
Accelerating Large-Scale Data Analysis by Offloading to
High-Performance Computing Libraries using Alchemist

Alex Gittens
Rensselaer Polytechnic Institute

Troy, New York
gittea@rpi.edu

Kai Rothauge
UC Berkeley

Berkeley, California
kai.rothauge@berkeley.edu

Shusen Wang
UC Berkeley

Berkeley, California
shusen@berkeley.edu

Michael W. Mahoney
UC Berkeley

Berkeley, California
mahoneymw@berkeley.edu

Lisa Gerhardt
NERSC/LBNL

Berkeley, California
lgerhardt@lbl.gov

Prabhat
NERSC/LBNL

Berkeley, California
prabhat@lbl.gov

Jey Kottalam
UC Berkeley

Berkeley, California
jey@cs.berkeley.edu

Michael Ringenburg
Cray Inc.

Seattle, Washington
mikeri@cray.com

Kristyn Maschhoff
Cray Inc.

Seattle, Washington
kristyn@cray.com

ABSTRACT
Apache Spark is a popular system aimed at the analysis of large
data sets, but recent studies have shown that certain computations—
in particular, many linear algebra computations that are the basis
for solving common machine learning problems—are significantly
slower in Spark than when done using libraries written in a high-
performance computing framework such as the Message-Passing
Interface (MPI).

To remedy this, we introduce Alchemist, a system designed to
call MPI-based libraries from Apache Spark. Using Alchemist with
Spark helps accelerate linear algebra, machine learning, and related
computations, while still retaining the benefits of working within
the Spark environment. We discuss the motivation behind the de-
velopment of Alchemist, and we provide a brief overview of its
design and implementation.

We also compare the performances of pure Spark implementa-
tions with those of Spark implementations that leverage MPI-based
codes via Alchemist. To do so, we use data science case studies: a
large-scale application of the conjugate gradient method to solve
very large linear systems arising in a speech classification problem,
where we see an improvement of an order of magnitude; and the
truncated singular value decomposition (SVD) of a 400GB three-
dimensional ocean temperature data set, where we see a speedup of
up to 7.9x. We also illustrate that the truncated SVD computation
is easily scalable to terabyte-sized data by applying it to data sets
of sizes up to 17.6TB.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219927

KEYWORDS
Alchemist; Apache Spark; MPI; Elemental; distributed computing;
low-rank approximation; truncated SVD; conjugate gradient; kernel
methods; TIMIT; CSFR; climate modeling; speech classification

ACM Reference Format:
Alex Gittens, Kai Rothauge, Shusen Wang, Michael W. Mahoney, Lisa Ger-
hardt, Prabhat, Jey Kottalam, Michael Ringenburg, and Kristyn Maschhoff.
2018. Accelerating Large-Scale Data Analysis byOffloading toHigh-Performance
Computing Libraries using Alchemist. In KDD ’18: The 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, August
19–23, 2018, London, United Kingdom. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3219819.3219927

1 INTRODUCTION
Apache Spark [25] is a cluster-computing framework developed for
the processing and analysis of the huge amount of data being gen-
erated over a wide range of applications, and it has seen substantial
progress in its development and adoption since its release in 2014.
It introduced the resilient distributed dataset (RDD) [24], which can
be cached in memory, thereby leading to significantly improved
performance for iterative workloads often found in machine learn-
ing. Spark provides high productivity computing interfaces to the
data science community, and it includes extensive support for graph
computations, machine learning algorithms, and SQL queries.

An altogether different framework for distributed computing
is provided by the message-passing parallel programming model,
which mediates cooperative operations between processes, where
data is moved from the address space of one process to that of
another. The Message Passing Interface (MPI) [11] is a standardized
and portable message-passing specification that is favored in the
high performance computing (HPC) community because of the high
performance that can be attained using well-written MPI-based
codes. Although originally developed for distributed memory sys-
tems, the modern MPI standard also supports shared memory and
hybrid systems. Popular implementations of the MPI standard are

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

293

https://doi.org/10.1145/3219819.3219927
https://doi.org/10.1145/3219819.3219927

MPICH and Open MPI, with numerous derivatives of MPICH hav-
ing been developed over the years. While bindings for MPI are
available for some popular languages such as Python, R, and Julia,
the vast majority of MPI-based libraries are written in C, C++, or
Fortran, languages that are generally less accessible to data scien-
tists and machine learning practitioners. Also, MPI offers no fault
tolerance, nor does it offer support for elasticity.

In this paper, we introduce Alchemist [17], a system developed
to facilitate using existing MPI-based libraries from Apache Spark.
The motivation for Alchemist is that, while Spark does well for cer-
tain types of data analysis, recent studies have clearly shown stark
differences in runtimes when other computations are performed in
MPI, compared to when they are performed in Spark, with the high-
performance computing framework consistently beating Spark by
an order of magnitude or more. Some of the applications investi-
gated in these case studies include distributed graph analytics [21],
and k-nearest neighbors and support vector machines [16]. How-
ever, it is our recent empirical evaluations [4] that serve as the
main motivation for the development of Alchemist. Our results
in [4] illustrate the difference in computing times when performing
certain matrix factorizations in Apache Spark, compared to using
MPI-based routines written in C or C++ (C+MPI).

