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ABSTRACT

We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique,
that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an
entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike
PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global
measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so
yields more reliable results for many astronomical questions of interest. The global variant of our approach can
identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic
approach enable us to explore subtle trends around a set of chosen objects. The power of the method is
demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral
coordinates carry an unprecedented amount of information.
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1. INTRODUCTION

The physical properties of the universe and the internal
mechanisms of galaxies are ultimately intertwined in astro-
nomical observations. Characterizing the diversity of galaxies
is vital, not only for understanding their evolution, but for
unraveling the nature of dark energy in the context of our
cosmological models. While today’s large-scale spectroscopic
surveys provide a plethora of data, the usual tools designed to
capture specific aspects of the spectra might not take full
advantage of our experiments. The large homogeneous
collections of spectra currently available offer new opportu-
nities for statistical studies, and our goal here is to develop
novel approaches, which can empirically find trends in the data
that later can be understood in the context of galaxy evolution.

Current analysis approaches generally fall into one of two
broad categories. In the first category, the observed spectra are
fitted by theoretical or semi-analytic models, e.g., Bruzual &
Charlot (2003), to infer their parameters. These estimates in
turn provide a model-dependent coordinate system with
absolute scales such as age and metallicity. These physical
measurements are then used in subsequent population studies,
etc. Challenges for these methods typically include systematic
biases due to imperfect models as well as correlated
parameters. In the second category, one adopts a more
empirical approach, where galaxies are analyzed in relation to
other galaxies based on the original measurements, i.e., the
observed spectra. A major challenge for these more empirical
methods is the conceptual problem of how best to compare
empirical spectra, e.g., which features of a spectrum are most
important for identifying similarities between two objects. The
approach we describe, in this paper, falls into the second
category, and it aims to address the fundamental issue of
measuring similarity between galaxy spectra as well as how to

use this information in conjunction with principled machine
learning algorithms to obtain astronomical insight.

1.1. Embedding Spectra

A canonical example of the empirical approach is Principal
Component Analysis (PCA), which is widely used to find the
globally dominant linear trends in the data. PCA was first
applied to galaxies by Connolly et al. (1995b), who found that
a significant fraction of the variance in the spectra can be
captured by only three components. In other words, the
analyzed spectra could be well approximated by a linear
combination of three eigenspectra. The coefficients serve as
summaries of the high-dimensional spectra, and in this
coordinate system galaxies could be meaningfully compared
to one another. This is called a low-dimensional embedding,
because every high-dimensional spectrum is mapped to just a
few coefficients, i.e., to a low-dimensional vector. PCA has
been used in many areas of astronomy, including photometric
redshift estimation (Connolly et al. 1999; Budavári et al. 2000),
sky subtraction (Wild & Hewett 2005), and the classification of
galaxies and quasars (Francis et al. 1992; Connolly &
Szalay 1999; Yip et al. 2004a, 2004b). The Sloan Digital
Sky Survey (SDSS) (York et al. 2000) has adopted this method
in its data reduction pipeline, and it automatically derives the
first five eigencoefficients (called eCoeff_0—eCoeff_4).
Figure 1 shows the mixing angles θ and f of the three leading
eigencoefficients for the Main Galaxy Sample (MGS) in SDSS
Data Release 7 (Abazajian et al. 2009). These coordinates are
defined as in Yip et al. (2004a) by
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In the embedding illustrated in Figure 1, every point is a
galaxy, and nearby points (i.e., galaxies or points which are
near each other in the two-dimensional representation) have
similar observations. This is achieved by construction of the
empirical coordinate system. In particular, “red and dead”
galaxies appear at the top of the plot, while star-forming blue
ones are on the lower right.

The simplified view of the data provided by PCA does,
however, have shortcomings. First of all, a significant fraction
of the galaxies is actually removed from or scattered out of the
plot. Consequently, we can usually only really see the core of
the distribution in a figure such as this one. The lack of
structure in this visualization is surprising, especially consider-
ing the large amount of high-quality data and the wide range of
known galaxy types. Also, the interpretation of principal
components is somewhat difficult, as they are linear combina-
tions of input data vectors. Extensions and variants of PCA
have been proposed to overcome these challenges, including
non-negative matrix factorization (Lee & Seung 1999), the use
of robust statistics (Budavári et al. 2009), and CX/CUR matrix
decompositions(Mahoney & Drineas 2009; Yip et al. 2014).
While these methods have alleviated some of the issues
associated with PCA, the fundamental limitation of the linear
model remained.

Perhaps the biggest conceptual change in the area was
introduced by VanderPlas & Connolly (2009), who applied the
Locally Linear Embedding (LLE) method of Roweis & Saul
(2000). This more sophisticated empirical approach attempts to
identify and exploit local structure in the data, and thus it
breaks away from the straightforward global linear model
underlying PCA. While there are other related nonlinear
approaches(Tenenbaum et al. 2000; Belkin & Niyogi 2003),
LLE in particular attempts to provide an angle-preserving
mapping, which assigns coordinates to galaxies such that each
galaxy is approximately a linear combination of its nearest
neighbors.

