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1. Introduction
Randomized Numerical Linear Algebra (RandNLA) is an
area which uses randomness, most notably random sam-
pling and random projection methods, to develop im-
proved algorithms for ubiquitous matrix problems. It be-
gan as a niche area in theoretical computer science about
fifteen years ago [11], and since then the area has exploded.
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Matrix problems are central to much of appliedmathemat-
ics, from traditional scientific computing and partial dif-
ferential equations to statistics, machine learning, and ar-
tificial intelligence. Generalizations and variants of matrix
problems are central to many other areas of mathematics,
via more general transformations and algebraic structures,
nonlinear optimization, infinite-dimensional operators,
etc. Much of the work in RandNLA has been propelled
by recent developments in machine learning, artificial in-
telligence, and large-scale data science, and RandNLA both
draws upon and contributes back to both pure and applied
mathematics.

A seemingly different topic, but one which has a long
history in pure and applied mathematics, is that of De-
terminantal Point Processes (DPPs). A DPP is a stochas-
tic point process, the probability distribution of which is
characterized by subdeterminants of some matrix. Such
processes were first introduced to model the distribution
of fermions at thermal equilibrium [19]. In the context
of randommatrix theory, DPPs emerged as the eigenvalue
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distribution for standard random matrix ensembles, and
they are of interest in other areas of mathematics such
as graph theory, combinatorics, and quantum mechan-
ics [17]. More recently, DPPs have also attracted signifi-
cant attention within machine learning and statistics as a
tractable probabilistic model that is able to capture a bal-
ance between quality and diversity within data sets and
that admits efficient algorithms for sampling, marginaliza-
tion, conditioning, etc. [18]. This resulted in practical ap-
plication of DPPs in experimental design, recommenda-
tion systems, stochastic optimization, and more.

Until very recently, DPPs have had little if any presence
within RandNLA. However, recent work has uncovered
deep connections between these two topics. The purpose
of this article is to provide an overview of RandNLA, with
an emphasis on discussing and highlighting these connec-
tions with DPPs. In particular, we will show how random
sampling with a DPP leads to new kinds of unbiased esti-
mators for the classical RandNLA task of least squares re-
gression, enabling a more refined statistical and inferen-
tial understanding of RandNLA algorithms. We will also
demonstrate that a DPP is, in some sense, an optimal
randomizedmethod for low-rank approximation, another
ubiquitous matrix problem. Finally, we also discuss how
a standard RandNLA technique, called leverage score sam-
pling, can be derived as themarginal distribution of a DPP,
as well as the algorithmic consequences this has for effi-
cient DPP sampling.

We start (in Section 2) with a brief review of a prototyp-
ical RandNLA algorithm, focusing on the ubiquitous least
squares problem and highlighting key aspects that will put
in context the recent work we will review. In particular,
we discuss the trade-offs between standard samplingmeth-
ods from RandNLA, including uniform sampling, norm-
squared sampling, and leverage score sampling. Next (in
Section 3), we introduce the family of DPPs, highlighting
some important subclasses and the basic properties that
make them appealing for RandNLA. Then (in Section 4),
we describe the fundamental connections between certain
classes of DPPs and the classical RandNLA tasks of least
squares regression and low-rank approximation, as well as
the relationship between DPPs and the RandNLA method
of leverage score sampling. Finally (in Section 5), we dis-
cuss the algorithmic aspects of both leverage scores and
DPPs. We conclude (in Section 6) by briefly mentioning
several other connections between DPPs and RandNLA,
as well as a recently introduced class of random matrices,
called determinant preserving, which has proven useful in
this line of research.

2. RandNLA: Randomized Numerical
Linear Algebra

Much of the early work in numerical linear algebra (NLA)
focused on deterministic algorithms. However, Monte
Carlo sampling approaches demonstrated that random-
ness inside the algorithm is a powerful computational re-
source which can lead to both greater efficiency and robust-
ness to worst-case data [12, 20]. The success of RandNLA
methods has been proven in many domains, e.g., when
the randomized least squares solvers such as Blendenpik
or LSRN have outperformed the established high perfor-
mance computing software LAPACK or other methods in
parallel/distributed environments, respectively, or when
RandNLAmethods have been used in conjunctionwith tra-
ditional scientific computing solvers for low-rank approxi-
mation problems.

In a typical RandNLA setting, we are given a large dataset
in the form of a real-valued matrix, say 𝐗 ∈ ℝ𝑛×𝑑, and our
goal is to compute quantities of interest quickly. To do so,
we efficiently downsize the matrix using a randomized al-
gorithm, while approximately preserving its inherent struc-
ture, as measured by some objective. In doing so, we ob-
tain a new matrix 𝐗̃ (often called a sketch of 𝐗) which is
either smaller or sparser than the original matrix. This pro-
cedure can often be represented by matrix multiplication,
i.e., 𝐗̃ = 𝐒𝐗, where 𝐒 is called the sketching matrix. Many
applications of RandNLA follow the sketch-and-solve para-
digm: Instead of performing a costly operation on 𝐗, we
first construct 𝐗̃ (the sketch); we then perform the expen-
sive operation (more cheaply) on the smaller 𝐗̃ (the solve);
and we use the solution from 𝐗̃ as a proxy for the solution
we would have obtained from 𝐗. Here, cost often means
computational time, but it can also be communication or
storage space or even human work.

Many different approaches have been established for
randomly downsizing data matrices 𝐗 (see [12, 20] for
a detailed survey). While some methods randomly zero
out most of the entries of the matrix, most randomly
keep only a small random subset of rows and/or columns.
In either case, however, the choice of randomness is
crucial in preserving the structure of the data. For ex-
ample, if the data matrix 𝐗 contains a few dominant
entries/rows/columns (e.g., as measured by their abso-
lute value or norm or some other “importance” score),
then we should make sure that our sketch is likely to
retain the information they carry. This leads to data-
dependent sampling distributions that will be the focus of
our discussion. However, data-oblivious sketching tech-
niques, where the random sketching matrix 𝐒 is inde-
pendent of 𝐗 (typically called a “random rotation” or
a “random projection,” even if it is not precisely a rota-
tion or projection in the linear algebraic sense), have also
proven very successful [16,24]. Among the most common
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𝑛
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Rank-preserving sketch
(e.g., Projection DPP)
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𝑛

𝑑

Low-rank approximation
(e.g., L-ensemble DPP)

Figure 1. Two RandNLA settings which are differentiated by
whether the sketch (matrix 𝐗̃) aims to preserve the rank of 𝐗
(left) or obtain a low-rank approximation (right). In Section 4
we associate each setting with a different DPP.

examples of such random transformations are i.i.d. Gauss-
ian matrices, fast Johnson-Lindenstrauss transforms and
count sketches, all of which provide different trade-offs be-
tween efficiency and accuracy. These “data-oblivious ran-
dom projections” can be interpreted either in terms of the
Johnson-Lindenstrauss lemma or as a preconditioner for
the “data aware random sampling” methods we discuss.

Most RandNLA techniques can be divided into one of
two settings, depending on the dimensionality or aspect
ratio of 𝐗, and on the desired size of the sketch (see
Figure 1):

1. Rank-preserving sketch. When 𝐗 is a tall full-rank ma-
trix (i.e., 𝑛 ≫ 𝑑), then we can reduce the larger dimen-
sion while preserving the rank.