The results we showed for the singular value decomposition
(SVD), a very common matrix factorization used in many differ-
ent fields, are of particular interest. The SVD is closely related to
principal component analysis (PCA), a method commonly used to
discover low-rank structures in large data sets. SVD and PCA are
particularly challenging problems for Spark because the iterative
nature of their algorithms incurs a substantial communication over-
head under the bulk synchronous programming model of Spark.
The upshot is that not only is a Spark-based SVD or PCA more
than an order of magnitude slower than the equivalent procedure
implemented using C+MPI for data sets in the 10TB size range, but
also that Spark’s overheads in fact dominate and its performance
anti-scales1. (See Figures 5 and 6 in [4] for details.) There are sev-
eral factors that lead to Spark’s comparatively poor performance,
including scheduler delays, task start delays, and task overheads [4].

Given this situation, it is desirable to call high-performance
libraries written in C+MPI from Spark to circumvent these delays
and overheads. Done properly, this could provide users with the
“best of both worlds.” That is, the MPI-based codes would provide
high performance, e.g., in terms of raw runtime, while the Spark
environment would provide high productivity, e.g., by providing
convenient features such as fault-tolerance by allowing RDDs to be
regenerated if compute nodes are lost, as well as a rich ecosystem
with many data analysis tools that are accessible through high-level
languages such as Scala, Python, and R.

We envision that Alchemist will be used as part of a sequence
of data analysis operations in a Spark application. Some of these
operations may be handled satisfactorily by Spark itself, but when
MPI-based libraries are available that could perform critical compu-
tations faster, then the user can easily choose to call these libraries
using Alchemist instead of using Spark’s implementations. This

1As the number of nodes increases, the overheads take up an increasing amount of
the computational workload relative to the actual matrix factorization calculations.

allows us to leverage the efforts of the HPC community to bypass
Spark’s high overheads where possible.

To accomplish this, Alchemist spawns MPI processes when it
starts, and then it dynamically links to a given MPI-based library
as required. The data from an RDD is transferred from the Spark
processes to the MPI processes using sockets, which we have found
to be an efficient method to handle the transfer of large distributed
data sets between the two frameworks.

To assess and illustrate the improvement in performance that
can be achieved by using Alchemist, we describe a comparison of
the timing results for two important linear algebra computations.

• Conjugate gradient (CG). The CG method is a popular itera-
tive method for the solution of linear systems of equations
where the underlying matrix is symmetric positive-definite.
We compare the performance of a custom implementation
of CG in Spark to that of a modified version of an MPI-based
implementation found in the Skylark library [9] (a library of
randomized linear algebra [2] routines).

• Truncated SVD. The truncated SVD is available in MLlib,
Spark’s library for machine learning and linear algebra op-
erations. We compare the performance of Spark’s imple-
mentation with that of a custom-written MPI-based imple-
mentation (that also uses methods from randomized linear
algebra [2]) that is called via Alchemist.

Both of these computations are iterative and therefore incur sig-
nificant overheads in Spark, which we bypass by instead using
efficient C+MPI implementations. This, of course, requires that the
distributed data sets be transmitted between Spark and Alchemist.
As we will see, this does cause some non-negligible overhead; but,
even with this overhead, Alchemist can still outperform Spark by
an order of magnitude or more.2

The rest of this paper is organized as follows. Combining Spark
with MPI-based routines to accelerate certain computations is not
new, and in Section 2, we discuss this related work. In Section 3, we
give an overview of the design and implementation of Alchemist,
including how the MPI processes get started, how data is transmit-
ted between Spark and Alchemist, Alchemist’s use of the Elemental
library, and a brief discussion of how to use Alchemist. In Section 4,
we describe the experiments we used to compare the performance
between Spark and Alchemist, including our SVD computations
on data sets of sizes up to 17.6TB. We summarize our results and
discuss some limitations and future work in Section 5.

Note that, in this paper that introduces Alchemist, our goal is
simply to provide a basic description of the system and to illustrate
empirically that Spark can be combined with Alchemist to enable
scalable and efficient linear algebra operations on large data sets. A
more extensive description of the design and usage of Alchemist
can be found in a companion paper [5], as well as in the online
documentation [17].

2 RELATEDWORK
Several recent projects have attempted to interface Spark with MPI-
based codes. One of these is Spark+MPI [1], which also invokes

2Alchemist is so-named since it solves this “conversion problem” (from Spark to MPI
and back) and since the initial version of it uses the Elemental package [14].

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

294

Figure 1: Outline of the Alchemist framework. One or more Spark applications can each call one or more MPI-based libraries
to help accelerate some numerical computations. Alchemist acts as an interface between the applications and the libraries,
with data between Alchemist and the applications transmitted using TCP sockets. Alchemist loads the libraries dynamically
at runtime.

existing MPI-based libraries. The approach used by this project seri-
alizes the data and transfers it from Spark to an existing MPI-based
library using shared memory. The output from the computations is
then written to disk using the fault-tolerant HDFS format, which
can then be read by Spark and loaded into an RDD. Spark+MPI
offers a simple API and supports sparse data formats, but the re-
ported overheads of this system are significant when compared to
the compute time, and the data sets used were relatively small, so it
is not yet clear if this approach is scalable or appropriate for large,
dense data sets.

Another approach is taken by Spark-MPI [10], which supple-
ments Spark’s driver-worker model with a Process Management
Interface (PMI) server for establishing MPI inter-worker communi-
cations. While promising, the project is still in its early stages, and
it is unclear if or how it is possible to call MPI-based libraries from
Spark.

