? D
k 2
’;mkpk,zk —u) < ; ?HpkHS; + EHSTHl

Proof of Lemma 4 For any u € C and by optimal-
ity of Zp4+1, WE have <77kpk, Zp4+1 — 11> < <Sk(Zk+1 —

zi),u— Z,11) . Hence, using (5) and (4), it follows
that
(MkPk, Zx — )

= (MkPk, Zk — Zk+1) + (MkPk, Zit1 — W)

< (MkPks 2k — Zkt1) — (Sk(Zht1 — Zk)s Ziy1 — 1)
1
= (MkPk;> Zk — Zht1) — §||Zk+1 2|3,
1

- §||Zk+1 —ullg, + §||u -z |3,
< sup < (P, z) — = ||z||%,

z€R4 2

2 1 2

- §||Zk+1 —uf[g, + §||u -z |5,

= §||U—Zk+1\|§k +§|\U—Zk||23k-

Now recalling from Steps 5- 7 of Algorithm 1 that
Sk = diag(sg) + 01 and s > sg_1, we sum over k to



get
T
Z(Ukpk,zk —u)
k=1
T 2
n 1
<> Blpulg; + 5lu -zl

k=

N
+ 5lhu— zi|3,

[

— Sl

M-

1Pk

e

1
2+ 5=,

T
1
+ 5 Z((Sk - Skfl)(u - Zk), u— Zk>
k=2
<> Slpely + 5l Pt 1)
k=1

T
1
+ 5 2 I = al o = 3o, )
T 5 T
D D

SZ%‘ +5<5171>+52<Sk_5k 171>

k=1 k=2

T 2
_ U 2 L
=3 B pelig; + S llsrlh

ES
Il
-

Finally, we state a similar result to that of [17] that
captures the benefits of using Sy in FLAG.

Lemma 5 (AdaGrad Inequalities)
Define q, = Zz 1 IG7(4,:)]]2, where Gy, is
in Step 5 of Algorithm 1. We have

(i) g &1 S 'er < 24y,

(i) ¢> = minges 25:1 gl S~ 'gi, where S
{S € R¥*4 | S is diagonal, Si > 0, trace(S)
1}, and

(iii) VT < q, <V/dT.

Proof of Lemma 5 To prove part (i), we use
the following inequality introduced in the proof of
Lemma 4 in [17]: for any arbitrary real-valued se-
quence of {a;}_, and its vector representation as
ay.r = [a1,as,...,ar|, we have

<2||ar.7||2-
2
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So it follows that

T
ngS,zlgk

k=1

where the last equality follows from the definition of
sk in Step 6 of Algorithm 1.

For the rest of the proof, one can easily see that
. d (z
T k
S~ = = —

where a(i) := Zk:l g7(i) and s = diag(S). Now the
Lagrangian for A > 0 and v > 0, can be written as

d
Z (Z s(i) — 1) + (v,s).

i=1 =1

S
QU
1\3

(IJ

L(s,\,v)

m‘@
—~|—~

Since the strong duality holds, for any primal-dual
optimal solutions, S*,A* and v*, it follows from
complementary slackness that v* = 0 (since s* > 0).
Now requiring that 9L(s*, \*,v*)/0s(i) = 0 gives
A*s*(i) = y/a; > 0, which since s*(i) > 0, implies
that A* > 0. As a result, by using complemen-
tary slackness again, we must have Zle s*(7)
1. Now bimple algebraic calculations gives s*(i) =

Vai/ (i

For part (iii), recall that ||gxll2 = 1. Now, since
Amin(S91) > 1, one has 1 < gf'S~!gy, and so ¢, >
1. One the other hand, consider the optimization

problem
max Z |G (i, )]l = Z
i=1

st.|lgrlla=1, k=1,2,...

a;) and part (ii) follows.

U

The Lagrangian can be written as

({gk}k 17{/\}k 1):




By KKT necessary condition, we require that
OL({gr}i_,{\} _,)/0gi(k) = 0, which implies

,d.
d T 2 2
Hence, T = > . 1> ., 8/ (k) = d/(4);), and so

that A\, = 1/(2/3 5, g2(k), i = 1,2,..

2\ = \/d/T, which gives ¢, < VdT. |

We can now prove the central theorems of which is

used to obtain FLAG’s main result.

