
A Proofs

We now give the details for the proof of our main re-
sults, i.e., Theorems 1 and 2. Below, we outline the
steps for the proof of FLAG’s Theorem 1. The proof
of Theorem 2 for FLARE follows the same line of
reasoning. Also, we note that, in what follows, lem-
mas/corollaries required for the proof of Theorem 2,
are given immediately after those of FLAG.

1. FLAG is essentially a combination of mirror de-
scent and proximal gradient descent steps (Lem-
mas 1 and 4).
2. Lk in Algorithm 1 plays the role of an ”e↵ec-
tive gradient Lipschitz constant” in each iteration.
The convergence rate of FLAG ultimately depends
on

PT
k=1 Lk = L

PT
k=1 g

T
k S

�1
k gk. (Lemma 8 and

Corollary 3)
3. By picking Sk adaptively like in AdaGrad, we
achieve a non-trivial upper bound for

PT
k=1 Lk.

(Lemma 5)
4. FLAG relies on picking an xk at each iteration
that satisfies an inequality involving Lk (Corollary
1). However, because Lk is not known prior to pick-
ing xk, we must choose an xk to roughly satisfy the
inequality for all possible values of Lk. We do this
by picking xk using binary search. (Lemmas 2 and 3
and Corollary 1)
5. Finally, we need to pick the right stepsize for each
iteration. Our scheme is very similar to the one used
in [1], but generalized to handle a di↵erent Lk each
iteration. (Lemmas 6 and 8 as well as Corollary 3).
6. Theorem 3 combines items 1, 2 and 4, above.
Finally, to prove Theorem 1, we combine Theorem 3
with items 3 and 5 above.

A.1 Proof of Theorem 1 and Theo-

rem 2

First, we obtain the following key result (simi-
lar to [4, Lemma 2.3]) regarding the vector p =
�L(prox(x) � x), as in Step 3 of FLAG, which is
known as the Gradient Mapping of F on C.

Lemma 1 (Gradient Mapping)
For any x,y 2 C, we have

F (prox(x))  F (y) + hL(prox(x)� x),y � xi
� L

2
kx� prox(x)k22,

where prox(x) is defined as in (3). In particu-
lar, F (prox(x))  F (x)� L

2 kx� prox(x)k22.

Proof of Lemma 1 This result is the same as
Lemma 2.3 in [4]. We bring its proof here for com-
pleteness.

For any y 2 C, any sub-gradient, v, of h at prox(x),
i.e., v 2 @h(prox(x)), and by optimality of prox(x)
in (3), we have

0  hrf(x) + v + L(prox(x)� x),y � prox(x)i
= hrf(x) + v + L(prox(x)� x),y � xi+ hrf(x)

+ v + L(prox(x)� x),x� prox(x)i,
and so

hrf(x),prox(x)� xi
 hrf(x) + v + L(prox(x)� x),y � xi
+ hv,x� prox(x)i � Lkx� prox(x)k22,

Now from L-Lipschitz continuity of rf as well as
convexity of f and h, we get

F (prox(x))

= f(prox(x)) + h(prox(x))

 f(x) + hrf(x),prox(x)� xi
+

L

2
kprox(x)� xk22 + h(prox(x))

 f(x) + hrf(x) + v + L(prox(x)� x),y � xi
+ hv,x� prox(x)i � L

2
kx� prox(x)k22

+ h(prox(x))

 f(y) + hv + L(prox(x)� x),y � xi
+ hv,x� prox(x)i � L

2
kx� prox(x)k22

+ h(prox(x))

= f(y) + hL(prox(x)� x),y � xi
+ hv,y � prox(x)i � L

2
kx� prox(x)k22

+ h(prox(x))

 F (y) + hL(prox(x)� x),y � xi
� L

2
kx� prox(x)k22.

The following lemma establishes the Lipschitz con-
tinuity of the prox operator.

Lemma 2 (Prox Operator Continuity)
prox : Rd ! Rd is a 2-Lipschitz continuous,
that is, for any x,y 2 C, we have

kprox(x)� prox(y)k2  2kx� yk2.