Smart-MLlib [20] allows Spark to call custom machine-learning
codes implemented in C++ and MPI, with data transfer between
Spark’s RDD and the MPI-based codes accomplished by writing and
reading from files. The system has not been shown to be scalable
and appears to no longer be under active development.

3 OVERVIEW OF ALCHEMIST
In this section, we give a high-level overview of Alchemist. The
design and implementation of the Alchemist framework is discussed
in Section 3.1, and how data is transmitted between Spark and
Alchemist, and then stored in Alchemist, is addressed in Section 3.2.
A quick note on the required dependencies and an introduction to
the API is given in Section 3.3.

We refer the interested reader to our companion paper [5] and
the online documentation [17] for a more extensive discussion of
the design, implementation, and usage aspects of Alchemist.

3.1 Design and Implementation
The Alchemist framework is shown in Figure 1 and consists of three
key components.

3.1.1 Alchemist. The core Alchemist system acts as a bridge
between an Apache Spark application and one or more MPI-based
libraries. Alchemist has a driver process and several worker pro-
cesses that communicate using MPI, and the MPI-based libraries

run on these processes. Alchemist has a server-based architecture,
with one or more Spark applications being able to connect to it
concurrently, assuming sufficient workers are available.

The current implementation requires Alchemist to run on a user-
specified number of nodes, and the Spark application to run on
a different set of nodes. The Spark application then connects to
Alchemist and transfers the relevant data to it over the network.
The application requires the Alchemist-Client Interface in order to
connect to Alchemist, which we discuss next.

3.1.2 The Alchemist-Client Interface (ACI). The ACI allows
the Spark application to communicate with Alchemist. The main
computational overhead of using Alchemist is the time it takes to
transmit large data sets from the Spark application to Alchemist
and back. Our approach to transferring the data from the Spark
processes directly to the MPI processes is to use TCP sockets. This
is an in-memory procedure and is therefore very fast, while not
requiring an additional copy of the data set, and therefore the most
practical option for our purposes. Other possibilities would be to
transfer the data using files, or to use some in-memory intermediary
in a format that both Spark and Alchemist can use. See Section 3.2
for further discussion on this.

The ACI opens multiple TCP sockets between the Spark execu-
tors and Alchemist workers, and one socket connection between
the two driver processes. The communication is asynchronous, al-
lowing not only other Spark drivers to connect to the Alchemist
driver concurrently, but also to accommodate the case where each
Alchemist worker receives data from several Spark executors.

Non-distributed data, such as metadata and input arguments
such as step sizes, maximum iteration counts, cut-off values, etc.,
are transferred between the Spark and Alchemist drivers.

Distributed data, on the other hand, is transferred between the
Spark executors and the Alchemist workers. When transferring the
data from an RDD to a recipient Alchemist worker, the Spark execu-
tor sends each row of the RDD partitions to the recipient worker
by transmitting the row as sequences of bytes. The received data is
then recast to floating point numbers on the MPI side. Conversely,
the transmission of matrices from MPI to Spark is facilitated by
Alchemist in a similar row-wise fashion. In the applications we
consider in this paper, the distributed data sets are dense matrices
of floating point numbers. Concretely, this means that Alchemist

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

295

currently sends and receives data using Spark’s IndexedRowMatrix
RDD data structure.

3.1.3 The Alchemist-Library Interface (ALI). To communi-
cate with a library, Alchemist calls it through an ALI. The ALIs
are shared objects written in C/C++ that import their associated
MPI-based libraries and provide a generic interface through which
Alchemist is able to access the MPI-based routines. Alchemist will
load an ALI dynamically at runtime if it is required by some Spark
application.

Alchemist sends the name of the routine in the library that the
application wants to use, as well as the serialized input parameters,
to the ALI. After deserializing the input parameters, the ALI calls
the routine in the MPI-based library with the supplied input in a
format appropriate for that specific library. Once the computations
have completed, the results get serialized and sent to Alchemist,
which then passes them on to the application over the network,
where they are deserialized by the ACI.

Structuring the ALIs as shared object that get linked to at runtime
keeps Alchemist flexible by avoiding the need tomaintain awrapper
function inside Alchemist for every function in each MPI-based
library that an application may want to call. Such a centralized
systemwould incur a significant amount of work for each additional
library that gets added, would impose a severe maintenance and
support burden, and would not give users the option to add libraries
in a portable manner.

3.2 Transmitting and Storing Distributed Data
A key component of the Alchemist system is the efficient trans-
mission of distributed data sets between the Spark application and
Alchemist. In particular, in order for Alchemist to serve as a bridge,
it must support sending distributed input data sets from the ap-
plication to the library, and returning distributed output data sets
(if any) from the library to the application. The design goals of
the Alchemist system include making the transmission of these
distributed data sets easy to use, efficient, and scalable.

Broadly, there are three approaches that could be used to transmit
the data:

• File I/O: Writing the distributed data set to a distributed
file format on one side and then reading it on the other has
the benefit of being easy to use and, if HDFS is used, fault-
tolerant. This approach will generally tend to be very slow
when working with standard HDDs (although it has been
argued that using an array of SSDs as the storage platform
would alleviate this problem).

• Intermediate Storage: This approach would provide an inter-
mediate form of storage of the data in memory that can be
read by both sides. This could be done using shared mem-
ory, or in-memory distributed storage systems. Since we are
considering very large data sets, having a third copy of the
data in memory (on top of the IndexedRowMatrix in the ap-
plication and the DistMatrix in Alchemist) is undesirable.