2. Low-rank approximation. When 𝐗 has comparably
large dimensions (i.e., 𝑛 ∼ 𝑑), then the sketch typi-
cally has a much lower rank than 𝐗.

The classical application of rank-preserving sketches is
least squares regression, where, givenmatrix𝐗 ∈ ℝ𝑛×𝑑 and
vector 𝐲 ∈ ℝ𝑛, we wish to find:

𝐰∗ = argmin
𝐰

ℒ(𝐰) for ℒ(𝐰) = ‖𝐗𝐰 − 𝐲‖2.

The least squares solution can be computed exactly, using
the Moore-Penrose inverse, 𝐰∗ = 𝐗†𝐲. In a traditional
RandNLA setup, in order to avoid solving the full problem,
our goal is to use the sketch-and-solve paradigm to obtain
an (𝜖, 𝛿)-approximation of𝐰∗, i.e., 𝐰̂ such that:

ℒ(𝐰̂) ≤ (1 + 𝜖)ℒ(𝐰∗) with probability 1 − 𝛿. (1)

Imposing statistical modeling assumptions on the vector
𝐲 leads to different objectives, such as the mean squared
error (MSE):

MSE[𝐰̂] = 𝔼 ‖𝐰̂ − 𝜷‖2, given 𝐲 = 𝐗𝜷 + 𝝃,
where 𝝃 is a noise vector with a known distribution, and 𝜷
is fixed but unknown. There has been work on statistical
aspects of RandNLA methods, and these statistical objec-
tives pose different challenges than the standard RandNLA
guarantees (some of which can be addressed by DPPs; see
Section 4).

To illustrate the types of guarantees achieved by
RandNLA methods on the least squares task, we will fo-
cus on row sampling, i.e., sketches consisting of a small
random subset of the rows of 𝐗, in the case that 𝑛 ≫ 𝑑.
Concretely, the considered meta-strategy is to draw ran-
dom i.i.d. row indices 𝑗1, ..., 𝑗𝑘 from {1, ..., 𝑛}, with each in-
dex distributed according to (𝑝1, ..., 𝑝𝑛), and then solve the
subproblem formed from those indices:

𝐰̂ = argmin
𝐰

‖𝐗̃𝐰 − 𝐲̃‖2 = 𝐗̃†𝐲̃, (2)

where 𝐱̃⊤𝑖 =
√

1
𝑘𝑝𝑗𝑖

𝐱⊤𝑗𝑖 and ̃𝑦𝑖 = √
1

𝑘𝑝𝑗𝑖
𝑦𝑗𝑖 for 𝑖 = 1, ..., 𝑘

denote the 𝑖th row of 𝐗̃ and entry of 𝐲̃, respectively. The
rescaling is introduced to account for the biases caused by
nonuniform sampling. We consider the following stan-
dard sampling distributions:

1. Uniform: 𝑝𝑖 = 1/𝑛 for all 𝑖.
2. Squared norms: 𝑝𝑖 = ‖𝐱𝑖‖2/‖𝐗‖2𝐹 , where ‖ ⋅ ‖𝐹 is the

Frobenius (Hilbert-Schmidt) norm.
3. Leverage scores: 𝑝𝑖 = 𝑙𝑖/𝑑 for 𝑙𝑖 = ‖𝐱𝑖‖2(𝐗⊤𝐗)−1 (𝑖th

leverage score of 𝐗) and ‖𝐯‖𝐀 = √𝐯⊤𝐀𝐯.
Both squared norm and leverage score sampling are stan-
dard RandNLA techniques used in a variety of applications
[11, 14]. The following theorem (which, for convenience,
we state with a failure probability of 𝛿 = 0.1) puts together
the results that allow us to compare each row sampling dis-
tribution in the context of least squares. Below, we use 𝐶
to denote an absolute positive constant.

Theorem 1. Estimator 𝐰̂ constructed as in (2) is an (𝜖, 0.1)-
approximation, as in (1), if:

1. 𝑘 ≥ 𝐶(𝜇𝑑 log 𝑑 + 𝜇𝑑/𝜖) for Uniform, where 𝜇 =
max𝑖

𝑛
𝑑
𝑙𝑖 ≥ 1 is the matrix coherence of 𝐗.

2. 𝑘 ≥ 𝐶(𝜅𝑑 log 𝑑 + 𝜅𝑑/𝜖) for Squared norms, where 𝜅 ≥
1 is the condition number of 𝐗⊤𝐗.
3. 𝑘 ≥ 𝐶(𝑑 log 𝑑 + 𝑑/𝜖) for Leverage scores.

Recall that (when considering least squares) we typi-
cally assume that 𝑛 ≫ 𝑑, so any of the three sample sizes 𝑘
may bemuch smaller than 𝑛. Thus, each samplingmethod
offers a potentially useful guarantee for the number of
rows needed to achieve a (1+ 𝜖)-approximation. However,
in the case of both uniform and squared norm sampling,
the sample size depends not only on the dimension 𝑑, but
also on other data-dependent quantities. For uniform sam-
pling, that quantity is matrix coherence 𝜇, which measures
a degree of nonuniformity among the data points, with re-
spect to the canonical axes. For squared norm sampling,
that quantity is the condition number 𝜅 (ratio between the
largest and the smallest eigenvalue) of the 𝑑×𝑑 data covari-
ance 𝐗⊤𝐗. Leverage score sampling avoids both of these
dependencies.
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We now briefly discuss a key structural property, called
the subspace embedding, which is needed to show the guar-
antees of Theorem 1. This important property—first in-
troduced into RandNLA for data-aware random sampling
by [14] and then for data-oblivious random projection by
[23]—is ubiquitous in the analysis ofmany RandNLA tech-
niques. Remarkably, most DPP results do not rely on sub-
space embedding techniques, which is an important differ-
entiating factor for this class of sampling distributions.

Definition 1. A sketching matrix 𝐒 is a (1 ± 𝜖) subspace
embedding for the column space of 𝐗 if:

(1 − 𝜖)‖𝐗𝐯‖2 ≤ ‖𝐒𝐗𝐯‖2 ≤ (1 + 𝜖)‖𝐗𝐯‖2 ∀𝐯 ∈ ℝ𝑑.

The matrix 𝐗̃ used in (2) for constructing 𝐰̂ can be written
as 𝐗̃ = 𝐒𝐗, by letting the 𝑖th row of 𝐒 be the scaled standard

basis vector
√

1
𝑘𝑝𝑗𝑖

𝐞𝑗𝑖 . Relying on established measure

concentration results for random matrices, we can show
that 𝐒 is a subspace embedding (up to some failure proba-
bility) for each of the i.i.d. sampling methods from Theo-
rem 1. However, only leverage score sampling (or random
projections, which precondition the input to have approxi-
mately uniform leverage scores) achieves this for𝑂(𝑑 log 𝑑)
samples, independent of any input-specific quantities such
as the coherence or condition number.

The least squares task formulated in (1), as well as
the subspace embedding condition, require using rank-
preserving sketches. However, these ideas can be naturally
extended to the task of low-rank approximation. In partic-
ular, as discussed in more detail in Section 4.3, low-rank
approximation can be reformulated as a set of least squares
problems. Similarly, leverage score sampling has been ex-
tended to adapt to the low-rank setting. In Section 4.4, we
discuss one of these extensions, called ridge leverage scores,
and its connections to DPPs.