12

Proof of Lemma 2 By Definition (3), for any
x,y, z, z0 2 C, v 2 @h(prox(x)), and w 2
@h(prox(y)), we have

hv, z� prox(x)i
� �hrf(x) + L(prox(x)� x), z� prox(x)i,

hw, z0 � prox(y)i
� �hrf(y) + L(prox(y)� y), z0 � prox(y)i.

In particular, for z = prox(y) and z0 = prox(z), we
get

hv,prox(y)� prox(x)i
� �hrf(x) + L(prox(x)� x),prox(y)� prox(x)i,

hw,prox(y)� prox(x)i
 hrf(y) + L(prox(y)� y),prox(x)� prox(y)i.

By monotonicity of sub-gradient, we get

hv,prox(y)� prox(x)i  hw,prox(y)� prox(x)i.

So

hrf(x) + L(prox(x)� x),prox(x)� prox(y)i
 hrf(y) + L(prox(y)� y),prox(x)� prox(y)i,

and as a result

hrf(x) + L(prox(x)� x),prox(x)� prox(y)i
= hrf(x) + L (prox(x)� prox(y) + prox(y)� x)

,prox(x)� prox(y)i
= Lkprox(x)� prox(y)k22
+ hrf(x) + L(prox(y)� x),prox(x)� prox(y)i

 hrf(y) + L(prox(y)� y),prox(x)� prox(y)i,

which gives

Lkprox(x)� prox(y)k22
 hrf(y)�rf(x) + L(x� y),prox(x)� prox(y)i
 (krf(y)�rf(x)k2

+Lkx� yk2) kprox(x)� prox(y)k2
 2Lkx� yk2kprox(x)� prox(y)k2,

and the result follows.

Using prox operator continuity Lemma 2, we can
conclude that given any y, z 2 C, if hprox(y)�y,y�
zi < 0 and hprox(z)�z,y�zi > 0, then there must
be a t

⇤ 2 (0, 1) for which w = t

⇤y + (1 � t

⇤)z gives
hprox(w) � w,y � zi = 0. Algorithm 2 finds an
approximation to w in O(logL/✏) iterations.

Lemma 3 (Binary Search Lemma)
Let x = BinarySearch(z,y, ✏) defined as in Al-
gorithm 2. Then one of 3 cases happen:

(i) x = y and hprox(x)� x,x� zi � 0,
(ii) x = z and hprox(x)� x,y � xi  0, or
(iii) x = ty + (1 � t)z for some t 2 (0, 1) and
|hprox(x)� x,y � zi|  3ky � zk22✏.

Proof of Lemma 3 Items (i) and (ii), are simply
Steps 2 and 5, respectively. For item (iii), we have

kx�wk2
= kty + (1� t)z� t

⇤y � (1� t

⇤)zk2
= k(t� t

⇤)y � (t� t

⇤)zk2
 ✏ky � zk2.

Now it follows that

|hprox(x)� x,y � zi|
= |hprox(x)� x,y � zi � hprox(w)�w,y � zi|
 khprox(x)� prox(w),y � zik2 + |hx�w,y � zi|
 kprox(x)� prox(w)k2ky � zk2
+ kx�wk2ky � zk2

 2kx�wk2ky � zk2
+ kx�wk2ky � zk2

= 3kx�wk2ky � zk2
 3✏ky � zk22.
Where the third inequality follows by Lemma 2

Using the above result, we can prove the following:

Corollary 1
Let xk, yk, zk and ✏k be defined as in Algorithm
1 and ⌘kLk � 1. Then for all k � 1,

hpk,xk � zki  (⌘kLk � 1)hpk,yk � xki+ DL⌘kLk

T

3
.

Proof of Corollary 1 Note that by Step 3 of Al-
gorithm 1), pk = �L(prox(xk) � xk). For k = 1,
since x1 = y1 = z1, the inequality is trivially true.
For k � 2, we consider the three cases of Lemma 3:
(i) if xk = yk, the right hand side is 1/T � 0 and
the left hand side is hpk,xk�zki = h�L(prox(xk)�
xk),xk � zki  0, (ii) if xk = zk, the left hand side

13

is 0 and hpk,yk � xki = h�L(prox(xk)� xk),yk �
xki � 0, so the inequality holds trivially, and (iii) in
this last case, for some t 2 (0, 1), we have

hpk,xk � zki
= h�L(prox(xk)� xk), tyk + (1� t)zk � zki
= �Lth(prox(xk)� xk),yk � zki,

and

hpk,yk � xki
= h�L(prox(xk)� xk),yk � tyk � (1� t)zki
= �L(1� t)h(prox(xk)� xk), (yk � zk)i.