• Direct Transfer: Our preferred approach is to transfer the
data from the Spark processes directly to the MPI processes
using TCP sockets. This is much faster than writing to file
and does not require an additional copy of the data set.

Figure 2: An excerpt of Spark code that calls Alchemist to
perform the QR decomposition of the IndexedRowMatrix A
using the hypothetical MPI-based library libA.

As the Alchemist workers receive the data arriving through the
sockets from the Spark executors, they store it in a distributed ma-
trix using the Elemental [14] library. Elemental is an open-source
software package for distributed-memory dense and sparse-direct
linear algebra and optimization. It provides a convenient inter-
face for handling distributed matrices with its DistMatrix class,
which is what Alchemist uses to store the data being transmitted
from the RDDs. Elemental also provides a large suite of sequential
and distributed-memory linear algebra operations that can be used
to easily manipulate the distributed matrices. Copying data from
distributed data sets in Spark to distributed matrices in Elemen-
tal requires some changes in the layout of the data, a task that
is handled by Alchemist. The Elemental distributed matrix then
serves as input to the C+MPI routines in the MPI-based library that
Alchemist calls.

3.3 Using Alchemist
Alchemist is designed to be easily deployable, flexible, and easy
to use. The only required imports in a Spark application are the
ACI and, optionally, library wrappers for the MPI-based libraries
that the Spark application needs to access. Alchemist works with
standard installations of Spark.

3.3.1 Dependencies. To build the core Alchemist system, the
user must have a common implementation of MPI 3.0 or higher [11]
installed, such as recent versions of Open MPI [13] or MPICH [12].
Alchemist also requires the Boost.Asio library [7] for communicating
with the ACI over sockets, and the Elemental library [14] discussed
previously for storing the distributed data and providing some
linear algebra operations. In addition, each MPI-based library (and
its dependencies) that the Spark application wants to use should
be installed on the system, since these are needed when compiling
the ALI.

3.3.2 The API. The API for Alchemist is restricted to the user’s
interaction with the ACI within the Spark application. Figure 2
shows an excerpt that illustrates how to use Alchemist in a Spark
application. In this sample, LibA is a hypothetical MPI-based library
that implements a routine for performing the QR decomposition

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

296

of a matrix. The Spark user wants to call this routine to find the
decomposition of the IndexedRowMatrix A,

The example has the following components that we will briefly
describe:

• The application imports the ACI (called Alchemist here).
It also imports the library wrapper libA for the MPI-based
library it wants to work with, and the object that represents
the function it wants to use (QRDecomposition in this case).
Library wrappers simplify the syntax for calling routines
in the MPI-based libraries, and each MPI-based library can
have its own library wrapper. Library wrappers are optional,
but for brevity we do not go into more detail here. (See [5]
for more details.)

• The AlchemistContext instance requires the SparkContext
instance sc and the number of workers that the application
wants to use.

• Registering the librarywith the AlchemistContext. Alchemist
needs to know where to find the ALI for libA on the system,
so the Spark application needs to register the library with Al-
chemist by giving it the library name and file path to where
it is located.

• Alchemist uses AlMatrix objects, which are matrix handles
that act as proxies for the distributed data sets stored in Al-
chemist. After transmitting the data in an RDD to Alchemist,
Alchemist returns an AlMatrix object, which contains a
unique ID identifying the matrix to Alchemist, as well as
other information such as the dimensions of the matrix.
Similarly, for every output matrix that an MPI-based routine
creates, an AlMatrix object is returned to the application.
These AlMatrix objects allow the user to pass the distributed
matrices within Alchemist from one library function to the
next. Only when the user explicitly converts this object into
an RDD will the data in the matrix be sent from Alchemist
to Spark.
In this example, two AlMatrix objects get returned (AlQ and
AlR), and they get converted to IndexedRowmatrix objects
using the AlMatrix class’s toIndexedRowmatrix() func-
tion. Only at this point does the data get transmitted from
Alchemist to Spark.

• The application has to stop the AlchemistContext similarly
to how an instance of SparkContext is stopped.

Note that the API may be tweaked in future releases.

4 EXPERIMENTS
All of the following experiments were run on the NERSC super-
computer Cori, a Cray XC40. In particular, we used the Cori Phase
1 system (also known as the Cori Data Partition system), which has
two 2.3 GHz 16-core Intel Haswell processors on each of its 2,388
nodes, and 128 GB of memory per node.

4.1 CG Solver for Speech Classification
Solving large systems of equations is an important and common task
in many areas of research. Our primary focus here is on the solution
of a large linear system arising in the area of speech classification.

The data set is a modified version of the TIMIT speech corpus,
which was designed to provide speech data for acoustic-phonetic

studies and for the development and evaluation of automatic speech
recognition systems [3]. TIMIT was commissioned by DARPA and
contains broadband recordings of 630 male and female speakers
of eight major dialects of American English, each reading ten pho-
netically rich sentences. The TIMIT corpus includes hand-verified,
time-aligned orthographic, phonetic and word transcriptions as
well as a 16-bit, 16kHz speech waveform file for each utterance.

A preprocessing pipeline was introduced in [6] that provided
a modified version of TIMIT with 2, 251, 569 training examples,
100, 000 test examples, and 440 raw features. This preprocessing
pipeline has subsequently been used elsewhere, for instance [22],
and we also use it here.