In the next sections, we show how non-i.i.d. sampling
via DPPs goes beyond the standard RandNLA analysis.
Among other things, this will allow us to obtain approx-
imation guarantees with fewer than 𝑑 log 𝑑 samples and
without a failure probability.

3. DPPs: Determinantal Point Processes
In this section, we define DPPs and related families of dis-
tributions (see Figure 2 for a diagram), including some ba-
sic properties and intuitions. A detailed introduction to
DPPs can be found in [18]. We focus on sampling over a
discrete domain [𝑛] = {1, ..., 𝑛} (continuous domains are
discussed in [17]).

Definition 2 (Determinantal Point Process). Let 𝐊 be an
𝑛 × 𝑛 positive semidefinite (p.s.d.) matrix with operator
norm ‖𝐊‖ ≤ 1. Point process 𝑆 ⊆ [𝑛] is drawn according

to DPP(𝐊), denoted as 𝑆 ∼ DPP(𝐊), if for any 𝑇 ⊆ [𝑛],
Pr{𝑇 ⊆ 𝑆} = det(𝐊𝑇,𝑇).

Here, 𝐊𝑇,𝑇 denotes the |𝑇| × |𝑇| submatrix indexed by
the set 𝑇. Matrix 𝐊 is called the marginal kernel of 𝑆 (it can
be shown that any 𝐊 as in Definition 2 defines a DPP). If
𝐊 is diagonal, then DPP(𝐊) corresponds to a series of 𝑛 in-
dependent biased coin flips deciding whether to include
each index 𝑖 into the set 𝑆. A more interesting distribution
is obtained for a general 𝐊, in which case the inclusion
events are no longer independent. Some of the key prop-
erties that make DPPs useful as a mathematical framework
are:

1. Negative correlation: if 𝑖 ≠ 𝑗 and 𝐊𝑖𝑗 ≠ 0, then
Pr(𝑖 ∈ 𝑆 ∣ 𝑗 ∈ 𝑆) < Pr(𝑖 ∈ 𝑆).

2. Cardinality: while the size |𝑆| is in general random,
its expectation equals tr(𝐊) and the variance also has
a simple expression.

3. Restriction: for 𝑅 ⊆ [𝑛], the set ̃𝑆 = 𝑆∩𝑅 is distributed
as DPP(𝐊𝑅,𝑅) (after relabeling).

4. Complement: the complement set ̃𝑆 = [𝑛]\𝑆 is dis-
tributed as DPP(𝐈 − 𝐊).

In the context of linear algebra, a slightly more restrictive
definition of DPPs has proven useful.

Definition 3 (L-ensemble). Let 𝐋 be an 𝑛×𝑛 p.s.d. matrix.
Point process 𝑆 ⊆ [𝑛] is drawn according to DPPL(𝐋) and
called an L-ensemble if

Pr{𝑆} =
det(𝐋𝑆,𝑆)
det(𝐈 + 𝐋) .

It can be shown that any L-ensemble is a DPP by set-
ting 𝐊 = 𝐋(𝐈 + 𝐋)−1, but not vice versa. (However, there
are extensions of the L-ensemble parameterization which
cover all DPPs.) Unlike Definition 2, this definition explic-
itly gives the probabilities of individual sets. These prob-
abilities sum to one as a consequence of a determinantal
identity (see Theorem 2.1 in [18] which is a special case of
the classical formula for the Fredholm determinant). Fur-
thermore, the L-ensemble formulation provides a natural
geometric interpretation in the context of row sampling
for RandNLA. Suppose that we let 𝐋 = 𝐗𝐗⊤ for some 𝑛×𝑑
matrix 𝐗. Then, the probability of sampling subset 𝑆 ac-
cording to DPPL(𝐋) satisfies:

Pr{𝑆} ∝ Vol2|𝑆|({𝐱𝑖 ∶ 𝑖 ∈ 𝑆}).
Namely, this sampling probability is proportional to the
squared |𝑆|-dimensional volume of the parallelepiped
spanned by the rows of 𝐗 indexed by 𝑆. This immediately
implies that the size of 𝑆 will never exceed the rank of 𝐗
(which is bounded by 𝑑). Furthermore, such a distribution
ensures that the set of sampled rows will be nondegener-
ate: no row can be obtained as a linear combination of the
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SR measures

DPPs

L-ensembles 𝑘-DPPs

Projection DPPs

Figure 2. A diagram illustrating different classes of
determinantal distributions within a broader class of Strongly
Rayleigh (SR) measures: DPPs (Definition 2), L-ensembles
(Definition 3), 𝑘-DPPs (Definition 4), and Projection DPPs
(Remark 1).

others. Intuitively, this property is desirable for RandNLA
sampling as it avoids redundancies. Also, all else being
equal, rows with larger norms are generally preferred as
they contribute more to the volume.

While the subset size of a DPP is in most cases a ran-
dom variable, it is easy to constrain the cardinality to some
fixed value 𝑘. The resulting distribution is not a DPP, in the
sense of Definition 2, but it retains many useful properties
of proper DPPs.

Definition 4 (Cardinality constrained DPP). We will use
𝑘-DPPL(𝐋) to denote a distribution obtained by constrain-
ing DPPL(𝐋) to only subsets of size |𝑆| = 𝑘.
While a 𝑘-DPP is not, in general, a DPP in the sense of
Definition 2, both families belong to a broader class of
negatively correlated distributions called Strongly Rayleigh
(SR) measures. See Figure 2.

At the intersection of DPPs and 𝑘-DPPs lies a family of
distributions called Projection DPPs. This family is of par-
ticular importance to RandNLA.

Remark 1 (Projection DPP). Point process 𝑆 ∼ 𝑘-DPPL(𝐋)
satisfies Definition 2 iff 𝑘 = rank(𝐋), in which case we call
it a Projection DPP since its marginal kernel𝐊 = 𝐋𝐋† is an
orthogonal projection (recall that (⋅)† denotes the Moore-
Penrose inverse).

We chose to introduce Projection DPPs via the connec-
tion to L-ensembles to highlight once again the geomet-
ric interpretation. In this viewpoint, letting 𝐋 = 𝐗𝐗⊤ for
an 𝑛 × 𝑑 matrix 𝐗 with full column rank, a Projection
DPP associated with the L-ensemble 𝐋 has marginal ker-
nel 𝐊 = 𝐗𝐗†, which is a 𝑑-dimensional projection onto
the span of the columns of 𝐗. Furthermore, the probabil-
ity of a row subset 𝐗𝑆 under 𝑆 ∼ 𝑑-DPPL(𝐗𝐗⊤) is propor-
tional to the squared 𝑑-dimensional volume spanned by
it, i.e., det(𝐗𝑆)2. Here, the normalization constant is ob-
tained via the classical Cauchy-Binet formula:

∑
𝑆∶|𝑆|=𝑑

det(𝐗𝑆)2 = det(𝐗⊤𝐗).

The form of the probability implies that the rows {𝐱𝑖 ∶
𝑖 ∈ 𝑆} sampled from a Projection DPP will with proba-
bility 1 capture all directions of the ambient space that
are present in the matrix 𝐗, which is crucial for rank-
preserving RandNLA sketches.