The power and practical usefulness of LLE (as well as other
related nonlinear methods including Tenenbaum et al. 2000;
Belkin & Niyogi 2003; Coifman & Lafon 2006), however, is
known to be severely diminished in many practical situations.
The reasons for this are many, perhaps most notably that these
methods are quite sensitive to realistic noise in the data and to
the “details” of constructing the nearest neighbor graph. (This
is in spite of a large body of theory stating that in idealized
situations these details do not matter.) In addition to exploiting
the strong algorithmic and statistical theory underlying our
main method(Mahoney et al. 2012; Hansen & Mahoney
2014), dealing appropriately with these and other related
practical graph construction issues will be central to our
approach, and thus we postpone further discussion of this until
Sections 2 and 3.

1.2. BPT Diagrams

Not all embeddings of astronomical data come from
statistical procedures designed to assign new features to
galaxies. In fact, any set of measurements extracted from the
spectra could be considered as summaries for further analyses.
A well known example is based completely on line measure-
ments. The high resolution in wavelength often allows the
identification and measurement of various spectral lines, and it
is common to plot spectra in terms of carefully chosen line
ratios. That is, while not usually described as an embedding
method, the typical use of line measurements often involves
embedding or mapping the data to a low-dimensional space.7 In
particular, the Baldwin, Phillips & Terlevich (BPT) diagrams
(Baldwin et al. 1981) plot different line ratios on a logarithmic
scale, enabling, e.g., the classification of galaxies(Brinchmann
et al. 2004; Kewley et al. 2006). Figure 2 shows several BPT
diagrams of the SDSS MGS. In the left panel, the characteristic
V-shape of the embedding on the ratios aN HII versus bO HIII
is clearly visible, despite significant scatter, which is partly due
to noisy measurements of the individual lines. Little to no
structure is evident in the middle and right panels, whose x-
axes plot different line strengths, but share the same y
coordinates. The insight conveyed by the BPT plots can be
considered complementary to that of the PCA results, which is
primarily based on the continuum shape. As with PCA, these
plots have significant scatter and, while we see some global
trends, one would hope to see more subtle trends from a survey
of hundreds of thousands of objects with close to 4000
wavelength elements.
In this paper, we present a novel approach to studying

galaxies, which combines elements of several aforementioned
techniques, but that moves away from the limiting assumptions
in their underlying mathematical models. Our method, which is
an extension of semi-supervised eigenvectors(Hansen &
Mahoney 2014) from locally-biased machine learning
(Mahoney et al. 2012), uses ideas from spectral graph theory
and local spectral methods to study the properties of the SDSS
MGS data.

1.3. Ideas from Graph Theory

The aforementioned LLE(Roweis & Saul 2000) along with
ISOMAP (Tenenbaum et al. 2000), Laplacian eigenmaps

Figure 1. PCA provides a powerful compression for the Main Galaxy Sample
of the SDSS Data Release 7. Every galaxy is summarized by a point in a low-
dimensional space spanned by the eigenvectors. Here, we show the the mixing
angles θ and f of the first three eigencoefficients.

7 The state-of-the-art in this area actually uses PCA as a preprocessing step to
subtract the continuum, in order to better measure the line strength relative to
this baseline(Tremonti et al. 2004).
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(Belkin & Niyogi 2003) and the related diffusion maps
(Coifman & Lafon 2006), recently generated a great deal of
interest in statistical learning. These methods are also the
precursors to our approach and share a number of common
elements. They all first find for each data point the closest
neighbors, and they focus on assigning new coordinates such
that some neighborhood metric is preserved. For example, LLE
preserves local angles and ISOMAP approximates the geodesic
distance. In practice, they all solve an eigenproblem or a related
global graph problem.

Here, we provide a very brief introduction to the most
relevant ideas from spectral graph theory. For an elementary
introduction, see Gallier (2013); and for more details on the
particular method used in this paper, see Mahoney et al. (2012),
Hansen & Mahoney (2014). Let us consider a matrix whose
columns and rows correspond to our galaxies and the matrix
elements encode their similarity to each other. For example, the
k nearest neighbors could have the value 1 assigned to their
corresponding matrix entry, and all other pairs would then have
the value 0, indicating that they are not neighbors. This
adjacency matrix A is large, but typically very sparse.
Alternatively, we can also think of this network of connections
as a graph, where the galaxies are nodes and the edges connect
only those nearby. At this point, we can now define the so-
called Laplacian matrix (also known as the graph Laplacian) as

( )= -L D A, 3

where D is the diagonal degree matrix, which simply counts the
number of connections (or neighbors) each object has. It can be
shown that the bilinear expression of L for any vector n Î n

has the form

( ) ( )
( )
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i j
i j
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2

Hence, if our goal is to assign low-dimensional vectors to each
graph node (or galaxy) i such that the new vectors are close if
the pair is adjacent in the original data space, then we simply
have to minimize the above formula and keep a small number
of such eigenvectors. The trivial solution is that all n = const.i ,
and this mode can be removed by using constrained
optimization. Much like PCA is the eigensolution of the
covariance matrix, the nonlinear Laplacian eigenmap is the
eigensolution of the graph Laplacian.

If the adjacency matrix encodes different similarity mea-
sures, instead of just having 0/1 entries, then one obtains
weighted edges, and these propagate appropriately all the way
into the eigenmap. Laplacian eigenmaps and diffusion maps
use weights, which provide a gradual drop-off of the adjacency,
which is motivated by the physical diffusion process. Hereafter,
we will make use of these key ideas in the development of our
method for galaxies.
In Section 2, we briefly review the approach, and in

Section 3, we illustrate how to optimize the method for specific
goals and data sets. In Section 4, we present the first results in
the context of previously successful methods, and in Section 5,
we illustrate how to focus the embedding on any objects of
interest. Section 6 concludes the study and discusses possible
future research directions.