Hence

hpk,xk � zki � (⌘kLk � 1)hpk,yk � xki
 |hpk,xk � zki � (⌘kLk � 1)hpk,yk � xki|
= |(�Lt+ (⌘kLk � 1)L(1� t))

h(prox(xk)� xk), (yk � zk)i|
 3|(�Lt+ (⌘kLk � 1)L(1� t))|kyk � zkk22✏k
= 3|⌘kLk(1� t) + 1|Lkyk � zkk22✏k
= 3(⌘kLk + 1)Lkyk � zkk22✏k
= 6⌘kLkLkyk � zkk22✏k
=

6D⌘kLkLkyk � zkk22
D

1

6dT 3

 DL⌘kLk

T

3
,

where in the last line we used the fact that kyk �
zkk22  Dd

Similar to 1 for Algorithm 1, the following Lemma
proves an analogous result for Algorithm 3.

Corollary 2
Let xk, yk, zk and ✏k be defined as in Algorithm

3 and ⌘kL̃k � 1. Then for all k � 1,

hpk,xk � zki  (⌘kL̃k � 1)hpk,yk � xki+ DL⌘kL̃k

T

3
.

Proof of Corollary 2 We consider two cases:

1. If xk is generated through Algorithm 5, then
xk = BinarySearch(yk, zk, ✏) and L̃k = Lk, so the
statement follows from Corollary 1.

2. If xk is generated through Algorithm 4, then xk =
⇣

1� 1
⌘kL̃k

⌘

yk + 1
⌘kL̃k

zk, and so satisfies

hpk,xk � zki = (⌘kL̃k � 1)hpk,yk � xki

Next, we state a result regarding the mirror descent
step. Similar results can be found in most texts on
online optimization, e.g. [1].

Lemma 4 (Mirror Descent Inequality)
Let zk+1 = argmin

z2Ch⌘kpk, z � zki + 1
2kz �

zkk2Sk
and D

:= sup
x,y2C kx � yk21 be the di-

ameter of C measured by infinity norm. Then
for any u 2 C, we have

T
X

k=1

h⌘kpk, zk � ui 
T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

D

2
ksT k1

Proof of Lemma 4 For any u 2 C and by optimal-
ity of zk+1, we have h⌘kpk, zk+1 � ui  hSk(zk+1 �
zk),u� zk+1i . Hence, using (5) and (4), it follows
that

h⌘kpk, zk � ui
= h⌘kpk, zk � zk+1i+ h⌘kpk, zk+1 � ui
 h⌘kpk, zk � zk+1i � hSk(zk+1 � zk), zk+1 � ui
= h⌘kpk, zk � zk+1i � 1

2
kzk+1 � zkk2Sk

� 1

2
kzk+1 � uk2Sk

+
1

2
ku� zkk2Sk

 sup
z2Rd

⇢

h⌘kpk, zi � 1

2
kzk2Sk

�

� 1

2
kzk+1 � uk2Sk

+
1

2
ku� zkk2Sk

=
⌘

2
k

2
kpkk2S⇤

k
� 1

2
ku� zk+1k2Sk

+
1

2
ku� zkk2Sk

.

Now recalling from Steps 5- 7 of Algorithm 1 that
Sk = diag(sk) + �I and sk � sk�1, we sum over k to

14

get

T
X

k=1

h⌘kpk, zk � ui


T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

1

2
ku� z1k2S1

+
T
X

k=2

1

2
ku� zkk2Sk

� 1

2
ku� zkk2Sk�1

=
T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

1

2
ku� z1k2S1

+
1

2

T
X

k=2

h(Sk � Sk�1)(u� zk),u� zki


T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

1

2
ku� z1k21hs1,1i

+
1

2

T
X

k=2

ku� zkk21hsk � sk�1,1i


T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

D

2
hs1,1i+ D

2

T
X

k=2

hsk � sk�1,1i

=
T
X

k=1

⌘

2
k

2
kpkk2S⇤

k
+

D

2
ksT k1

Finally, we state a similar result to that of [17] that
captures the benefits of using Sk in FLAG.