4. DPPs in RandNLA
In this section, we demonstrate the fundamental connec-
tions between DPPs and standard RandNLA tasks, as well
as the new kinds of RandNLA guarantees that can be
achieved via these connections. Our discussion focuses on
two types of DPP-based sketches (that were illustrated in
Figure 1):

1. Projection DPPs as a rank-preserving sketch;
2. L-ensemble DPPs as a low-rank approximation.

These sketches can be efficiently constructed using DPP
sampling algorithms which we discuss later (in Section 5).
We also discuss the close relationship between DPPs and
the RandNLA method of leverage score sampling, shed-
ding light on why these two different randomized tech-
niques have proven effective in RandNLA. For the sum-
mary, see Table 1.
4.1. Unbiased estimators. We now define the least
squares estimators that naturally arise from row sampling
with Projection DPPs and L-ensembles. The definitions
are motivated by the fact that the estimators are unbiased,
relative to the solutions of the full least squares problems.
Importantly, this property is not shared by i.i.d. row sam-
pling methods used in RandNLA.

We start with the rank-preserving setting, i.e., given a
tall full-rank 𝑛 × 𝑑 matrix 𝐗 and a vector 𝐲 ∈ ℝ𝑛, where
𝑛 ≫ 𝑑, we wish to approximate the least squares solution
𝐰∗ = argmin𝐰 ‖𝐗𝐰− 𝐲‖2. To capture all of the directions
present in the data and to obtain a meaningful estimate of
𝐰∗, we must sample at least 𝑑 rows from 𝐗. We achieve
this by sampling from a Projection DPP defined as 𝑆 ∼ 𝑑-
DPPL(𝐗𝐗⊤) (see Remark 1). The linear system (𝐗𝑆 , 𝐲𝑆),
corresponding to the rows of 𝐗 indexed by 𝑆, has exactly
one solution because sets selected by a Projection DPP are
always rank-preserving: 𝐰̂ = 𝐗−1

𝑆 𝐲𝑆. Moreover, the ob-
tained random vector is an unbiased estimator of the least
squares solution𝐰∗ [9].

Theorem 2. If 𝑆 ∼ 𝑑-DPPL(𝐗𝐗⊤), then
𝔼𝐗−1

𝑆 𝐲𝑆 = argmin
𝐰

‖𝐗𝐰 − 𝐲‖2 = 𝐰∗.

This seemingly simple identity relies on the negative cor-
relations between the samples in a DPP, and thus cannot
hold for any i.i.d. row sampling method. It is perhaps no
coincidence that the marginal kernel of this distribution,
i.e.,𝐊 = 𝐗𝐗† = 𝐗(𝐗⊤𝐗)−1𝐗⊤, coincideswith the hat matrix
(as it is known in statistics) of the ordinary least squares es-
timator.
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Rank-preserving sketch Low-rank approximation

Projection DPP 𝑆∼𝑑-DPPL(𝐗𝐗⊤) L-ensemble 𝑆∼DPPL(
1
𝜆
𝐗𝐗⊤)

subset size 𝔼 |𝑆| = dimension 𝑑 effective dim. tr(𝐗(𝐗⊤𝐗 + 𝜆𝐈)−1𝐗⊤)
marginal Pr{𝑖 ∈ 𝑆} = leverage score 𝐱⊤𝑖 (𝐗⊤𝐗)−1𝐱𝑖 ridge lev. score 𝐱⊤𝑖 (𝐗⊤𝐗 + 𝜆𝐈)−1𝐱𝑖

expectation 𝔼𝐗†𝑆𝐲𝑆 = least squares argmin
𝐰

‖𝐗𝐰 − 𝐲‖2 ridge regression argmin
𝐰

‖𝐗𝐰 − 𝐲‖2+ 𝜆‖𝐰‖2

Table 1. Key properties of the DPPs discussed in Section 4, as they relate to: RandNLA tasks of least squares and ridge
regression; RandNLA methods of leverage score sampling and ridge leverage score sampling.

Theorem 2 has an analogue in the context of low-rank
approximation, where both the dimensions of 𝐗 are com-
parably large (i.e., 𝑛 ∼ 𝑑), and so the desired sample size
is typically much smaller than 𝑑. When the selected sub-
problem (𝐗𝑆 , 𝐲𝑆) has fewer than 𝑑 rows (i.e., it is under-
determined) then it has multiple exact solutions. A stan-
dard way to address this is picking the solution with small-
est Euclidean norm, defined via the Moore-Penrose in-
verse: 𝐰̂ = 𝐗†

𝑆𝐲𝑆. To sample the under-determined sub-
problem, we use a scaled L-ensemble DPP with the ex-
pected sample size controlled by a parameter 𝜆 > 0 [8].

Theorem 3. If 𝑆 ∼ DPPL(
1
𝜆
𝐗𝐗⊤), then

𝔼𝐗†
𝑆𝐲𝑆 = argmin

𝐰
‖𝐗𝐰 − 𝐲‖2 + 𝜆‖𝐰‖2.

Thus, the minimum norm solution of the under-
determined subproblem is an unbiased estimator of the
Tikhonov-regularized least squares problem, i.e., ridge re-
gression. Ridge regression is a natural extension of the
standard least squares task, particularly useful when 𝑛 ∼ 𝑑
or 𝑛 ≪ 𝑑.

Theorem 3 illustrates the implicit regularization effect
that occurs when choosing one out of many exact solu-
tions to a subsampled least squares task (see also Sec-
tion 6). Increasing the regularization 𝜆‖𝐰‖2 in ridge re-
gression is interpreted as using fewer degrees of freedom,
which aligns with the effect that 𝜆 has on the distribution
𝑆 ∼ DPPL(

1
𝜆
𝐗𝐗⊤): larger 𝜆 means that smaller subsets 𝑆

are more likely. In fact, since the marginal kernel of the L-
ensemble coincides with the hatmatrix of the ridge estima-
tor, the expected subset size (trace of the marginal kernel)
captures the notion of effective dimension (a.k.a. effective
degrees of freedom) in the same way as it is commonly
done for ridge regression in statistics [2]:

𝑑𝜆 ∶= tr(𝐗(𝐗⊤𝐗 + 𝜆𝐈)−1𝐗⊤) = 𝔼 |𝑆|. (3)

4.2. Exact error analysis. The error analysis for DPP sam-
pling differs significantly from the standard RandNLA tech-
niques discussed in Section 2. In particular, approxima-
tion guarantees are formulated in terms of the expected
error, without relying on measure concentration results.
This means that we avoid failure probabilities such as the
one present in Theorem 1, and the analysis is often much
more precise, sometimes even exact. Furthermore, because

of the non-i.i.d. nature of DPPs, these guarantees can be
achieved with smaller sample sizes than for RandNLA sam-
pling methods. Of course, this comes with computational
trade-offs, which we discuss in Section 5.