Theorem 3

after T iterations of Algorithm 1, we get

T

k=1
+ n%LTF(YTJrl)

DLnkLk D
< = .
Z + 5 llszlly

Let D := sup, ,ccllx — y||2,. For anyu € C,

Z { (i1 Li—1 — Lk + i) Fyx) — leF(u)}

Proof of Theorem 3 Noting that pyg
—L(yr+1 — Xg) is the gradient mapping of

F
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on C, it follows that

an (Yr41) — F(u))

T
= m(F(prox(xy)) — F(u))
k=1
d n
k 2
< xp —u) —
< ;nkq)kvxk u) 2L||PkH2
T T "
k
= (P (25 — ) + > M (P Xk — 21) — EHPkH%
k=1 k=1
T 772 D n
k 2 k 2
<> BlplZ + Slsrlh+ Y mroxe - zi) — 3 llpal
k=1 k=1
T T
o ekl — 1) 5 D
=y 57 IPxllz + S llszll + > 0k (pr, Xk — zk)
k=1 k=1
(L, — 1) D
k\IlkLk — 2
<) —57— Ipllz + S llsrlh
k=1
T
DL2Ly
+ Z <7lk(77kLk — 1Pk, yr — X)) + TQS
k=1
DLnkLk D
< Z + 5 lIszll

+ 3 L — 1) (F(yr) ~ F(yasn)).  (Lomma 1)
k=1

Where the first inequality is by Lemma 1, the second
inequality is by Lemma 4, the third equality is by
Step 8 of Algorithm 1, and the second last inequality
is by Corollary 1. Now we have

> m(F(yri) = F(w) = me(me Ly, — 1) (Fyx) = Flyks1))
k=1

= mF(yes1) = meF(w) = (pe L — 1) F(yy,)

+ (L — 1) F(yr41)
T
=Y WLk F(yri1) — meF (@) — mi (kL — 1) F (k)
k=1
=03 LrF(yr+1)
T
+ > M L1 Flyw) = meF () = (kL — 1) F (yi)
k=1
=03 LrF(yr4+1)

+ > (WL =i Li + i) Fyx) — meF(w),
k=1



and the result follows. |}

Once again, we present the analog of Theorem 3 for

Algorithm 3.

Theorem 4
Let D := sup, yecllx —yl2,. For any u € C,
after T iterations of Algorithm 1, we get

i { (nifl‘ik;fl —niLy, + 77k> F(yx) — UkF(u)}

=1
+ W%ETF(YTJA)

DLn2L D
<Z Bt 4 szl

Proof of Theorem 4 Parts of this proof which
differ from the proof of Theorem 3 are bolded. Not-
ing that py = —L(yr+1 — X) is the gradient map-
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ping of F' on C, it follows that

- an(F(prox(Xk)) — F(u))

T
Nk
< ZUMPka —u) — ﬁ”pkﬂg

k=1
T T
= an<pk7 (zx —u)) + anﬁ)k,xk - zp)
k=1 k=1
_ Nk 2
2LHPk||2

D T
+ 5 llszlle + > P Xn — z)

IA
(]~
NS
o
;

k=1 k=1
— 2 pel3
2L 2
(L — 1) D
o (MLl — 9
= ZTHPICHQ + S lsrl
k=1
+Z"7k<Pk7Xk_Zk>
k=1
T
ﬂkLk D
Z ||p 13+ 5 llszlh

T .
DL2L
+ E (nk MeLi — 1)(Pr, Y1 — Xk) + i k)
k=1

T3
~ DLn?Ly, D szl
= T3 g P
k=1
T ~
+ > (L — 1) (F(yk) = F(Yis1)) -
k=1

Where the first inequality follows from Lemma 1,
the second inequality follows from Lemma 4, the last
equality follows from Steps 9 and 11 of Alg 4, Steps 8
and 9 of Alg 5, and the second last inequality follows
from Corollary 2, and the last equality follows from
Lemma 1.



Now we have

T
Y m(E(yr1) — F(w)
k=1

— (L — 1) (F(yx) = F(yr41))

T
= anF(Yk+1) — e F(w) — (L, — 1) F(yx)
k=1
+ (L — 1) F (Yiy1)
T
= LeF(yer) = meF(w) = O Ly, — D F(yr)
k=1
= npLrF(yri1)
T
+> M Le Fyr) —meF(u)
k=1
— ne(meLix — 1) F(yr)
= npLrF(yri1)

T
+y (nZ—lLk—l — Ly, + ﬂk) F(yk) — mF (),
k=1

and the result follows. |
We now set out to put the final piece of the proof in

place: choosing the stepsize 7 for the mirror descent
step.

Lemma 6

For the choice of n in Algorithm 1 and k > 1,
we have

(i) ML =" mi,
(i1) m?_Lp—1 —n3Lk +np =0, and
(i1) meLy > 1.

Proof We prove (i) by induction. For k = 1, is is
easy to verify that n; = 1/Ly, and so n?L; =
and the base case follows trivially. Now suppose
n_ Li—1 = Zi:ll n;. Re-arranging (i) for k gives
k—1
O=npLe =k — Y0 =neLe —mk — Mh 1 Li—1.

=1

Now, it is easy to verify that the choice of 7, in Al-
gorithm 1 is a solution of the above quadratic equa-
tion. The rest of the items follow immediately from
part (i). |

Once again, the FLARE analog of Lemma 6 is
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Lemma 7
For the choice of n in Algorithm 8 and k > 1,
we have

(i) niik = Zf:l Mis
(i) U;%_}kal —npLy +me =0, and
(iii) niLy > 1.