In this classification problem, a given feature vector is assigned
into one of 147 different classes. Consequently, for each feature
vector x used for training, there is an associated 147-dimensional
label vector y that has only one non-zero entry. If x is in the i-th
class, then we hope to find a weighting matrixW such that the
147-dimensional vector xW is all-zero except for the i-th entry.
We let X denote the feature-space data matrix containing all the
training examples, and Y the associated label matrix.

It turns out that the original data set is not particularly expressive
since there are just 440 features, leading [6] to use the random fea-
ture method proposed in [15] to increase the expressiveness. This
approach, however, has the drawback that the minimum random
feature space dimensionality needed for competitive performance
tends to be very large when the number of training examples and/or
the dimension of original features are large, and this poses a scalabil-
ity problem. In this study we use random feature space dimensions
of an order of magnitude of 10, 000, and thereby we expand the
feature matrix X , which would otherwise be 2, 251, 569 × 440, into
a larger feature matrix, say 2, 251, 569× 10, 000. This is still an over-
determined system, but it is much more expressive, and the training
and test errors are lower.

In the simulations involving Alchemist, we send the original
2, 251, 569 × 440 feature matrix from Spark to Alchemist, not an
expanded one. The feature matrix is instead expanded within Al-
chemist using the random feature method. This is done to ensure
that the size of the matrix that we are sending is consistent from
one simulation to the next, and it is also significantly cheaper to do
the expansion within Alchemist rather than transferring a feature
matrix that is several TB in size.

Recall that we want to find the weighting matrixW . We do so
by solving the regularized minimization problem

argmin
W

1
n
| |XW − Y | |2F + λ | |W | |2F ,

where | | · | |F denotes the Frobenius norm, n is the number of train-
ing examples, and λ is a regularization parameter. Thisminimization
problem is equivalent to solving the linear system

(XTX + nλI)W = XTY ,

and because this system is symmetric positive definite, we can use
the conjugate gradient (CG) method to solve it [18]. As is usual for
the solution of large linear systems, the CG method is an iterative
method.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

297

data set Matrix Matrix Dimensions Spark Alchemist
Original Feature 2, 251, 569 × 440

Label 2, 251, 569 × 147
Modified Feature 2, 251, 569 × 10, 000 Yes Yes

Feature 2, 251, 569 × 20, 000 No Yes
Feature 2, 251, 569 × 30, 000 No Yes
Feature 2, 251, 569 × 40, 000 No Yes
Feature 2, 251, 569 × 50, 000 No Yes
Feature 2, 251, 569 × 60, 000 No Yes

Table 1: Summary of matrices used in the speech classifica-
tion study. We were unable to run simulations with Spark
using more than 10,000 features.

Number System Iteration time cost Computation
of nodes in s (mean ± s.d.) time (in s)

20 Spark 75.3 ± 18.8 39,743
Alchemist 2.5 ± 0.4 1,330

30 Spark 55.9 ± 8.7 29,443
Alchemist 1.5 ± 0.1 789

40 Spark 40.6 ± 9.1 21,442
Alchemist 1.2 ± 0.2 646

Table 2: Per-iteration costs of Spark vs Alchemist for the CG
method on the 2, 251, 569 × 10, 000 problem. Alchemist uses
a modified version of the CG method implemented in the
libSkylark library.

We use a modification of the MPI-based implementation of CG
found in the libSkylark library [9]. Skylark is an open source soft-
ware library for distributed randomized numerical linear algebra,
with applications to machine learning and statistical data analysis;
it is built atop the Elemental library, making it ideally suited for use
with the current implementation of Alchemist. We wrote our own
version of CG in Spark, since no suitable implementations were
available in MLlib.

We were unable to get Spark to perform the conjugate gradient
method on feature matrices that contained more than 10,000 fea-
tures, but having a large number of features did not prove to be a
problem for Alchemist. Table 1 summarizes the sizes of the feature
matrices that were used in this study (observe that the “smaller”
dimension is gradually increasing), and with which system they
were used.

See Table 2 for a comparison of the per-iteration and total com-
putation time costs between Spark and Alchemist for the case of
10,000 features. We see an order of magnitude improvement in over-
all running time of the CG computations. This is not surprising,
since the CG method is an iterative method and we therefore ex-
pect Spark to have high overheads, which leads to the significantly
higher per-iteration time cost. In contrast, the main overhead when
using Alchemist is the time it takes to transfer the input data from
the Spark processes to the Alchemist processes, and (depending on
the application) to transfer the output from the Alchemist processes
to the Spark processes. In this experiment we do not need to worry

Number Data set Feature matrix transfer times (in s)
of Spark creation Number of Alchemist processes
processes times (in s) 20 30 40

2 777.0 580.1 874.9 1,021.6
10 238.2 166.4 198.0 222.9
20 217.5 149.5 165.7 185.4
30 228.0 163.1 157.6 *
40 209.4 312.4 * *
Computation time 1,330.08 788.51 646.6

Table 3: Time required to transfer the feature matrix from
Spark to Alchemist, for different node allocation configura-
tions, with a maximum of 60 nodes available. For compari-
son purposes, we have also included the time it takes to per-
form the CG computations. The reported transfer times are
the average of three separate runs.