We illustrate these differences in the context of rank-
preserving sketches for least squares regression. Consider the
estimator 𝐰̂ = 𝐗−1

𝑆 𝐲𝑆 from Theorem 2, where the subset 𝑆
is sampled via the Projection DPP, i.e., 𝑆 ∼ 𝑑-DPPL(𝐗𝐗⊤).
Recall that the sample size here is only 𝑑, which is less than
𝑑 log 𝑑 needed by i.i.d. sampling methods such as leverage
scores (or randomprojectionmethods). Nevertheless, this
estimator achieves an approximation guarantee in terms
of the loss ℒ(𝐰) = ‖𝐗𝐰 − 𝐲‖2. Moreover, under minimal
assumptions, the expected loss is given by a closed form
expression [9].

Theorem 4. Assume that the rows of 𝐗 are in general position,
i.e., every set of 𝑑 rows is nondegenerate. If 𝑆 ∼ 𝑑-DPPL(𝐗𝐗⊤),
then

𝔼ℒ(𝐗−1
𝑆 𝐲𝑆) = (𝑑 + 1)ℒ(𝐰∗),

and the factor 𝑑 + 1 is worst-case optimal.
This exact error analysis is particularly useful in statistical
modeling, where under additional assumptions about the
vector 𝐲, we wish to estimate accurately the generalization
error of our estimator. Specifically, consider the following
noisy linear model of the vector 𝐲:

𝐲 = 𝐗𝜷 + 𝝃, where 𝝃 ∼ 𝒩(𝟎, 𝜎2𝐈). (4)

Here, 𝜷 is a fixed vector that we wish to recover, and the
mean squared error in this context is defined as 𝔼 ‖𝐰̂−𝜷‖2,
where the expectation is taken over both the sampling and
the noise. The full least squares solution 𝐰∗ is an unbi-
ased estimator of 𝜷, with error given by 𝔼 ‖𝐰∗ − 𝜷‖2 =
𝜎2tr((𝐗⊤𝐗)−1). The Projection DPP estimator, which ob-
serves only 𝑑 noisy measurements from 𝐲, is also unbiased
in this model, and its error scales linearly with that of 𝐰∗

[9].

Theorem 5. Assume that the rows of 𝐗 are in general position,
i.e., every set of 𝑑 rows is nondegenerate, and consider 𝐲 as in
(4). If 𝑆∼𝑑-DPPL(𝐗𝐗⊤), then

𝔼 ‖𝐗−1
𝑆 𝐲𝑆 − 𝜷‖2 = (𝑛 − 𝑑 + 1) 𝔼 ‖𝐰∗− 𝜷‖2.

A number of extensions to Theorems 4 and 5 have been
proposed, covering larger sample sizes [10] as well as dif-
ferent statistical models [8,9].
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4.3. Optimal approximation guarantees. As we have
seen above, the non-i.i.d. nature of DPP sampling can lead
to improved approximation guarantees, compared to stan-
dard RandNLA methods, when we wish to minimize the
size of the downsampled problem. We next discuss this in
the low-rank approximation setting, i.e., when 𝑛 ∼ 𝑑. Here,
cardinality constrained L-ensembles are known to achieve
optimal (1 + 𝜖)-approximation guarantees.

In Section 4.1, we used low-rank sketches to construct
unbiased estimators for regularized least squares, given
matrix 𝐗 and a vector 𝐲. However, even without intro-
ducing 𝐲, a natural low-rank approximation objective for
sketching 𝐗 can be defined via a reduction to least squares.
Namely, we canmeasure the error in reconstructing the 𝑖th
row of 𝐗 by finding the best fit among all linear combina-
tions of the rows of the sketch 𝐗𝑆. Repeating this over all
rows of 𝐗, we get:

Er(𝑆) ∶=
𝑛
∑
𝑖=1

least squares

⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞min
𝐰

‖𝐗⊤
𝑆𝐰− 𝐱𝑖‖2 = ‖

‖𝐗𝐗
†
𝑆𝐗𝑆 − 𝐗‖‖

2

𝐹
.

Note that 𝐗†
𝑆𝐗𝑆 is the projection onto the span of {𝐱𝑖 ∶

𝑖 ∈ 𝑆}. If the size of 𝑆 is equal to some target rank 𝑟, then
Er(𝑆) is at least as large as the error of the best rank 𝑟 ap-
proximation of 𝐗, denoted 𝐗(𝑟) (obtained by projecting
onto the top 𝑟 right-singular vectors of 𝐗). However, [15]
showed that using a cardinality constrained L-ensemble
with 𝑘 = 𝑟 + 𝑟/𝜖 − 1 rows suffices to get within a 1 + 𝜖
factor of the best rank 𝑟 approximation error.

Theorem 6. If 𝑆 ∼ 𝑘-DPPL(𝐗𝐗⊤), where the sample size sat-
isfies 𝑘 ≥ 𝑟 + 𝑟/𝜖 − 1, then

𝔼Er(𝑆) ≤ (1 + 𝜖) ‖𝐗(𝑟) − 𝐗‖2𝐹 ,
and the size 𝑟 + 𝑟/𝜖 − 1 is worst-case optimal.
The task of finding the subset 𝑆 that minimizes Er(𝑆) is
sometimes known as the Column Subset Selection Prob-
lem (with 𝐗 replaced by 𝐗⊤). Similar 1 + 𝜖 guarantees
are achievable with RandNLA sampling techniques such
as leverage scores. However, those require sample sizes 𝑘
of at least 𝑟 log 𝑟, they contain a failure probability, and
they suffer from additional constant factors due to less ex-
act analysis.
Nyström method. The task of low-rank approximation is
often formulated in the context of symmetric positive semi-
definite (p.s.d.) matrices. Let 𝐋 be an 𝑛 × 𝑛 p.s.d. matrix.
We briefly discuss how DPPs can be applied in this setting
via theNyströmmethod, which constructs a rank 𝑘 approx-
imation of 𝐋 by using the eigendecomposition of a small
𝑘 × 𝑘 submatrix 𝐋𝑆,𝑆 for some index subset 𝑆.
Definition 5. We define the Nyström approximation of
𝐋 based on a subset 𝑆 as the 𝑛 × 𝑛 matrix 𝐋̃(𝑆) =
𝐋[𝑛],𝑆𝐋†𝑆,𝑆𝐋𝑆,[𝑛].

Originally developed in the context of obtaining numeri-
cal solutions to integral equations, this method has found
applications in a number of areas such as machine learn-
ing, Gaussian Process regression, and Independent Com-
ponent Analysis. Theorem 6 can be adapted to the setting
of Nyström approximation, providing the optimal sample
size with respect to the nuclear norm approximation error.

We use ‖𝐀‖∗ = tr((𝐀⊤𝐀)
1
2 ) to denote the nuclear norm and

𝐋(𝑟) as the best rank 𝑟 approximation.

Theorem 7. If 𝑆 ∼ 𝑘-DPPL(𝐋), where the sample size satisfies
𝑘 ≥ 𝑟 + 𝑟/𝜖 − 1, then

𝔼 ‖𝐋 − 𝐋̃(𝑆)‖∗ ≤ (1 + 𝜖) ‖𝐋 − 𝐋(𝑟)‖∗,
and the size 𝑟 + 𝑟/𝜖 − 1 is worst-case optimal.
4.4. Connections to RandNLA methods. The natural ap-
plicability of DPPs in the RandNLA tasks of least squares
regression and low-rank approximation discussed above
raises the question of how DPPs relate to traditional
RandNLA sampling methods used for this task. As dis-
cussed in Section 2, one of the main RandNLA techniques
for constructing rank-preserving sketches (i.e., relative to a
tall matrix 𝐗 with 𝑛 ≫ 𝑑) is i.i.d. leverage score sampling.
(From this perspective, random projections can be seen as
preprocessing or preconditioning the input so that lever-
age scores are approximately uniform, thereby enabling
uniform sampling—in the randomly-transformed space—
to be successfully used.) Even though leverage score sam-
pling was developed independently of DPPs, this method
can be viewed as an i.i.d. counterpart of the ProjectionDPP
from Theorem 2.