Lemma 5 (AdaGrad Inequalities)
Define qT

:=
Pd

i=1 kGT (i, :)k2, where Gk is as
in Step 5 of Algorithm 1. We have

(i)
PT

k=1 g
T
k S

�1
k gk  2qT ,

(ii) q

2
T

= minS2S
PT

k=1 g
T
k S

�1gk, where S :=
{S 2 Rd⇥d | S is diagonal, Sii > 0, trace(S) 
1}, and
(iii)

p
T  qT  p

dT .

Proof of Lemma 5 To prove part (i), we use
the following inequality introduced in the proof of
Lemma 4 in [17]: for any arbitrary real-valued se-
quence of {ai}Ti=1 and its vector representation as
a1:T = [a1, a2, . . . , aT], we have

T
X

k=1

a

2
k

ka1:kk2  2ka1:T k2.

So it follows that

T
X

k=1

gT
k S

�1
k gk

=
T
X

k=1

d
X

i=1

g2
k(i)

s2k(i)

=
d
X

i=1

T
X

k=1

g2
k(i)

sk(i)

=
d
X

i=1

T
X

k=1

g2
k(i)

kGk(i, :)k2
 2qT ,

where the last equality follows from the definition of
sk in Step 6 of Algorithm 1.

For the rest of the proof, one can easily see that

T
X

k=1

gT
k S

�1gk =
T
X

k=1

d
X

i=1

g2
k(i)

s(i)
=

d
X

i=1

a(i)

s(i)
,

where a(i) :=
PT

k=1 g
2
k(i) and s = diag(S). Now the

Lagrangian for � � 0 and ⌫ � 0, can be written as

L(s,�,⌫) =
d
X

i=1

a(i)

s(i)
+ �

d
X

i=1

s(i)� 1

!

+ h⌫, si.

Since the strong duality holds, for any primal-dual
optimal solutions, S

⇤
,�

⇤ and ⌫⇤, it follows from
complementary slackness that ⌫⇤ = 0 (since s⇤ > 0).
Now requiring that @L(s⇤,�⇤

,⌫⇤)/@s(i) = 0 gives
�

⇤s⇤(i) =
p
ai > 0, which since s⇤(i) > 0, implies

that �

⇤
> 0. As a result, by using complemen-

tary slackness again, we must have
Pd

i=1 s
⇤(i) =

1. Now simple algebraic calculations gives s⇤(i) =p
ai/(

Pd
i=1

p
ai) and part (ii) follows.

For part (iii), recall that kgkk2 = 1. Now, since
�min(S01) � 1, one has 1  gT

k S
�1gk, and so qT �

1. One the other hand, consider the optimization
problem

max
d
X

i=1

kGT (i, :)k2 =
d
X

i=1

v

u

u

t

T
X

k=1

g2
i (k)

s.t. kgkk22 = 1, k = 1, 2, . . . , T.

The Lagrangian can be written as

L({gk}Tk=1, {�}Tk=1) =
d
X

i=1

v

u

u

t

T
X

k=1

g2
i (k)

+
T
X

k=1

�k

1�
d
X

i=1

g2
i (k)

!

.

15

By KKT necessary condition, we require that
@L({gk}Tk=1, {�}Tk=1)/@gi(k) = 0, which implies

that �k = 1/(2
q

PT
k=1 g

2
i (k)), i = 1, 2, . . . , d.

Hence, T =
Pd

i=1

PT
k=1 g

2
i (k) = d/(4�2

k), and so

2�k =
p

d/T , which gives qT  p
dT .

We can now prove the central theorems of which is
used to obtain FLAG’s main result.

Theorem 3
Let D

:= sup
x,y2C kx � yk21. For any u 2 C,

after T iterations of Algorithm 1, we get

T
X

k=1

n

�

⌘

2
k�1Lk�1 � ⌘

2
kLk + ⌘k

�

F (yk)� ⌘kF (u)
o

+ ⌘

2
TLTF (yT+1)


T
X

k=1

DL⌘

2
kLk

T

3
+

D

2
ksT k1.