2. GLOBAL AND LOCAL EMBEDDINGS

The nonlinear embedding introduced previously is consid-
ered global, in the sense that all galaxies are equally important
in the construction of the graph and thus, the embedding map.
The method of locally-biased semi-supervised eigenvectors
(Mahoney et al. 2012; Hansen & Mahoney 2014), which we
use, follows a similar approach, except that it introduces extra
constraints to bias the embedding map creation toward objects
of interest. These constraints, which are typically indicator
vectors of seed sets of nodes, and the neighborhoods of these
seed sets, will be best resolved in the locally-biased embedding,
while the data far away will tend toward the origin and thus be
less well resolved in the locally-biased embedding.

2.1. Similarity Graph

Given a collection of n data points { }=xi i
n

1 in the d-
dimensional space d, in our case the full set of MGS spectra
from SDSS DR7, we start the analysis by constructing the
neighborhoods. These relationships form a graph which can be
represented as a (sparse) matrix. To construct a weighted
graph on the data, where the vertices are the data points xi and
the edges represent local connectivity information, we add an
edge (i, j) to the graph if xj is one of xiʼs k nearest neighbors or
if xi is one of xjʼs k nearest neighbors. Note that this ensures the
adjacency matrix of the graph is symmetric. We then weight

Figure 2. BPT diagrams of line ratios can also be thought of as a particular data-driven embedding, which provide insight not available from, but complementary to
those provided by PCA.
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each edge with a measure of local similarity givenby

( )
 

s
= -

-⎛
⎝⎜

⎞
⎠⎟w

x x
exp , 5ij

i j 2
2

2

where  -x xi j is the Euclidean distance of the two high-
dimensional data vectors and σ is a parameter, which controls
the amount of “locality” present in the weight function.
Alternatively, one can think of adding an edge between every
pair of points, with weight given by Equation (5), in which case
the value is near 0 for distant pairs of points. In practice, sparse
matrices are preferred for computational reasons. The σ

parameter can either be constant across all data points or it
can be allowed to vary. A particularly useful choice often used
in machine learning is s s s= i j

2 , where si is the distance of
point xi to its k 2 nearest neighbor. This accounts for the
differences in spectra. Alternatively, one could choose to pick
neighbors based on a distance threshold ò. We will study the
effects of these tuning parameters later. We find that within
reasonable ranges, the basic characteristics of the mappings
remain similar. However, we also find that, unless due care is
taken with astronomical issues, it is very easy to choose
parameters, which overly homogenize the data and that lead to
embeddings, which are much less useful astronomically.

2.2. Locally-biased Semi-supervised Eigenvectors

With the previously introduced data graph in hand, the new
maps can be derived, which will solve the eigenproblem of the
Laplacian matrix. Formally, the embedding assigns a low-
dimensional vector to every high-dimensional data vector x,
which in our case are the galaxy spectra. In our notation, the
following ν components correspond to the new coordinates:

( ) ( ) n n nx , ,..., . 6m2 3

The first element n1 is omitted as it corresponds to the trivial
constant solution as discussed in the Introduction. The number
of elements m is a free parameter similar to PCA, where the
components are truncated based on variance arguments.
Informally, the meaning of the new ν coordinates can be
related to the “distance” on the data graph. In the embedding
space, the standard Euclidean distance between two points is
proportional to the average length of a random walk starting at
one point and reaching the second. In this sense, the embedding
given by these eigenvectors preserves “connectivity” informa-
tion about the original data. For further details on these
methods, we refer the reader to the theory8 of Belkin & Niyogi
(2003 and Coifman & Lafon (2006).

For the locally-biased embeddings, the key observation is
that the optimization using the graph Laplacian can be further
constrained to focus on a seed set of data points(Mahoney
et al. 2012; Hansen & Mahoney 2014). (The choice of seed is

based on the astronomical question of interest.) If s is the
indicator vector of the seed set, then the locally-biased
optimization becomes

( )


n n

n n
n k

=
nÎ

L

D
D s

min

s.t. 1
, 7

T

T

T

m

where the first constraint guards against the 0 solution and
[ ]k Î 0, 1 is the correlation parameter, which controls the bias

toward the seeds s. We can assume (without loss of generality)
that s is properly normalized and orthogonalized so that

=s D s 1T and =s D 1 0T . We also note that, for k = 0, the
locally-biased results coincide with the usual global objective,
while for k > 0, this produces solutions which are biased
toward the seed vectors.
In this paper, we are primarily interested in understanding

the features and properties of different mappings, and thus we
adopt an “exploratory” approach. For other downstream
learning tasks, e.g., classification or regression, various
model-selection methods can be used to select k, σ, m, κ,
etc.(Friedman et al. 2001). Extending the methodology of
locally-biased semi-supervised eigenvectors to model selection
and other related statistical questions, e.g., those considered in
Richards et al. (2009), VanderPlas & Connolly (2009), is
straightforward, but we do not consider it in this paper.