Theorem 8. Let𝐗 be 𝑛×𝑑 and rank 𝑑. For 𝑆 ∼ 𝑑-DPPL(𝐗𝐗⊤)
and any index 𝑖, the marginal probability of 𝑖 ∈ 𝑆 is the 𝑖th
leverage score of 𝐗:

Pr{𝑖 ∈ 𝑆} = 𝐱⊤𝑖 (𝐗⊤𝐗)−1𝐱𝑖.
Here, the term marginal refers to the marginal distribution
of any one out of 𝑛 binary variables 𝑏1, ..., 𝑏𝑛 which can
be used to represent the random set 𝑆 via 𝑆 = {𝑖 ∶ 𝑏𝑖 =
1}. Recall that the marginal kernel of the Projection DPP
is the projection matrix 𝐊 = 𝐗(𝐗⊤𝐗)−1𝐗⊤. The marginal
probabilities of this distribution lie on the diagonal of the
marginal kernel, which also contains the leverage scores of
𝐗.

Thus, leverage score sampling can be obtained as a dis-
tribution constructed from the marginals of the Projection
DPP. Naturally, when going from non-i.i.d. to i.i.d. sam-
pling, we lose all the negative correlations between the
points in a DPP sample, and therefore the expectation
formulas and inequalities from the preceding sections no
longer hold for leverage score sampling. Furthermore, re-
call that to achieve a rank-preserving sketch (e.g., for least
squares) with leverage score sampling for a full rankmatrix
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𝐗 we require at least 𝑑 log 𝑑 rows (Theorem 1), whereas
a Projection DPP generates only 𝑑 samples and also pro-
vides a rank-preserving sketch (Theorem 4). This shows
that losing the negative correlations costs us a factor of
log 𝑑 in the sample size.

Another connection between leverage scores and Projec-
tion DPPs emerges in the reverse direction, i.e., going from
i.i.d. to non-i.i.d. samples. Namely, a leverage score sam-
ple of size at least 2𝑑 log 𝑑 contains a Projection DPP with
probability at least 1/2 [7].
Theorem 9. Let 𝑗1, 𝑗2, ... be a sequence of i.i.d. leverage score
samples from matrix 𝐗. There is a random set 𝑇 ⊆ {1, 2, ...} of
size 𝑑 s.t. max{𝑖 ∈ 𝑇} ≤ 2𝑑 log 𝑑 with probability at least 1/2,
and:

{𝑗𝑖 ∶ 𝑖 ∈ 𝑇} ∼ 𝑑-DPPL(𝐗𝐗⊤).

Many extensions of leverage scores have been proposed for
use in the low-rank approximation setting (i.e., when 𝑛 ∼
𝑑). Arguably the most popular one is called ridge leverage
scores. [2]. Ridge leverage scores can be recovered as the
marginals of an L-ensemble.

Theorem 10. For 𝑆∼DPPL(
1
𝜆
𝐗𝐗⊤) and any index 𝑖, the mar-

ginal probability of 𝑖 ∈ 𝑆 is the 𝜆-ridge leverage score of 𝐗:
Pr{𝑖 ∈ 𝑆} = 𝐱⊤𝑖 (𝐗⊤𝐗 + 𝜆𝐈)−1𝐱𝑖.

The typical sample size required for low-rank approxi-
mationwith ridge leverage scores is at least 𝑑𝜆 log 𝑑𝜆, where
𝑑𝜆 is the ridge effective dimension (3) and also the ex-
pected size of the L-ensemble. Once again, the logarithmic
factor appears as a trade-off coming from i.i.d. sampling.

A reverse connection analogous to Theorem 9, i.e., go-
ing from i.i.d. to non-i.i.d. sampling, can also be obtained
for ridge leverage scores [5], although only a weaker ver-
sion, with𝑂(𝑑2𝜆) instead of𝑂(𝑑𝜆 log 𝑑𝜆), is currently known
in this setting.

Theorem 11. Let 𝑗1, 𝑗2, ... be a sequence of i.i.d. 𝜆-ridge lever-
age score samples from matrix 𝐗. There is a random set
𝑇 ⊆ {1, 2, ...} such that max{𝑖 ∈ 𝑇} ≤ 2𝑑2𝜆 with probability
at least 1/2, and:

{𝑗𝑖 ∶ 𝑖 ∈ 𝑇} ∼ DPPL(
1
𝜆
𝐗𝐗⊤).

5. Sampling Algorithms
One of the key considerations in RandNLA is computa-
tional efficiency of constructing random sketches. For ex-
ample, the i.i.d. leverage score sampling sketch defined in
Section 2 requires precomputing all of the leverage scores.
If done naïvely, this costs as much as performing the sin-
gular value decomposition (SVD) of the data. However,
by employing fast RandNLA projection methods, one ob-
tains efficient near-linear time complexity approximation
algorithms for leverage score sampling [13].

In the case of DPPs, the challenge may seem even more
daunting, since the naïve algorithm has exponential time
complexity relative to the data size. However, the connec-
tions between leverage scores and DPPs (summarized in
Table 1) have recently played a crucial role in the algorith-
mic improvements for DPP sampling. In particular, recent
advances in DPP sampling have resulted in several algo-
rithmic techniques which are faster than SVD, and in some
regimes even approach the time complexity of fast leverage
score sampling algorithms. See Table 2 for an overview.
5.1. Leverage scores: Approximation. We start by dis-
cussing fast sketching methods for approximating leverage
scores more rapidly than by naïvely computing them via
the SVD or aQR decomposition. This is a good illustration
of RandNLA algorithmic techniques, and it is also relevant
in our later discussion of DPP sampling.

For simplicity, we focus on constructing leverage scores
for rank-preserving sketches (i.e., for a tall 𝑛 × 𝑑 matrix
𝐗), but similar ideas apply to the low-rank approximation
setup [13]. Recall that the 𝑖th leverage score of𝐗 is given by
𝑙𝑖 = 𝐱⊤𝑖 (𝐗⊤𝐗)−1𝐱𝑖, which can be expressed as the squared

norm of the 𝑖th row of the matrix 𝐗(𝐗⊤𝐗)−
1
2 . Assuming

that 𝑛 ≫ 𝑑, the primary computational cost of obtain-
ing this matrix involves two expensive matrix multiplica-
tions: first, computing 𝐑 = 𝐗⊤𝐗 (or a similarly expen-
sive operation such as a QR decomposition or the SVD);

and second, computing 𝐗𝐑− 1
2 . While each of these steps

costs 𝑂(𝑛𝑑2) arithmetic operations, [13] showed that both
of them can be approximated using efficient randomized
sketching techniques, such as the Subsampled Random-
ized Hadamard Transform (SRHT) sketch [1]. The SRHT
is a random sketching matrix 𝐒 that, with high probability,
satisfies the subspace embedding property (Definition 1),
and that admits fast matrix-vector multiplication by ex-
ploiting recursive structure of the Hadamard matrix. The
resulting overall procedure returns leverage score approx-
imations in time 𝑂(𝑛𝑑 log 𝑛 + 𝑑3 log 𝑑), i.e., much faster
than 𝑂(𝑛𝑑2) for the naïve algorithm.