Proof of Theorem 3 Noting that pk =
�L(yk+1 � xk) is the gradient mapping of F

on C, it follows that
T
X

k=1

⌘k(F (yk+1)� F (u))

=
T
X

k=1

⌘k(F (prox(xk))� F (u))


T
X

k=1

⌘khpk,xk � ui � ⌘k

2L
kpkk22

=
T
X

k=1

⌘khpk, (zk � u)i+
T
X

k=1

⌘khpk,xk � zki � ⌘k

2L
kpkk22


T
X

k=1

⌘

2
k

2
kpkk2S�1

k
+

D

2
ksT k1 +

T
X

k=1

⌘khpk,xk � zki � ⌘k

2L
kpkk22

=
T
X

k=1

⌘k(⌘kLk � 1)

2L
kpkk22 +

D

2
ksT k1 +

T
X

k=1

⌘khpk,xk � zki


T
X

k=1

⌘k(⌘kLk � 1)

2L
kpkk22 +

D

2
ksT k1

+
T
X

k=1

✓

⌘k(⌘kLk � 1)hpk,yk � xki+ DL⌘

2
kLk

T

3

◆


T
X

k=1

DL⌘

2
kLk

T

3
+

D

2
ksT k1

+
T
X

k=1

⌘k(⌘kLk � 1) (F (yk)� F (yk+1)) . (Lemma 1)

Where the first inequality is by Lemma 1, the second
inequality is by Lemma 4, the third equality is by
Step 8 of Algorithm 1, and the second last inequality
is by Corollary 1. Now we have

T
X

k=1

⌘k(F (yk+1)� F (u))� ⌘k(⌘kLk � 1) (F (yk)� F (yk+1))

=
T
X

k=1

⌘kF (yk+1)� ⌘kF (u)� ⌘k(⌘kLk � 1)F (yk)

+ ⌘k(⌘kLk � 1)F (yk+1)

=
T
X

k=1

⌘

2
kLkF (yk+1)� ⌘kF (u)� ⌘k(⌘kLk � 1)F (yk)

= ⌘

2
TLTF (yT+1)

+
T
X

k=1

⌘

2
k�1Lk�1F (yk)� ⌘kF (u)� ⌘k(⌘kLk � 1)F (yk)

= ⌘

2
TLTF (yT+1)

+
T
X

k=1

�

⌘

2
k�1Lk�1 � ⌘

2
kLk + ⌘k

�

F (yk)� ⌘kF (u),

16

and the result follows.

Once again, we present the analog of Theorem 3 for
Algorithm 3.

Theorem 4
Let D

:= sup
x,y2C kx � yk21. For any u 2 C,

after T iterations of Algorithm 1, we get

T
X

k=1

n⇣

⌘

2
k�1L̃k�1 � ⌘

2
kL̃k + ⌘k

⌘

F (yk)� ⌘kF (u)
o

+ ⌘

2
T L̃TF (yT+1)


T
X

k=1

DL̃⌘

2
kL̃k

T

3
+

D

2
ksT k1.

Proof of Theorem 4 Parts of this proof which
di↵er from the proof of Theorem 3 are bolded. Not-
ing that pk = �L(yk+1 � xk) is the gradient map-

ping of F on C, it follows that

T
X

k=1

⌘k(F (yk+1)� F (u))

=
T
X

k=1

⌘k(F (prox(xk))� F (u))


T
X

k=1

⌘khpk,xk � ui � ⌘k

2L
kpkk22

=
T
X

k=1

⌘khpk, (zk � u)i+
T
X

k=1

⌘khpk,xk � zki

� ⌘k

2L
kpkk22


T
X

k=1

⌘

2
k

2
kpkk2S�1

k
+

D

2
ksT k1 +

T
X

k=1

⌘khpk,xk � zki

� ⌘k

2L
kpkk22

=
T
X

k=1

⌘k(⌘kL̃k � 1)

2L
kpkk22 +

D

2
ksT k1

+
T
X

k=1

⌘khpk,xk � zki


T
X

k=1

⌘k(⌘kL̃k � 1)

2L
kpkk22 +

D

2
ksT k1

+
T
X

k=1

⌘k(⌘kL̃k � 1)hpk,yk � xki+ DL⌘

2
kL̃k

T

3

!