2.3. Implementation

The aforementioned optimization is related to a number of
other methods, which are computationally more advantageous,
e.g., random walks and linear equation solvers. We adopt an
approach based on diffusion that is proven to solve a
regularized version of the above problem. For details of these
connections, we refer the interested reader to papers by
Mahoney et al. (2012) and Hansen & Mahoney (2014).
Our computations of global diffusion embeddings were

performed in MATLAB using a modified version of the
DiffusionGeometry package of Bremer and Maggioni9

(Coifman et al. 2005), and our computations of local
embeddings were performed in MATLAB using the sseigs_-
demo package of Hansen and Mahoney.10

3. APPLICATION TO SDSS GALAXIES

We apply the new data-driven exploratory analysis to the
well-studied collection of spectra in Data Release 7 (Abazajian
et al. 2009) of the SDSS (York et al. 2000). Our goal is to
explore the new data-driven parametrization of galaxies to test
whether known trends appear in these low-dimensional maps.

3.1. Similarity of MGS Spectra

The MGS (Strauss et al. 2002) has become a testbed for a
wide range of astronomical studies. There are several reasons
for this, including the well understood selection function, large
volume of high-quality data, and the prior systematic analyses,
which serve as a reference for new techniques. In our study, we
use the entire restframe wavelength range between 3450 and
8350Å. Starting from the spectrophotometrically calibrated

8 This theory is most relevant when the k or σ parameter is chosen to be
relatively large, meaning that each data point has a relatively large number of
neighbors. In that case, the data are typically homogenized and the
corresponding matrix is relatively well approximated by a low-rank matrix.
As our results below will show, this is often not the region of greatest
astronomical usefulness, since in that regime small-scale or local structure in
the data graph is largely lost. Indeed, this was the original motivation for the
development of locally-biased semi-supervised eigenvectors(Mahoney
et al. 2012; Hansen & Mahoney 2014).

9 http://www.math.duke.edu/∼mauro/code.html
10 https://sites.google.com/site/tokejansenhansen/
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normalized restframe spectra, our only preprocessing consists
of dealing with gaps in the wavelength coverage. The missing
parts of the spectra are filled-in based on the best-fit linear
combination using eigenspectra from a prior PCA analysis
following Yip et al. (2004a). While such preprocessing
certainly simplifies our current implementations, we note that
the approach is capable of dealing with incomplete and noisy
data, e.g., similar to the gappy PCA of Connolly et al. (1995a).

Analyzing the distances of galaxy pairs reveals a hetero-
geneity. Figure 3 shows a histogram (in logarithmic scale) of
the distance ratios of 1st and 32nd nearest neighbors over the
entire data set. It is clear from the figure that the vast majority
of galaxies lie in very dense regions of space (for which this
ratio is close to one), while a non-negligible fraction lie in more
sparsely populated regions (for which the ratio is less than
one half.)

To build the graph of the MGS spectra, we autotune the
bandwidths and fix the number of nearest neighbors. For
computational reasons, we decided to start our exploration
using the so-called Markov normalization (Belkin &
Niyogi 2003; Coifman & Lafon 2006), which does not take
the density of points into account.

3.2. First Results for SDSS

Figure 4 illustrates a global embedding. In the top-left panel
we plot the second and fourth eigenvectors. We recall that the
first eigenvector is the trivial mode, which corresponds to the 0
eigenvalue and has no information content, hence the second is
the leading component. In this plot, every point is a galaxy and
the color corresponds to the value of the second component
(that is also shown on the horizontal axis). Unlike PCA, where
a large fraction of the galaxies is typically scattered out from
any reasonable plot, here we actually see all galaxies with only
a small number of outliers that turned out to be pipeline errors
or are completely mysterious looking (and are currently being
investigated).

We see no clusters or classes of galaxies, which would
separate from the others. Instead we observe that all spectra fall
into a contiguous pattern. While this is in accord with our
current understanding, the new method is the most powerful
data-driven approach, which could detect such peculiarities.
We see a lower envelope to the data points along which the
spectra go from star-forming to red ellipticals. The boxes
labeled A1–A5, R1–R5, and E1–E5 denote regions of
embedding coordinates over which we calculated the mean
spectra to illustrate the changes in the real spectra with
increased signal-to-noise ratio. These delineations were
admittedly drawn in an ad hoc manner, and they are meant
only to indicate the changes along the embedding dimensions.
The corresponding composite spectra are shown in Figure 4(b)
through 4(d). From these average spectra, we can clearly see
the correlation of the second eigenvector with the shape of the
continuum: positive values of n2 tend to correspond to red,
while negative values correspond to blue shapes. There also
appears to be a correlation with the strengths of emissions lines,
with negative n2 values corresponding to larger fluxes. A
natural continuation of this trend is in the E1–E5 boxes shown
in the Figure 4(c), where the lines become overwhelmingly
strong in the young galaxies. At first glance, we see a dramatic
change in not only the lines, but their ratios. For example, the
[O III] (4959Å, 5007Å) lines grow significantly in comparison
to the H α (6563Å) line. In Figure 4(b), we present the mean
and standard deviation of spectra in boxes A1–A5 of
Figure 4(a). These spectra trace a trend, which is different
from the main direction, but we see increasing line strengths
and bluer spectra. This population of galaxies will be
immediately obvious in Section 4.4, where we show the results
of the SDSS classification (Brinchmann et al. 2004): these are
active galactic nuclei (AGN).