Proof of Lemma 7 Completely identical to proof
of Lemma 6.

Corollary 3
Let D := sup, yecllx — yl|%,. For any u € C,
after T iterations of Algorithm 1, we get

Dlsz]h

LD
F(yT+1)—F(u) < e a——
2 Zle 77k

7F

Proof of corollary 3 The result follows from The-
orem 3 and Lemma 6 as well as noting that n? Ly =

k T
S < immi=npLlr.

The FLARE analog;:

Corollary 4
Let D := sup, yec |[x — y|2,. For any u € C,
after T iterations of Algorithm 3, we get

LD
T2

Dliszlx

F 1 — F(u <S I —a——
(yr1) = F(u) < 2T

Proof of corollary 4 The result follows from The-
orem 4 and Lemma 7 as well as noting that n? L), =

k T T
2121 M < 21‘:1 N = W%LT- |

Finally, it only remains to lower bound Zle Nk,
which is done in the following Lemma.

Lemma 8
For the choice of ny in Algorithm 1, we have

T
ZUkZ

k=1

TS
T
1000 Zk:l Ly




Proof of Lemma 8 We prove by induction on T
For T = 1, we have n; = 1/L;, and the base case
holds trivially. Suppose the desired relation holds
for T'— 1. We have

T T-1
an = Z Mk + N1
k=1 k=1
(T —1)3 1
T 1000, Ly 2Lt
(T-1)

1
+ +
\/4L2T 1000Ly Y1~} Ly,
(T-1)° (T —1)?
T 1000 Y ) Ly, 1000Lr S0 —) Ly,
(T —1)3 T3
- T-1 + T-1 :
1000020 Ly, \/ 8000Ly Y1) Ly,

Where the first inequality is by the induction hy-
pothesis on 7. Now if

(T —1)3 T3
T—-1 — T ’
100057~ L, ~ 1000 7_, Ly

then we are done. Otherwise denoting «
¢, Ly, we must have that

aT? —a(T —1)3

LT S T3
ol® —a (T? - 377 + 3T — 1)
(372 — 3T + 1)
T
< 4 Zk:l Ly )
= T
Hence, we get
d (T —1)3 T4
22 ooy AN
= Lamt L\ 20001y (S, 1)
(T —1)? AT?
T 100057 L 1000, Li
TS
Z =7
10003, _, L,
|

Remark: We note here that we made little effort to
minimize constants, and that we used rather sloppy
bounds such as T — 1 > T/2. As a result, the
constant appearing above is very conservative and
a mere by product of our proof technique.
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Lemma 9
For the choice of ny in Algorithm 8, we have

T
Z%Z

k=1

T3
T
A-1000 37, Ly

Proof of Lemma 9 Once again, exactly identical
to the proof of Lemma 8, we have
Sz oL
1 1000 54 L

Finally, using the guarantee that L, < ALy from
Step 11 of Algorithm 4 and Step 9 from Algorithm
5, we get the conclusion.

The proof of FLAG’s main result, Theorem 1, fol-
lows rather immediately.

Proof of Theorem 1 The result follows immedi-
ately from Lemma 8 and Corollary 3 and noting that
S L =LY 8T S 'gr < 2Lg, by Lemma 5
and ||st||1 = g, by Step 6 of Algorithm 1 and defi-
nition of ¢, in Lemma 5. This gives

ﬁ 1000LD ﬁ 1001LD

LD
F ~F(u) < e e
(yr41) = F(u) T 1 ST T2

= W
Now from Lemma 5, we see that 8 :=¢2 /T € [1,d].
Finally, the run-time per iteration follows from hav-

ing to do logy(1/€) calls to bisection, each taking
o(7....) time. |

The proof of FLARE’s main result, Theorem 2, is
obtained similarly to that of Theorem 1.

Proof of Theorem 2 The result follows immedi-
ately from Lemma 9 and Corollary 4 and noting that
Z{Zl Ly = LZ{:l gl S 'gr < 2Lg, by Lemma 5
and ||st||1 = ¢, by Step 6 of Algorithm 4 and Step
5 of Algorithm 5 and definition of ¢, in Lemma 5.
This gives

LD  ¢% 1000\LD
F(yrs1) — F(u) < TZ %T
q2 1001ALD
<z —
- T T2

Now from Lemma 5, we see that 8 :=¢2 /T € [1,d].
Finally, we try to guess a suitable Ly, for log(d/e)
times, and resort to BinarySearch after. If we resort



to algorithm 5 (essentially BinarySeaerch), we make
log(1/€) calls to bisection, so overall the number of
inner iterations per outer iteration is same as Algo-
rithm 1. Each inner iteration takes O(7__,, ) time in

the worst case (if we have to resort to algorithm 5
each time). ||
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