T
X

k=1

DL⌘

2
kL̃k

T

3
+

D

2
ksT k1

+
T
X

k=1

⌘k(⌘kL̃k � 1) (F (yk)� F (yk+1)) .

Where the first inequality follows from Lemma 1,
the second inequality follows from Lemma 4, the last
equality follows from Steps 9 and 11 of Alg 4, Steps 8
and 9 of Alg 5, and the second last inequality follows
from Corollary 2, and the last equality follows from
Lemma 1.

17

Now we have

T
X

k=1

⌘k(F (yk+1)� F (u))

� ⌘k(⌘kL̃k � 1) (F (yk)� F (yk+1))

=
T
X

k=1

⌘kF (yk+1)� ⌘kF (u)� ⌘k(⌘kL̃k � 1)F (yk)

+ ⌘k(⌘kL̃k � 1)F (yk+1)

=
T
X

k=1

⌘

2
kLkF (yk+1)� ⌘kF (u)� ⌘k(⌘kL̃k � 1)F (yk)

= ⌘

2
T L̃TF (yT+1)

+
T
X

k=1

⌘

2
k�1L̃k�1F (yk)� ⌘kF (u)

� ⌘k(⌘kL̃k � 1)F (yk)

= ⌘

2
T L̃TF (yT+1)

+
T
X

k=1

⇣

⌘

2
k�1L̃k�1 � ⌘

2
kL̃k + ⌘k

⌘

F (yk)� ⌘kF (u),

and the result follows.

We now set out to put the final piece of the proof in
place: choosing the stepsize ⌘k for the mirror descent
step.

Lemma 6
For the choice of ⌘k in Algorithm 1 and k � 1,
we have

(i) ⌘

2
kLk =

Pk
i=1 ⌘i,

(ii) ⌘

2
k�1Lk�1 � ⌘

2
kLk + ⌘k = 0, and

(iii) ⌘kLk � 1.

Proof We prove (i) by induction. For k = 1, is is
easy to verify that ⌘1 = 1/L1, and so ⌘

2
1L1 = ⌘1

and the base case follows trivially. Now suppose
⌘

2
k�1Lk�1 =

Pk�1
i=1 ⌘i. Re-arranging (i) for k gives

0 = ⌘

2
kLk � ⌘k �

k�1
X

i=1

⌘i = ⌘

2
kLk � ⌘k � ⌘

2
k�1Lk�1.

Now, it is easy to verify that the choice of ⌘k in Al-
gorithm 1 is a solution of the above quadratic equa-
tion. The rest of the items follow immediately from
part (i).

Once again, the FLARE analog of Lemma 6 is

Lemma 7
For the choice of ⌘k in Algorithm 3 and k � 1,
we have

(i) ⌘

2
kL̃k =

Pk
i=1 ⌘i,

(ii) ⌘

2
k�1L̃k�1 � ⌘

2
kL̃k + ⌘k = 0, and

(iii) ⌘kL̃k � 1.

Proof of Lemma 7 Completely identical to proof
of Lemma 6.

Corollary 3
Let D

:= sup
x,y2C kx � yk21. For any u 2 C,

after T iterations of Algorithm 1, we get

F (yT+1)� F (u)  LD

T

2
+

DksT k1
2
PT

k=1 ⌘k

.

Proof of corollary 3 The result follows from The-
orem 3 and Lemma 6 as well as noting that ⌘2kLk =
Pk

i=1 ⌘i 
PT

i=1 ⌘i = ⌘

2
TLT .

The FLARE analog:

Corollary 4
Let D

:= sup
x,y2C kx � yk21. For any u 2 C,

after T iterations of Algorithm 3, we get

F (yT+1)� F (u)  LD

T

2
+

DksT k1
2
PT

k=1 ⌘k

.

Proof of corollary 4 The result follows from The-
orem 4 and Lemma 7 as well as noting that ⌘2kLk =
Pk

i=1 ⌘i 
PT

i=1 ⌘i = ⌘

2
T L̃T .

Finally, it only remains to lower bound
PT

k=1 ⌘k,
which is done in the following Lemma.