3.3. Effects on the Embeddings

The embedding shown before is the result of a careful study
of the parameters, which affect the mapping to varying
degrees. We start with the choice of k, the number of nearest
neighbor edges on the constructed graphs. While, in general,
the effects of the choice can be highly problem-dependent and
hence, it ultimately should be determined by a downstream
astronomical selection criterion, e.g., optimizing the mean-
squared error, or a precision-recall metric if one is performing
classification. We have noted several trends of interest. For
large k values, the maps emphasize relations across the entire
data set and one tends to identify well these large-scale or
global structures in the data, while washing out or
homogenizing small-scale or local structure, which is often
of interest. The global nature of these embeddings is often
referred to as large-scale structure in the machine learning
community. For small k, the emphasis is on the connections of
the closest objects or at shorter scales.
In Figure 5, we show the embeddings of the full data set on

the third and fourth eigenvectors for k ranging from 21 to 211 by
factors of four.11 The points are color coded by the value of the
second eigenvector, as before. These plots hide density

Figure 3. Histogram of ratios of distances to the 1st and 32nd nearest
neighbors carries information about the distribution of galaxies in the high-
dimensional space of observations. The vast majority of the 517,000 galaxies
lie in very dense regions of the parameter space (corresponding to ratios near
unity), while a non-negligible fraction lie in very sparsely populated regions
(the bumps near zero).

11 The “correct” value of k may well depend on the density of points at various
places on the graph, but it is also a non-trivial statistical model-selection
problem(Friedman et al. 2001). For example, it depends on whether one is
interested in identifying properties of very large clusters in the data or
properties of very small clusters in the data. Our point here is simply that
different values of k can be used to identify very different properties in the data.
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information, but they illustrate that as k decreases, the
structures tend to become a skeleton, e.g., for =k 2, where
very fine-scale structure can be seen. In particular, the red part
of the embedding, which corresponds to redder spectra, varies
considerably as k is adjusted, and small-scale local structure
such as the cyan “heel” pointing downward and to the right for
k=2 is lost for larger values of k. For the largest k, the
mappings start to lose some of the subtleties. We seem to find a
good balance for k=32, which is what we adopt as the
fiducial setting for the rest of the paper, but we emphasize that

other smaller values of k may be more appropriate for finer-
scale analyses.
To make these informal observations somewhat more

quantitative, we study the eigenvalues as well as the
eigenvectors used in our embeddings. In Figure 6(a), we plot
the decay of the top 101 eigenvalues for values of k ranging
from 21–211 by powers of two. From the figure, we can see that
as k is increased and thus, as more edges are added to the graph,
the rate at which the eigenvalues decay increases, i.e., the
matrix is more well-embeddable in a low-dimensional space.

Figure 4. Leading components of our nonlinear mappings provide great detail of galaxy diversity. Every point in the top-left panel corresponds to a galaxy colored by
the first non-trivial component. The R-, E-, A- labels correspond to trends that the boxes intend to illustrate: R for red to blue, E toward extremely blue, and A for
active galactic nuclei. The other panels show the composite spectra for objects in the labeled black boxes. The light blue envelopes around the spectra illustrate the one
standard deviation.
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Figure 5. Series of plots show the variations in the embedding coordinates as the number of neighbors is adjusted to =k 2n, { }În 1, 3, 5, 7, 9, 11 . Points are color
coded by the value of the most important eigen-coefficient and the axes correspond to the next two components.

Figure 6. Empirical spectral properties, i.e., eigenvalues and eigenvectors, of embedding matrices as a function of parameter k. (a) Top 101 eigenvalues of the lazy
Markov operator with autotuned bandwidths, for =k 21 (red) to =k 211 (yellow). This illustrates faster eigenvalue decay as k increases, meaning that for small k there
is more heterogeneous structure not well approximated by a low-rank space. (b) Max-to-median ratio of eigenvector norms, as a function of the embedding dimension
for the lazy Markov operator with autotuned bandwidths, for =k 21 (red) to =k 211 (yellow). This illustrates more smooth eigenvectors as k increases, meaning that
for small k there is more heterogeneous local structure.
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Next, in Figure 6(b), we plot the ratio of the largest eigenvector
norm to the median eigenvector norm, as a function of the
index of the eigenvectors. Specifically, if n i

j
1: is the embedding

of spectrum j on eigenvectors 1 to i, we plot the quantity

( ) ( ) 
 

n
i

1
max , 8

j n
i

j

1
1: 2

2

as a function of i. In general, the eigenvectors become more
uniform with increasing k, and local heterogeneities—as
captured by localized eigenvectors—become less prominent
with the inclusion of additional edges.

We note that for these values of k, the Markov matrix is not
particularly well approximated by a low-rank matrix. Never-
theless, the leading eigenvectors do correlate well with physical
intuition, and they do provide meaningful low-dimensional
representations of the data. We should also note that these
effects of increasingly localized eigenvectors and slower
eigenvalue decay, as the data graphs are made sparser, have
been observed previously in connection with the Nyström
method in large-scale machine learning applications, as in
Gittens & Mahoney (2016). (While a detailed discussion of this
is beyond the scope of this paper, see Gittens & Mahoney 2016
and in particular the discussion of the statistics on the sparsified
radial basis function kernels.) Our results are consistent with
this prior work(Gittens & Mahoney 2016), which demon-
strated that sparser graphs (within a parameterized family such
as with radial basis function kernels or k-NN graphs) are much
less “nice” in the sense that their eigenvalues decay more
slowly and that their eigenvectors are more localized.

4. GLOBAL STRUCTURE VIA GLOBAL EMBEDDINGS

Our approach yields results that resemble our intuitions
formed by decades of galaxy research. The goal for future
research is to understand the empirical parameters in the
context of synthetic models and perform inference using the
embedding coordinates, but here we discuss some observations
of the data-drive methodology. While these are not new
astronomy results, they illustrate the usefulness of such
embeddings, which could originally have been used to make
the discoveries.