A number of refinements have been proposed for ap-
proximating leverage scores, and similar approaches have
also been developed for ridge leverage scores [2], which
are used for low-rank approximation. In this case, we of-
ten consider the setting where instead of an 𝑛×𝑑matrix 𝐗,
we are given an 𝑛×𝑛matrix𝐊 = 𝐗𝐗⊤, i.e., the Grammatrix
of the rows of 𝐗 (this is particularly relevant in the context
of DPPs). Here, 𝜆-ridge leverage scores can be defined as
the diagonal entries of the matrix 𝐊(𝜆𝐈 +𝐊)−1 and can be
approximately computed in time 𝑂(𝑛𝑑2𝜆 poly(log 𝑛)), with
𝑑𝜆 as in (3). When 𝑑𝜆 ≪ 𝑛, this is less than the naïve cost
of 𝑂(𝑛3).
5.2. DPPs: Eigendecomposition. In this and subsequent
sections, we discuss several algorithmic techniques for
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Rank-preserving sketch Low-rank approximation

Input: 𝑛 × 𝑑 data matrix 𝐗, 𝑛 ≫ 𝑑 Input: 𝑛 × 𝑛 kernel matrix 𝐋
Output: Sample of size 𝑘 = 𝑂(𝑑) Output: Sample of size 𝑘 ≪ 𝑛
First sample Subsequent samples First sample Subsequent samples

Lev. scores: Exact 𝑛𝑑2 𝑑 𝑛3 𝑘
Approximate 𝑛𝑑 + 𝑑3 𝑑 𝑛𝑘2 𝑘

DPPs: Eigendecomposition 𝑛𝑑2 𝑑3 𝑛3 𝑛𝑘 + 𝑘3
Intermediate sampling 𝑛𝑑 + 𝑑4 𝑑4 𝑛 ⋅ poly(𝑘) 𝑘6
Monte Carlo sampling 𝑛 ⋅ poly(𝑑) 𝑛 ⋅ poly(𝑑) 𝑛 ⋅ poly(𝑘) 𝑛 ⋅ poly(𝑘)

Table 2. Comparison of sampling cost for DPP algorithms, alongside the cost of exact and approximate leverage score sampling,
given either a tall data matrix 𝐗 or a square p.s.d. kernel 𝐋. Most methods can also be extended to the wide data matrix 𝐗 setting.
We assume that an L-ensemble kernel 𝐋 is used for the DPPs (if given a data matrix 𝐗, we use 𝐋 = 𝐗𝐗⊤). We allow either a 𝑘-DPP
or an L-ensemble with expected size 𝑘, however, in some cases, there are minor differences in the time complexities (in which
case we give the better of the two). For simplicity, we omit the log terms in these expressions.

sampling from DPPs and 𝑘-DPPs. We focus on the gen-
eral parameterization of a DPP via an 𝑛 × 𝑛 kernel matrix
(either the marginal kernel 𝐊 or the L-ensemble kernel 𝐋),
but we also discuss how these techniques can be applied
to sampling from DPPs defined on a tall 𝑛 × 𝑑 matrix 𝐗,
which we used in Section 4.

We start with an important result of [17], which shows
that any DPP can be decomposed into a mixture of Projec-
tion DPPs.

Theorem 12. Consider the eigendecomposition 𝐊 =
∑𝑖 𝜆𝑖𝐮𝑖𝐮⊤𝑖 , where 𝜆𝑖 ∈ [0, 1] and ‖𝐮𝑖‖ = 1. For each 𝑖, let
𝑠𝑖 be a random variable which is 1 with probability 𝜆𝑖 and 0
otherwise. Then the mixture distribution DPP(∑𝑖 𝑠𝑖𝐮𝑖𝐮⊤𝑖 ) is
identical to DPP(𝐊).
Note that∑𝑖 𝑠𝑖𝐮𝑖𝐮⊤𝑖 randomly selects one of 2𝑛 projection
matrices (all their eigenvalues are 0 or 1), which defines
a corresponding Projection DPP. In addition to the mix-
ture decomposition, [17] also gave a simple 𝑂(𝑛𝑘2) time
procedure for sampling from this Projection DPP, where 𝑘
denotes the sample size∑𝑖 𝑠𝑖. This procedure was recently
accelerated to 𝑂(𝑛𝑘 + 𝑘3 log 𝑘) by [7]. Thus, combining
the mixture decomposition and the Projection DPP algo-
rithm, it became possible to sample from any determinan-
tal point process in low-degree polynomial time, which
significantly broadened the popularity of DPPs in the com-
puter science community.

The overall sampling procedure proposed by [17] is very
efficient, if we are given the eigendecomposition of ker-
nel 𝐊 or of the L-ensemble kernel 𝐋. It can also be easily
adapted to sampling cardinality constrained DPPs. How-
ever, obtaining the eigendecomposition itself can be a sig-
nificant bottleneck: it costs 𝑂(𝑛3) time for a general 𝑛 × 𝑛
kernel. If we are given a tall 𝑛 × 𝑑 matrix 𝐗 such that
𝐋 = 𝐗𝐗⊤, as was the case in Section 4, then the sampling
cost can be reduced to 𝑂(𝑛𝑑2). There have been a num-
ber of attempts at avoiding the eigendecomposition in this
procedure, leading to several approximate algorithms. Fi-
nally, approaches using other factorizations of the kernel
matrix have been proposed, and these offer computational

advantages in certain settings.
5.3. DPPs: Intermediate sampling. The DPP sampling
algorithms from Section 5.2 can be accelerated with a re-
cently introduced technique [5, 6], which uses leverage
score sampling to reduce the size of the 𝑛 × 𝑛 kernel ma-
trix, without distorting the underlying DPP distribution.
Recall from Section 4.4 that i.i.d. leverage score sampling
can be viewed as an approximation of a DPP in which
we ignore the negative correlations between the sampled
points. Naturally, in most cases such a sample as a whole
will be a very poor approximation of a DPP. However, with
high probability, it contains a DPP of a smaller size (The-
orems 9 and 11).

This motivates a strategy called distortion-free intermedi-
ate sampling. To explain how this strategy can be imple-
mented, we will consider the special case of a Projection
DPP of size 𝑘, where this approach was first introduced by
[10]. They showed that an i.i.d. sample of indices 𝑖1, ..., 𝑖𝑡 of
size 𝑡 = 𝑂(𝑘2) drawn proportionally to the leverage scores
contains with high probability a subset 𝑆 distributed ac-
cording to the desired Projection DPP. Moreover, this sub-
set can be found by downsamplingwith aDPP restricted to
the smaller sample. This procedure essentially reduces the
task of sampling from a DPP over a large domain {1, ..., 𝑛}
into sampling from a potentially much smaller domain
of size 𝑂(𝑘2). Surprisingly, this can be performed with-
out any loss in accuracy, so that the final sample is drawn
exactly from the target distribution. Similar intermediate
sampling methods were later developed by [5, 6] for L-
ensembles (where ridge leverage scores are used instead
of the standard leverage scores) and 𝑘-DPPs, resulting in
a linear in 𝑛 preprocessing cost (instead of cubic for the
eigendecomposition), and sampling cost independent of
𝑛 (see Table 2).