Number of Iteration time cost Computation
features in ms (mean ± s.d.) time (in s)
10,000 1, 490.6 ± 65.7 788.5
20,000 2, 895.8 ± 39.8 1,534.8
30,000 4, 317.0 ± 48.4 2,270.7
40,000 5, 890.4 ± 67.8 3,104.2
50,000 7, 286.9 ± 26.1 3,854.8
60,000 8, 794.9 ± 99.0 4,643.7

Table 4: Per-iteration and total time costs for the CG com-
putations usingAlchemist for different numbers of features.
Alchemist ran on 30 nodes, and the time to transmit the data
fromSpark (also running on 30 nodes) was 169.6s on average.
We see that the data transmission overhead becomes less sig-
nificant as the number of features grows.

about the time it takes to transfer the output data, but transferring
the input data is non-negligible.

The time taken for the data transfer depends on several factors.
Most significantly, of course, is the size of the matrix, but also the
layout of the data in the RDD compared to the desired layout in
the distributed matrix on the library side, the physical proximity
of the nodes running the Spark processes to the nodes running
the Alchemist processes (this is less important on supercomputers
with fast interconnects), network load and reliability, as well as the
number of Spark processes relative to the number of Alchemist
processes.

We investigate the latter here by looking at the transfer times of
the feature matrix for different numbers of Spark and Alchemist
processes. We hold the number of features fixed at 10,000. The
results can be seen in Table 3. Notice that the transmission time
decreases as the number of Spark executors increases, which is not
surprising because in this way more data can be sent to Alchemist
concurrently. It is also interesting that, based on the observations
for 20 Alchemist nodes, it appears that the transmission time is
minimized when using the same number of Spark and Alchemist

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

298

Number of nodes Data load Spark => Alchemist SVD compute Spark <= Alchemist Total run
Spark Alchemist time (in s) data transfer time (in s) time (in s) data transfer time (in s) time (in s)
12 0 38.0 NA 553.1 NA 553.1
10 12 38.0 62.5 48.6 10.8 121.9
2 12 27.23 NA 48.6 21.1 69.7

Table 5: Run-times for three use cases of Spark and Alchemist for computing the rank-20 SVD of the abridged ocean temper-
ature data set: (1) Spark loads the data and computes the SVD, (2) Spark loads the data and Alchemist computes the SVD, (3)
Alchemist both loads and computes the SVD before transferring the result back to Spark. In this example, using Alchemist
leads to speedups of about 4.5x and 7.9x compared to only using Spark. The total run times do not include the time it takes to
load the data.

processes, although a more thorough investigation needs to be
performed to see if this holds true in general.

Also, the cost of sending the feature matrix from Spark to Al-
chemist will increase relative to the total computation time as the
number of Alchemist processes increases. This is simply a side
effect of having a reduced CG computation time when using more
Alchemist processes. The times reported here are the average of
three different runs, since there is some variability in the transfer
times due to factors such as network load; see [5] for an investiga-
tion of transfer times of a randomly-generated, dense 400GB matrix
for two different matrix shapes.

Finally, in Table 4 we show the per-iteration and total computa-
tion times for the CG computations using Alchemist for an increas-
ing number of features. The per-iteration cost increases linearly
with the number of features, and performing these computations
with Alchemist therefore appears to be scalable, although a more
thorough investigation is required to see how large the number of
features can get before this behavior breaks down.

For all of these computations we have set λ = 10−5. This param-
eter affects the condition number of the linear system and thereby
the convergence, i.e., the number of iterations to reach a fixed pre-
cision; it does not affect the per-iteration elapsed time. When using
10, 000 random features and λ = 10−5, CG takes approximately 526
iterations to reach a relative residual of machine precision.

4.2 Truncated SVD of Large Data Sets
An important procedure in the analysis of large data sets, espe-
cially in scientific research, is principal component analysis (PCA),
which is used to reduce the dimensionality of large data sets and
to uncover meaningful structure. PCA relies on the singular value
decomposition (SVD), so to demonstrate the advantage of using
Spark+Alchemist over just Spark, a study was performed in [5] to
compare the times it takes to perform the decomposition.

In that study, the rank-k truncated SVD (meaning we compute
only the first k singular values, for some modest value of k) of ran-
domly generated double-precision dense matrices, ranging in size
from 25GB to 400GB, is computed using the MLlib implementation
in Spark vs. a custom MPI-based implementation in Alchemist3.
There is a substantial improvement in total execution times when
using Spark+Alchemist vs. just Spark, and it clearly underlines the

3Both implementations make use of ARPACK [8] to compute the eigenvalues of the
Gram matrix.

fact that Alchemist can significantly improve the workflow when
analyzing large data sets, and that this is done in a scalable manner.

In this section we expand on these results and use a real data set
of ocean temperature data. Climate scientists use the truncated SVD
to extract important patterns from the measurement of climatic
variables, but traditionally their analyses have been limited to that
of two-dimensional fields. We applied Alchemist’s truncated SVD to
the analysis of a three-dimensional field covering an approximately
67-month subset of the Climate Forecast System Reanalysis (CFSR)
data set [19]. This data set is distributed by the National Climatic
Data Center and contains measurements of various atmospheric,
oceanic, and land weather quantities of interest to meteorologists
and climate scientists, sampled at a six-hourly time resolution on a
grid of 0.5 deg latitude by 0.5 deg longitude resolution at varying
altitudes and depths. In particular, we consider the global ocean
temperature readings between January 1979 and mid-1984 at 40
subsurface levels, yielding a 400GB double precision matrix of size
6, 177, 583 × 8, 096.

