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Abstract

We present a novel feature selection algorithm for the k-means clustering problem.
Our algorithm is randomized and, assuming an accuracy parameter ϵ ∈ (0, 1),
selects and appropriately rescales in an unsupervised manner Θ(k log(k/ϵ)/ϵ2)
features from a dataset of arbitrary dimensions. We prove that, if we run any
γ-approximate k-means algorithm (γ ≥ 1) on the features selected using our
method, we can find a (1+ (1+ ϵ)γ)-approximate partition with high probability.

1 Introduction

Clustering is ubiquitous in science and engineering, with numerous and diverse application domains,
ranging from bioinformatics and medicine to the social sciences and the web [15]. Perhaps the most
well-known clustering algorithm is the so-called “k-means” algorithm or Lloyd’s method [22], an
iterative expectation-maximization type approach, which attempts to address the following objec-
tive: given a set of points in a Euclidean space and a positive integer k (the number of clusters), split
the points into k clusters so that the total sum of the (squared Euclidean) distances of each point to
its nearest cluster center is minimized. This optimization objective is often called the k-means clus-
tering objective. (See Definition 1 for a formal discussion of the k-means objective.) The simplicity
of the objective, as well as the good behavior of the associated algorithm (Lloyd’s method [22, 28]),
have made k-means enormously popular in applications [32].

In recent years, the high dimensionality of the modern massive datasets has provided a considerable
challenge to k-means clustering approaches. First, the curse of dimensionality can make algorithms
for k-means clustering very slow, and, second, the existence of many irrelevant features may not
allow the identification of the relevant underlying structure in the data [14]. Practitioners addressed
such obstacles by introducing feature selection and feature extraction techniques. It is worth not-
ing that feature selection selects a small subset of actual features from the data and then runs the
clustering algorithm only on the selected features, whereas feature extraction constructs a small set
of artificial features and then runs the clustering algorithm on the constructed features. Despite the
significance of the problem, as well as the wealth of heuristic methods addressing it (see Section
3), there exist no provably accurate feature selection methods and extremely few provably accurate
feature extraction methods for the k-means clustering objective (see Section 3.1 for the later case).
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Our work here addresses this shortcoming by presenting the first provably accurate feature selection
algorithm for k-means clustering. Our algorithm constructs a probability distribution for the feature
space, and then selects a small number of features (roughly k log(k), where k is the number of
clusters) with respect to the computed probabilities. (See Section 2 for a detailed description of
our algorithm.) Then, we argue that running k-means clustering algorithms on the selected features
returns a constant-factor approximate partition to the optimal. (See Theorem 1 in Section 2.)

We now formally define the k-means clustering problem using the so-called cluster indicator matrix.
Also, recall that the Frobenius norm of a matrix (denoted by ∥·∥F ) is equal to the square root of the
sum of the squares of its elements. (See also Section 4.1 for useful notation.)

Definition 1 [THE K-MEANS CLUSTERING PROBLEM]
Given a matrix A ∈ Rn×d (representing n points – rows – described with respect to d features –
columns) and a positive integer k denoting the number of clusters, find the n × k indicator matrix
Xopt such that

Xopt = arg min
X∈X

∥∥A−XXTA
∥∥2
F
. (1)

The optimal value of the k-means clustering objective is

Fopt = min
X∈X

∥∥A−XXTA
∥∥2
F
=

∥∥A−XoptX
T
optA

∥∥2
F
. (2)

In the above X denotes the set of all n× k indicator matrices X .

We briefly expand on the notion of an n × k indicator matrix X . Such matrices have exactly one
non-zero element per row, which denotes cluster membership. Equivalently, for all i = 1, . . . , n and
j = 1, . . . , k, the i-th row (point) of A belongs to the j-th cluster if and only if Xij is non-zero;
in particular Xij = 1/

√
sj , where sj is the number of points in the corresponding cluster (i.e. the

number of non-zero elements in the j-th column of X). Note that the columns of X are normalized
and pairwise orthogonal so that their Euclidean norm is equal to one, and XTX = Ik, where Ik
is the k × k identity matrix. An example of such an indicator matrix X representing three points
(rows in X) belonging to two different clusters (columns in X) is given below; note that the points
corresponding to the first two rows of X belong to the first cluster (s1 = 2) and the other point to
the second cluster (s2 = 1):

X =

 1/
√
2 0

1/
√
2 0

0 1/
√
1

 .

The above definition of the k-means objective is exactly equivalent with the standard definition of
k-means clustering [28]. To see this notice that

∥∥A−XXTA
∥∥2
F

=
∑n

i=1 ||A(i) − X(i)X
TA||22,

while for i = 1, ..., n, X(i)X
TA denotes the centroid of the cluster the i-th point belongs to. In the

above, A(i) and X(i) denote the i-th rows of A and X , respectively.