4.1. Red Galaxies, Trends and Outliers

Figure 7 illustrates how the new method can be used to study
the diversity of red galaxies. Panel (a) shows the second (n2,
i.e., the first non-trivial) and fifth (n5) component. The latter
discriminates red galaxies in the very dense region of spectrum
space better than other low-order eigenvectors. As in Figure 4,
color corresponds to the value of n2, and we have drawn
bounding boxes in an ad hoc manner.

In Figure 7(b), we present the mean and standard deviation
of spectra in boxes RR1–RR5 from panel (a). It is clear that all
spectra in this area of the embedding share a red continuum
shape, with small or absent emissions lines. We also see the
increasing strength of prominent Hα line with increasing values
of n5. Panel(c) is the same for boxes RG1–RG5, which
correspond to a region of high density. The transition from red
to blue continuum shape is perhaps the most evident in this
small region of the embedding space.

Finally, for completeness, in Figure 7(d) a set of outliers is
shown, labeled O1–O5 in panel (a). Spectra O4 and O5 have
been scaled by factors of 1/10 and 1/100, respectively, for

legibility. Outlier detection is a critical and important area to
remove artifacts from the data and to identify potentially new
types of objects or phenomena. All of these outlier spectra
appear to be artifacts of the pipeline or the gap-correction
preprocessing step. We note that each of these erroneous
spectra appear separated from the remainder of the data, thus
indicating the robustness and usefulness of the method for
identifying outliers.

4.2. Relationship to eCoeff

Next, we compare the new embeddings with those obtained
via PCA, which is a dimension-reduction method that
optimally preserves linear structure in high-dimensional data
sets. These embeddings are computed in the SDSS pipeline and
stored as ecoeff_i for i ranging from 0–4. These
coefficients are routinely used, for example, to classify galaxy
types(Yip et al. 2004a).
In Figure 8, we plot the galaxies in the embedding on the

mixing angles θ and f. The opacity is proportional to the
density and the coloring is determined by the eigenvector in the
left panel, and by eigenvector 5 on the right. From the former, it
is clear that n2 and f are highly correlated. Given our results in
the previous subsection, this is not surprising, since both
measures mediate between red and blue continuum shapes. We
confirm that the principal trends from red to blue captured by
previous methods is the leading term of the new embedding.
We omitted plots showing that n3 and n4 discriminate among
blue spectra. The right panel displays how n5 picks up in a more
complicated way variation among red spectra.

4.3. Relationship with BPT Diagrams

Next, we compare the new embeddings to BPT diagrams,
which are based on the flux in four wavelength bins,
corresponding to the aN , H , OII III, and bH emissions lines.
Figure 9 contains the usual BPT diagrams of line ratios

a b b
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟log

N

H
versus log

O

H
versus log

O

H
.10

II
10

III
10

II

The opacity is again proportional to the density and the coloring
is determined by the first non-trivial eigenvector n2. These color
versions of Figure 2 show that the apparent bifurcation in the
BPT plots is really a continuous and gradual change. The most
dominant component shown in color resolves the degeneracies
in these plots and shows that the scatter is primarily due to the
red galaxies. These plots hint at the possibility of a better
classification algorithm, which uses the coordinates provided by
our method, potentially in combination with the traditional line
measurements. The advantage of using the new approach is that
the ν coordinates summarize the entire spectrum and are not
limited to the small wavelength regions on which the line
measurements are based. This makes the quantities less noisy
and the subsequent inference more robust.
The comparison of the apparent structure in the embedded

coordinates of galaxies in Figures 1 and 4, along with the
illustrations of similarities to PCA and BPT in this section,
suggests that the new mapping will be a useful tool to study
galaxy diversity. It seems to capture information about both the
continuum shapes and the spectral lines in a single analysis. In
the next section, we look at the results in the context of galaxy
classification.
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4.4. Comparison to the SDSS Classification

We augment the embeddings with the addition of the SDSS
class labels as derived by Brinchmann et al. (2004). Our sample
of about 517,000 spectra are split into the following six
categories: star forming, low signal-to-noise star forming,
composite, AGN, low signal-to-noise LINER; and unclassified.
This state-of-the-art classification scheme goes beyond the BPT
diagrams and uses a total of seven lines to distinguish the
separate classes. See Figure 10 for BPT line-ratio diagrams
with galaxies color coded by class label. The linear class
boundaries through high-density regions of the data, as well as

a quick comparison with Figure 9(a), highlight the arbitrariness
of the class boundaries.
In Figure 11, we present the embeddings on eigenvectors 2

and 5 of the same graph Laplacian of the galaxies. This is the
same plot as Figure 7(a), but now with points color coded
according to their type: blue for star forming, cyan for low
signal-to-noise star forming, green for composite, magenta for
AGN, and red for LINER. We have omitted unclassified
spectra from these figures in order to make the embeddings
more legible. One can discern a transition from star forming to
composite to LINER with increasing n2. This agrees with the
earlier remarks regarding the correlation of n2 with continuum

Figure 7. Higher-order components help distinguish different types of galaxies. In the projection shown in the top-left panel, the red galaxies are resolved better by the
5th component. The other panels show composites of the appropriate boxes and illustrate the red–blue transition (RG1-5), the diversity of red galaxies (RR1-5) and
some of the outliers (O1-5).
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shape. In addition, as noted previously, the AGN form a
separate “spur” between the star-forming galaxies and LINERs.
We note the concentration of composite galaxies, which exhibit
a transition from blue to red continuum shapes. We also note
the concentration of LINER and low signal-to-noise star-
forming galaxies along the lower right rim of the data set,
which are difficult to distinguish from one another. We see a
separation between the bulk of the spectra and those labeled as
AGN. Other projections show a clear boundary between
LINERs and AGN, which does not appear to be data driven,
but astronomically motivated (Brinchmann et al. 2004).