We consider three use cases: one where Spark is used to both load
and decompose the data set, one where Spark is used to load the
data set and Alchemist is used to compute the truncated SVD, and
one where Alchemist is used to both load and decompose the data
set before passing the results back to Spark. In all three use cases,
we allocate 12 nodes to the system computing the rank-20 truncated
SVD, whether Spark or Alchemist, to compare their ability to use the
same resources. In the second use case, we use 10 nodes of Spark to
load and transfer the data set to Alchemist, and in the final use case,
we use just two nodes of Spark to receive the decomposition from
Alchemist. The data set is supplied in both HDF5 format, which
Alchemist can read directly, and the Spark-readable Parquet format.

Table 5 compares the run-times of these three setups when com-
puting the truncated SVD of the ocean temperature data set. We
see that offloading the computation to Alchemist results in a signif-
icant drop in the total runtime. Reading the data set using Spark
and letting Alchemist do the computations leads to a speedup of
about 4.5x compared to just using Spark. A speedup of about 7.9x is
achieved by loading and processing the data set in Alchemist and
sending the results to Spark.

This experiment demonstrates that offloading linear-algebraic
tasks from Spark onto Alchemist can result in significant decreases
in runtime, even when the overheads of the data transfer are taken
into account.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

299

Figure 3: Timing data for SVD of a 2.2TB data set loaded from file and replicated column-wise.

The 400GB ocean data set used above is actually an abridged
version of a 2.2TB ocean temperature data set with dimensions
6, 177, 583 × 46, 752. We use this larger data set to illustrate that
using Alchemist leads to computations that are scalable even when
dealing with data in the order of 10TB to 20TB. This is done by
loading the data from the HDF5 file directly in Alchemist and repli-
cating it column-wise a certain number of times to attain data sets
of sizes 2.2TB, 4.4TB, 8.8TB and 17.6TB. The rank-20 truncated SVD
is performed on the data, and the singular vectors and values are
then sent from Alchemist to Spark, where they could then be used
for further analysis. Figure 3 shows the times it takes these different
operations, along with the number of nodes that were used in the
computations.

Note the (weak) scaling of the SVD computations. As the number
of processes and the size of the data set get doubled, the time it
takes to perform the SVD computation is consistent. Unsurprisingly,
the total load time from HDF5 decreases as the number of nodes
increases, and the time to send the results to Spark increases as
the size of the data set increases. In all cases we used one Spark
executor to store the results.

5 DISCUSSION AND CONCLUSION
Apache Spark has made a significant impact in recent years and
provides a valuable platform for the analysis of large data sets.
However, due to large overheads arising within the Spark frame-
work, there are some types of computations, in particular linear
algebra routines, that have been shown to be significantly slower
than equivalent computations performed using MPI-based imple-
mentations.

Alchemist addresses this by interfacing between Spark and MPI-
based libraries, and we have shown how it can significantly speed
up important linear algebra routines such as the SVD. Among other
things, this enables the scaling of low-rank PCA computation to
data sets of size 10TB to 20TB. This improved performance comes

with comparatively little overhead, essentially just the cost of mov-
ing the data over the network between Alchemist and Spark nodes,
while still retaining the benefits of working in the Spark environ-
ment. This makes the use of Spark more attractive to potential users
who want the combination of the performance of MPI with the
simple interface and extensive ecosystem of Spark.

5.1 Limitations and Constraints
Although there are various benefits that Alchemist would provide
to a data analysis workflow that makes heavy use of linear algebra
routines, there are some limitations and constraints in using the
system:

• Two copies of the data are required: the RDD used by the
Spark application, and the same data stored as a distributed
matrix by Alchemist. This is a necessary limitation, since
MPI-based codes are not able to access the data in the RDD
directly.

• Alchemist will also require additional storage at runtime for
storing output from the computations, and temporary stor-
age used by the MPI-based routines during the computations.
Due to the inelastic nature of MPI, Alchemist must run on a
sufficient number of nodes before starting the computations.

• Overhead is incurred when transferring data between Spark
and the MPI libraries over a network, and is subject to net-
work disruptions and overload. However, for computationally-
intense operations the cost associated with this data transfer
is negligible when compared to the overhead that would
have been incurred by Spark, and it is less than when us-
ing the other methodologies for transferring data that were
mentioned in Section 3.2.

• While we have looked at linear algebra routines in this pa-
per, MPI-based libraries for other applications can also be
used with Alchemist, which would be particularly interest-
ing if machine learning libraries are available. Unfortunately,

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

300

it appears that there are few MPI-based machine learning
projects under development at the moment, and they tend
to be quite limited in their scope. One exception to this is
MaTEx [23].

5.2 Future Work
Further improvements and refinements to the system are ongoing
and we summarize some of these here:

• A Python interface is being implemented that allows users
of PySpark to use Alchemist. This would also allow users
of other Python development environments, for instance
Jupyter Notebooks, to access MPI-based libraries to help
analyze distributed data sets.

• Development of Alchemist has thus far taken place on Cori,
a NERSC supercomputer. To enable Alchemist to run on
clusters and the cloud, it is most convenient to run it from
inside some container such as a Docker image.

• Although Alchemist at present only directly supports MPI-
based libraries that make use of Elemental, it is nonetheless
possible to use MPI-based libraries built on top of other
distributed linear algebra packages, for instance ScaLAPACK
and PLAPACK. However, this requires the use of wrapper
functions to convert Elemental’s distributed matrices to the
appropriate format, which will incur additional overhead,
possibly including an additional copy of the data in memory.
Support for some other distributed linear algebra libraries
will be added in the future.