Theorem 13. Let 𝑆1, 𝑆2 be i.i.d. random sets from DPPL(𝐋),
with 𝑘 = 𝔼[|𝑆|] or from any 𝑘-DPP(𝐋). Then, given access to
𝐋, we can return

1. first, 𝑆1 in: 𝑛 ⋅ poly(𝑘 log 𝑛) time,
2. then, 𝑆2 in: poly(𝑘) time.
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Analogous time complexity statements can be provided
when 𝐋 = 𝐗𝐗⊤ and we are given 𝐗. In this case, the first
sample can be obtained in 𝑂(𝑛𝑑 log 𝑛+poly(𝑑)) time, and
each subsequent sample takes poly(𝑑) time [5]. Also, ex-
tensions of intermediate sampling exist for classes of dis-
tributions beyond DPPs, including all Strongly Rayleigh
measures [21].
5.4. DPPs: Monte Carlo sampling. A completely differ-
ent approach of (approximately) sampling from a DPP
was proposed by [3], who showed that a simple fast-
mixingMonte CarloMarkov chain (MCMC) algorithmhas
a cardinality constrained L-ensemble 𝑘-DPPL(𝐋) as its sta-
tionary distribution. The state space of this chain consists
of subsets 𝑆 ⊆ [𝑛] of some fixed cardinality 𝑘. At each step,
we choose an index 𝑖 ∈ 𝑆 and 𝑗 ∉ 𝑆 uniformly at random.
Letting 𝑇 = 𝑆∪{𝑗}\{𝑖}, we transition from 𝑆 to 𝑇 with prob-
ability

1
2 min {1,

det(𝐋𝑇,𝑇)
det(𝐋𝑆,𝑆)

},

and otherwise, stay in 𝑆. It is easy to see that the
stationary distribution of the above Markov chain is 𝑘-
DPPL(𝐋). Moreover, [3] showed that the mixing time can
be bounded as follows.

Theorem 14. The number of steps required to get to
within 𝜖 total variation distance from 𝑘-DPPL(𝐋) is at most
poly(𝑘)𝑂(𝑛 log(𝑛/𝜖)).

The advantages of these sampling procedures over the
algorithm of [17] are that we are not required to perform
the eigendecomposition and that the computational cost
of the MCMC algorithm scales linearly with 𝑛. The disad-
vantages are that the sampling is approximate and that we
have to run the entire chain every time we wish to produce
a new sample 𝑆.

6. Looking Forward
We have briefly surveyed two established research areas
which exhibit deep connections that have only recently be-
gan to emerge:

1. Randomized Numerical Linear Algebra; and
2. Determinantal Point Processes.

In particular, we discussed recent developments in ap-
plying DPPs to classical tasks in RandNLA, such as least
squares regression and low-rank approximation; and we
surveyed recent results on sampling algorithms for DPPs,
comparing and contrasting several different approaches.

We expect that these connections will be fruitful more
generally. As an example of this, we briefly mention a re-
cently proposed mathematical framework for studying de-
terminants, which played a key role in obtaining some of
these results.
Determinant-preserving random matrices. A square ran-
dom matrix 𝐀 is determinant preserving (d.p.) if all of

its subdeterminants commute with taking the expectation,
i.e., if:

𝔼 det(𝐀𝑆,𝑇) = det(𝔼𝐀𝑆,𝑇)

for all index subsets 𝑆, 𝑇 of the same size. Not all random
matrices satisfy this property, however there are many non-
trivial examples. For instance, consider 𝐀 = 𝑋𝐂, where 𝑋
is a scalar random variable with positive variance and 𝐂 is
a nonzero deterministic square matrix. Then, 𝐀 is d.p. if
and only if 𝐂 is rank 1. More elaborate positive examples,
such as matrices with independent random entries, can be
constructed by taking advantage of the algebraic structure
of the d.p. class: if𝐀 and 𝐁 are independent and d.p., then
both 𝐀 + 𝐁 and 𝐀𝐁 are also determinant preserving. The
first examples of d.p. matrices where given by [5] (used in
the analysis of the fast DPP sampling algorithm from The-
orem 13). Further discussion can be found in [8].

Of course, our survey of the applications of DPPs nec-
essarily excluded many areas where this family of distribu-
tions appears. Here, we briefly discuss some other appli-
cations of DPPs which are relevant in the context of NLA
and RandNLA but did not fit in the scope of this work.
Implicit regularization. In many optimization tasks (e.g.,
in machine learning), the true minimizer of a desired ob-
jective is not unique or not computable exactly, so that
the choice of the optimization procedure affects the out-
put. Implicit regularization occurs when these algorithmic
choices provide an effect similar to explicitly introducing
a regularization penalty into the objective. This has been
observed for approximate solutions returned by stochastic
and combinatorial optimization algorithms, but a precise
characterization of this phenomenon for RandNLA sam-
pling methods has proven challenging. Recently, DPPs
have been used to derive exact expressions for implicit reg-
ularization in RandNLA algorithms [8], connecting it to a
phase transition called the double descent curve.
Optimal design of experiments. In statistics, the task of
selecting a subset of data points for a downstream regres-
sion task is referred to as optimal design. In this context,
it is often assumed that the coefficients 𝑦𝑖 (or responses)
are random variables obtained as a linear transformation
of the vector 𝐱𝑖 distorted by some mean zero noise, as in
(4). A number of optimality criteria (such as A-optimality,
which uses mean squared error of the least squares estima-
tor) have been considered for selecting the subsets. DPP
subset selection has been shown to provide useful guaran-
tees for some of the most popular criteria (including A-,
C-, D-, and V-optimality), leading to new approximation
algorithms [7,22].
Stochastic optimization. Randomized selection of small
batches of data or subsets of parameters has been very
successful in speeding up many iterative optimization al-
gorithms. Here, nonuniform sampling can be used to
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reduce the bias and/or variance in the iteration steps. In
particular, [25] showed that using a DPP for sampling
mini-batches in stochastic gradient descent improves the
convergence rate of the optimizer.
Monte Carlo integration. DPPs have been shown to
achieve theoretically improved guarantees for numerical
integration, i.e., using a weighted sum of function evalu-
ations to approximate an integral. In particular, [4] con-
structed a DPP for which the root mean squared errors of
Monte Carlo integration decrease as 𝑛−(1+1/𝑑)/2, where 𝑛
is the number of function evaluations and 𝑑 is the dimen-
sion. This is faster than the typical 𝑛−1/2 rate.

In conclusion, despite having been studied for at least
forty-five years, DPPs are enjoying an explosion of renewed
interest, with novel applications emerging on a regular ba-
sis. Their rich connections to RandNLA, which we have
only briefly summarized and which offer a nice example
of how deep mathematics informs practical problems and
vice versa, provide a particularly fertile ground for future
work.
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