4.5. Bimodality of the Blue Ridge

Upon closer inspection of Figure 4(a), the blue sequence of
galaxies actually appears to split: there are two parallel ridges
going through the the boxes E1–E3. As with the unexpected

resolution of the AGN, this feature of the map was also not
foreseen and is most tantalizing at first. To highlight and
understand better this apparent bimodality, consider Figure 12,
where we present a map of higher-order eigenvectors. The
separate trendline is clearly visible. The key insight, however,
comes from the color scheme, which represents the redshift of
each galaxy. We see that one of the strands contains the
lowest redshift spectra in the entire MGS with <z 0.02. Upon
examination of the individual sources and their postage
stamps from the SkyServer Image Cutout service, we
determined that this feature is in fact an artifact. The SDSS
photo pipeline is known to break apart large galaxies, and
here we witness its power to pick out individual star-forming
H II regions, which the target selection identified as galaxies.
Their morphology is in complete agreement and in some of
the cases the enhanced star formation appears to be induced
by merging galaxies.

Figure 8. Leading components of the PCA and our nonlinear embedding show similar trends, as can be seen on the left, where the galaxies are plotting on the mixing
angles, but colored by the first leading component (n2) of the new analysis. The next two components differentiate between blue galaxies, not shown in this figure, and
n5 resolves the red, as also shown in the previous figure.

Figure 9. BPT line-ratio diagrams, color coded by the leading component of the new embedding, reveal previously hidden trends.
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5. LOCAL STRUCTURE VIA LOCAL EMBEDDINGS:
FOCUSING AROUND SELECTED OBJECTS

While embedding maps provided by global variants of
locally-biased semi-supervised eigenvectors provide a great
deal of information about the structure in the data and the
diversity of the galaxies, locally-biased variants are expected to

go well beyond this in terms of resolving power for any points
of particular interest. In this section, we investigate locally-
biased embeddings and the choice of seed vectors s introduced
earlier in Section 2. (Recall that the seed vector s in Problem (7)
is an indicator vector of the seed set of nodes, i.e., it is a vector
indicating which galaxy spectra the method should be biased
toward.) In Figure 13, we compare global and locally-biased
mappings. In the left panel, we plot the galaxies on global
eigenvectors 2 and 3, and color the points by the second global
eigenvector, as before. Also indicated with black outlines are
two subsets of galaxies chosen somewhat arbitrarily on the
AGN branch and among red galaxies. These seed sets were
defined by manually choosing one galaxy of interest and taking
its 100 nearest neighbors in the global embedding space shown
in the left panel. (That is, the seed vectors for the embedding
shown in the second and third panel were indicator vectors for
one or the other of the black sets of nodes in the first panel.)
Using biased mapping with κ set to 1/4 for each eigenvector,
we create two embeddings for the two sets of seeds and plot the
results in the middle and left panels using the same color
scheme. The plots of the two leading non-trivial eigencompo-
nents appear very different and are dominated by different
populations of galaxies even though all DR7 MGS galaxies are
plotted in all three panels. In the local setting, galaxies similar
to the seeds are drawn away from the bulk of the embedding,
offering a “zoomed-in” view of the local region of interest, and
galaxies very dissimilar to those in the seed vector are given
lower importance and clumped together. With the new focus,
these galaxy maps reveal very different subtle trends that were
previously hidden in the global view, and galaxies unlike the
seeds are marginalized in a corner of the figure. The full story
of these trends is still unfolding and will be studied in
future work.

5.1. Locally-biased Learning

To illustrate how the local analysis can be used to perform
improved classification, we constructed a set of five locally-
biased embeddings, one for each class per the definition of

Figure 10. BPT line-ratio diagram colored by the SDSS classification scheme
is comparable to the previous figure.

Figure 11. Using the same –n n2 5 projection of our new embedding, we show
all classified galaxies in the DR7 MGS in Brinchmann et al. (2004). In
comparison to the previous two figures, this map conveys global trends, which
are in accord with our intuitions, e.g., the AGN shown in magenta nicely
separate from the star-forming galaxies in blue, and the composite types in
cyan are in the transition region. We also see unexpected trends, such as the
bimodality of the blue branch, see text.

Figure 12. Higher-order components further differentiate the bimodality in the
blue galaxies. The solution to this puzzle is revealed by coloring the galaxies
by their redshifts. The green strand contains H II regions targeted as galaxies by
the photometric pipeline.
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Brinchmann et al. (2004). Our goal is not to recover the same
class memberships for all galaxies, but rather to look at the
difference in the light of the diversity maps of enhancing the
neighborhood of sample galaxies in known classes.