ACKNOWLEDGMENTS
This work was partially supported by NSF, DARPA, and Cray Inc.

REFERENCES
[1] M. Anderson, S. Smith, N. Sundaram, M. Capota, Z. Zhao, S. Dulloor, N. Satish,

and T. L. Willke. 2017. Bridging the Gap Between HPC and Big Data Frameworks.
In Proceedings of the VLDB Endowment, Vol. 10. 901–912.

[2] P. Drineas and M. W. Mahoney. 2016. RandNLA: Randomized Numerical Linear
Algebra. Commun. ACM 59, 6 (2016), 80–90.

[3] J. S. Garofolo, L. F. Lamel,W.M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and
V. Zue. 1993. TIMIT Acoustic-Phonetic Continuous Speech Corpus. Retrieved
January 28, 2018 from https://catalog.ldc.upenn.edu/LDC93S1

[4] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam, J.
Liu, K. Maschhoff, S. Canon, J. Chhugani, P. Sharma, J. Yang, J. Demmel, J. Harrell,
V. Krishnamurthy, M. W. Mahoney, and Prabhat. 2016. Matrix factorizations
at scale: A comparison of scientific data analytics in Spark and C+MPI using

three case studies. In 2016 IEEE International Conference on Big Data (Big Data).
204–213.

[5] A. Gittens, K. Rothauge, M. W. Mahoney, S. Wang, J. Kottalam, Prabhat, L. Ger-
hardt, M. Ringenburg, and K. Maschhoff. 2018. Alchemist: An Apache Spark <=>
MPI Interface. Concurrency and Computation Practice and Experience on the Cray
User Group (2018). To appear.

[6] P.-S. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ramabhadran. 2014.
Kernel methods match Deep Neural Networks on TIMIT. In 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 205–209.

[7] C. Kohlhoff. 2018. Boost.Asio. https://www.boost.org/
[8] R. B. Lehoucq, K. Maschhoff, D. C. Sorensen, and C. Yang. 1997. ARPACK: Solution

of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
http://www.caam.rice.edu/software/ARPACK/

[9] libSkylark 2016. Skylark: Sketching-based Distributed Matrix Computations for
Machine Learning. http://github.com/xdata-skylark/libskylark

[10] N. Malitsky, A. Chaudhary, S. Jourdain, M. Cowan, P. O’Leary, M. Hanwell, and
K. K. Van Dam. 2017. Building near-real-time processing pipelines with the
Spark-MPI platform. In 2017 New York Scientific Data Summit (NYSDS). 1–8.

[11] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Stan-
dard: Version 3.1. Technical Report. https://www.mpi-forum.org/docs/

[12] MPICH 2018. MPICH: High-Performance Portable MPI. https://www.mpich.org/
[13] Open MPI 2018. Open MPI: Open Source High Performance Computing. https:

//www.open-mpi.org/
[14] J. Poulson, B. Marker, R. van de Geijn, J. Hammond, and N. Romero. 2013. Ele-

mental: A new framework for distributed memory dense matrix computations.
ACM Trans. Math. Software 39 (2013), 1–24. Issue 2.

[15] A. Rahimi and B. Recht. 2008. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems.

[16] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita. 2015. Big data analytics in the cloud:
Spark on Hadoop vs MPI/OpenMP on Beowulf. In Procedia Computer Science,
Vol. 53. 121–130.

[17] K. Rothauge and A. Gittens. 2018. Alchemist: An Apache Spark <=> MPI
Interface. http://github.com/project-alchemist/

[18] Y. Saad. 2003. Iterative methods for sparse linear systems (2nd ed.). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

[19] S. Saha, S. Moorthi, H.-L. Pan, et al. (2010). NCEP Climate Forecast System
Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010.

[20] D. Siegal, J. Guo, and G. Agrawal. 2016. Smart-MLlib: A High-Performance
Machine-Learning Library. In 2016 IEEE International Conference on Cluster Com-
puting (CLUSTER). 336–345.

[21] G. M. Slota, S. Rajamanickam, and K. Madduri. 2016. A case study of complex
graph analysis in distributed memory: Implementation and optimization. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
293–302.

[22] S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. 2016. Large scale kernel learning
using block coordinate descent. arXiv preprint arXiv:1602.05310 (2016).

[23] A. Vishnu, J. Daily, C. Siegel, J. Manzano, et al. 2017. MaTEx: Machine Learning
Toolkit for Extreme Scale. https://github.com/matex-org/matex

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. 2012. Resilient Distributed Datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (NSDI). 15–28.

[25] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.
2016. Apache Spark: a unified engine for big data processing. In Communications
of the ACM, Vol. 59. 56–65. Issue 11.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

301

https://catalog.ldc.upenn.edu/LDC93S1
https://www.boost.org/
http://www.caam.rice.edu/software/ARPACK/
http://github.com/xdata-skylark/libskylark
https://www.mpi-forum.org/docs/
https://www.mpich.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
http://github.com/project-alchemist/
https://github.com/matex-org/matex

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Alchemist
	3.1 Design and Implementation
	3.2 Transmitting and Storing Distributed Data
	3.3 Using Alchemist

	4 Experiments
	4.1 CG Solver for Speech Classification
	4.2 Truncated SVD of Large Data Sets

	5 Discussion and Conclusion
	5.1 Limitations and Constraints
	5.2 Future Work

	Acknowledgments
	References