Lemma 8
For the choice of ⌘k in Algorithm 1, we have

T
X

k=1

⌘k � T

3

1000
PT

k=1 Lk

18

Proof of Lemma 8 We prove by induction on T .
For T = 1, we have ⌘1 = 1/L1, and the base case
holds trivially. Suppose the desired relation holds
for T � 1. We have

T
X

k=1

⌘k =
T�1
X

k=1

⌘k + ⌘T

� (T � 1)3

1000
PT�1

k=1 Lk

+
1

2LT

+

s

1

4L2
T

+
(T � 1)3

1000LT
PT�1

k=1 Lk

� (T � 1)3

1000
PT�1

k=1 Lk

+

s

(T � 1)3

1000LT
PT�1

k=1 Lk

� (T � 1)3

1000
PT�1

k=1 Lk

+

s

T

3

8000LT
PT�1

k=1 Lk

.

Where the first inequality is by the induction hy-
pothesis on ⌘k. Now if

(T � 1)3

1000
PT�1

k=1 Lk

� T

3

1000
PT

k=1 Lk

,

then we are done. Otherwise denoting ↵

:=
PT

k=1 Lk, we must have that

LT  ↵T

3 � ↵(T � 1)3

T

3

=
↵T

3 � ↵

�

T

3 � 3T 2 + 3T � 1
�

T

3

=
↵(3T 2 � 3T + 1)

T

3

 4
PT

k=1 Lk

T

.

Hence, we get

T
X

k=1

⌘k � (T � 1)3

1000
PT�1

k=1 Lk

+

v

u

u

t

T

4

32000LT

⇣

PT
k=1 Lk

⌘2

� (T � 1)3

1000
PT

k=1 Lk

+
4T 2

1000
PT

k=1 Lk

� T

3

1000
PT

k=1 Lk

.

Remark: We note here that we made little e↵ort to
minimize constants, and that we used rather sloppy
bounds such as T � 1 � T/2. As a result, the
constant appearing above is very conservative and
a mere by product of our proof technique.

Lemma 9
For the choice of ⌘k in Algorithm 3, we have

T
X

k=1

⌘k � T

3

� · 1000PT
k=1 Lk

Proof of Lemma 9 Once again, exactly identical
to the proof of Lemma 8, we have

T
X

k=1

⌘k � T

3

1000
PT

k=1 L̃k

Finally, using the guarantee that L̃k  �Lk from
Step 11 of Algorithm 4 and Step 9 from Algorithm
5, we get the conclusion.

The proof of FLAG’s main result, Theorem 1, fol-
lows rather immediately.

Proof of Theorem 1 The result follows immedi-
ately from Lemma 8 and Corollary 3 and noting that
PT

k=1 Lk = L

PT
k=1 g

T
k S

�1
k gk  2LqT by Lemma 5

and ksT k1 = qT by Step 6 of Algorithm 1 and defi-
nition of qT in Lemma 5. This gives

F (yT+1)� F (u)  LD

T

2
+

q

2
T

T

1000LD

T

2
 q

2
T

T

1001LD

T

2
.

Now from Lemma 5, we see that � := q

2
T
/T 2 [1, d].

Finally, the run-time per iteration follows from hav-
ing to do log2(1/✏) calls to bisection, each taking
O(T

prox

) time.

The proof of FLARE’s main result, Theorem 2, is
obtained similarly to that of Theorem 1.

Proof of Theorem 2 The result follows immedi-
ately from Lemma 9 and Corollary 4 and noting that
PT

k=1 Lk = L

PT
k=1 g

T
k S

�1
k gk  2LqT by Lemma 5

and ksT k1 = qT by Step 6 of Algorithm 4 and Step
5 of Algorithm 5 and definition of qT in Lemma 5.
This gives

F (yT+1)� F (u)  LD

T

2
+

q

2
T

T

1000�LD

T

2

 q

2
T

T

1001�LD

T

2
.

Now from Lemma 5, we see that � := q

2
T
/T 2 [1, d].

Finally, we try to guess a suitable L̃k for log(d/✏)
times, and resort to BinarySearch after. If we resort

19

to algorithm 5 (essentially BinarySeaerch), we make
log(1/✏) calls to bisection, so overall the number of
inner iterations per outer iteration is same as Algo-
rithm 1. Each inner iteration takes O(T

prox

) time in
the worst case (if we have to resort to algorithm 5
each time).

20