In particular, we choose random spectra of each class and set
the corresponding elements of s to +1. To increase the contrast,
we further choose the same number of random spectra from the
other classes and set the corresponding elements of s to
−1(Friedman et al. 2001). We expect that the local embedding
with such a seed vector will better separate class c from the
remaining spectra. For this study, we varied n in a wide range
and chose to illustrate the application using n=640. We
calculate the top nine local eigenvectors for each class, with

uniform correlation parameter k = 1 9. We then trained a five-
class logistic regression model using the global and local
embeddings as features. We grouped the features together into
sets of five, taking a fixed number of local eigenvectors per
class. Thus, we tested one model using the top local
eigenvector from each class, another using the top two local
eigenvectors from each class, and so on. We compared these
with models built using the same number of global eigenvec-
tors. For each number of features, we cross-validated the model
using ten folds with a 10%/90% train/test split.
The logistic regression model returns a vector of probabil-

ities that a spectrum in the test set belongs to a given class.
Using these probabilities, we constructed confusion matrices,

Figure 13. Two sets of black points in the initial global embedding (left) are selected as seed for further examination. The middle and right panels illustrate the locally-
biased embeddings focusing on these two sets of points. The new maps reveal local features previously hidden in the global embeddings.

Figure 14. A suite of galaxy classifiers was developed on the embedding coordinates. The top row shows the confusion matrix of different types as a function of
leading components in the global setting. We tested the top 5, 10, and 15 most important terms shown from left to right. The bottom row illustrates the same for the
locally-biased case. We see faster improvement in the latter, especially in the case of the AGN.
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whose i j, entry represents the average probability (over the test
set) that a spectrum of type i is assigned to type j. The results
are shown in Figure 14 for models constructed with 5, 10, and
15 eigenvectors. The top row corresponds to the increasing
number of global eigenvectors and the bottom to local
eigenvectors. Comparing the top and bottom left panels of
Figure 14 , we note that with five global features, the model has
difficulty correctly classifying AGN. However, using five local
features leads to a significant increase in the correct classifica-
tion of such spectra. Thus, for a fixed budget of features, the
local model outperforms the global version, as expected.
Increasing the number of features, global or local, leads to
improved performance on this rare galaxy type, and the local
model consistently outperforms its global counterpart.

We also note that for all models shown, there is a large
ambiguity between low signal-to-noise star-forming galaxies
and LINERs. Indeed, for all cases, the probability that a galaxy
labeled LINER is classified as low signal-to-noise star forming,
is greater than the probability that it is correctly labeled. This is
not surprising in light of Figure 11(c), where significant mixing
of these two types, colored cyan and red, respectively, is
visually evident. We find this result to be very robust to the
choice of graph construction, i.e., the k nearest neighbors.

5.2. Labeling Unclassified Spectra

There is a large number of galaxies without reliable
classification, and one of our goals was to see if the
embeddings provide a way to classify these. We found that
this is very challenging and fundamentally limited by the data.
The reason is that unclassified spectra (even when they are not
obvious outliers caused by experimental artifacts) typically
have properties which are very different than any classified
spectra. That is, they are unclassified for a good reason, i.e.,
since they are very different than spectra in one of the main
classes, and in some sense they form their own (diverse)
“other” class, whether viewed from a global or a locally-
biasedperspective.

6. CONCLUSION

We have presented the method of locally-biased semi-
supervised eigenvectors(Mahoney et al. 2012; Hansen &
Mahoney 2014), which is a novel data-driven technique, to
study the diversity of galaxy spectra in the SDSS DR7 MGS.
By constructing low-dimensional maps, which respect the local
spectral similarity, we are able to visualize a range of known
astronomical phenomena, e.g., the continuous transition of blue
galaxies to red ones or the varying strength of AGN. Unlike
previously used methods such as PCA, our method can focus
on local properties and subtle trends in the data, in addition to
the global context. These aspects of the maps of all galaxies can
be varied by just a couple of parameters.

In particular, we (1) studied the new method in the context of
PCA and demonstrated unprecedented detail in our data-driven
maps. The new parameters clearly track changes in the
continuum shape and the strengths of spectral lines. We
confirmed that there are no disjoint groups of galaxies to
indicate natural classes, but instead there are smooth contin-
uous transitions between different types of objects. We found
that prominent features of these maps correspond to known
astrophysical phenomena such as star formation and AGN. We
also found (2) a tantalizing bimodality in the bluest

observations, which turned out to be the result of the
photometric pipeline detecting H II regions in the closest
galaxies. We studied (3) the relation of the new results to BPT
diagrams as well as the state-of-the-art classification methods
and proposed the use of continuous parameters instead of rigid
boundaries in astrophysical studies. The derived empirical
parameters summarize entire spectra and hence carry more
information than measurements extracted in narrow wavelength
ranges and could offer a more robust alternative. We developed
(4) new classifiers and attempted to categorize the “unclassi-
fied” spectra with modest success, due to the inherent
limitations of the data. Furthermore, we (5) demonstrated that
locally-biased maps emphasize subtle trends, which can be
used as a general data exploration tool to focus on galaxies of
interest. In the new maps, oddities and artifacts are auto-
matically separated and can be discovered by visual inspection
or the usual machine learning tools, which makes our method a
great candidate for outlier detection.
Based on these results, the new method of locally-biased

semi-supervised eigenvectors may be viewed as a new type of
computational microscope for astronomical data. It can not
only reproduce known properties of the data or identify outliers
and artifacts, as done in this paper, but can be used as a novel
research tool to enhance subtle trends around selected objects
and potentially to facilitate new discoveries. We plan future
studies to improve galaxy classification and derive continuous
spectral models, which in turn can be used for subsequent
analyses, e.g., for photometric redshift estimators, and to better
understand galaxy evolution when combined with stellar
population synthesis models.
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