2 The feature selection algorithm and the quality-of-clustering results
Algorithm 1 takes as inputs the matrix A ∈ Rn×d, the number of clusters k, and an accuracy
parameter ϵ ∈ (0, 1). It first computes the top-k right singular vectors of A (columns of Vk ∈ Rd×k).
Using these vectors, it computes the so-called (normalized) leverage scores [4, 24]; for i = 1, ..., d
the i-th leverage score equals the square of the Euclidian norm of the i-th row of Vk (denoted by
(Vk)(i)). The i-th leverage score characterizes the importance of the i-th feature with respect to the
k-means objective. Notice that these scores (see the definition of p′is in step 2 of Algorithm 1) form
a probability distribution over the columns of A since

∑n
i=1 pi = 1. Then, the algorithm chooses

a sampling parameter r that is equal to the number of (rescaled) features that we want to select.
In order to prove our theoretical bounds, r should be fixed to r = Θ(k log(k/ϵ)/ϵ2) at this step
(see section 4.4). In practice though, a small value of r, for example r = 10k, seems suficient (see
section 5). Having r fixed, Algorithm 1 performs r i.i.d random trials where in each trial one column
of A is selected by the following random process: we throw a biased die with d faces with each face
corresponding to a column of A, where for i = 1, ..., d the i-th face occurs with probability pi. We
select the column of A that corresponds to the face we threw in the current trial. Finally, note that the
running time of Algorithm 1 is dominated by the time required to compute the top-k right singular
vectors of the matrix A, which is at most O

(
min{nd2, n2d}

)
.
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Input: n× d matrix A (n points, d features), number of clusters k, parameter ϵ ∈ (0, 1).
1. Compute the top-k right singular vectors of A, denoted by Vk ∈ Rd×k.
2. Compute the (normalized) leverage scores pi, for i = 1, . . . , d,

pi =
∥∥∥(Vk)(i)

∥∥∥2
2
/k.

3. Fix a sampling parameter r = Θ(k log(k/ϵ)/ϵ2).
4. For t = 1, . . . , r i.i.d random trials:

• keep the i-th feature with probability pi and multiply it by the factor (rpi)−1/2.

5. Return the n× r matrix Ã containing the selected (rescaled) features.

Output: n× r matrix Ã, with r = Θ(k log(k/ϵ)/ϵ2).

Algorithm 1: A randomized feature selection algorithm for the k-means clustering problem.

In order to theoretically evaluate the accuracy of our feature selection algorithm, and provide some
a priori guarantees regarding the quality of the clustering after feature selection is performed, we
chose to report results on the optimal value of the k-means clustering objective (the Fopt of Defi-
nition 1). This metric of accuracy has been extensively used in the Theoretical Computer Science
community in order to analyze approximation algorithms for the k-means clustering problem. In
particular, existing constant factor or relative error approximation algorithms for k-means (see, for
example, [21, 1] and references therein) invariably approximate Fopt.

Obviously, Algorithm 1 does not return a partition of the rows of A. In a practical setting, it would
be employed as a preprocessing step. Then, an approximation algorithm for the k-means clustering
problem would be applied on Ã in order to determine the partition of the rows of A. In order to
formalize our discussion, we borrow a definition from the approximation algorithms literature.

Definition 2 [K-MEANS APPROXIMATION ALGORITHM]
An algorithm is a “γ-approximation” for the k-means clustering problem (γ ≥ 1) if it takes inputs
A and k, and returns an indicator matrix Xγ that satisfies with probability at least 1− δγ ,∥∥A−XγX

T
γ A

∥∥2
F
≤ γ min

X∈X

∥∥A−XXTA
∥∥2
F
. (3)

In the above δγ ∈ [0, 1) is the failure probability of the algorithm.

Clearly, when γ = 1, then Xγ is the optimal partition, which is a well-known NP-hard objective. If
we allow γ > 1, then many approximation algorithms exist in the literature. For example, the work
of [21], achieves γ = 1 + ϵ, for some ϵ ∈ (0, 1] in time linear on the size of the input. Similarly,
the k-means++ method of [1] achieves γ = O(log(k)) using the popular Lloyd’s algorithm and a
sophisticated randomized seeding. Theorem 1 (see Section 4 for its proof) is our main quality-of-
approximation result for our feature selection algorithm.

Theorem 1 Let the n×d matrix A and the positive integer k be the inputs of the k-means clustering
problem. Let ϵ ∈ (0, 1), and run Algorithm 1 with inputs A, k, and ϵ in order to construct the n× r

matrix Ã containing the selected features, where r = Θ(k log(k/ϵ)/ϵ2).

If we run any γ-approximation algorithm (γ ≥ 1) for the k-means clustering problem, whose fail-
ure probability is δγ , on inputs Ã and k, the resulting cluster indicator matrix Xγ̃ satisfies with
probability at least 0.5− δγ ,∥∥A−Xγ̃X

T
γ̃ A

∥∥2
F
≤ (1 + (1 + ϵ)γ) min

X∈X

∥∥A−XXTA
∥∥2
F
. (4)

The failure probability of the above theorem can be easily reduced using standard boosting methods.
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3 Related work

Feature selection has received considerable attention in the machine learning and data mining com-
munities. A large number of different techniques appeared in prior work, addressing the feature
selection within the context of both clustering and classification. Surveys include [13], as well
as [14], which reports the results of the NIPS 2003 challenge in feature selection. Popular feature
selection techniques include the Laplacian scores [16], the Fisher scores [9], or the constraint scores
[33]. In this section, we opt to discuss only a family of feature selection methods that are closely
related to the leverage scores of our algorithm. To the best of our knowledge, all previous feature
selection methods come with no theoretical guarantees of the form that we describe here.

Given as input an n×d object-feature matrix A and a positive integer k, feature selection for Princi-
pal Components Analysis (PCA) corresponds to the task of identifying a subset of k columns from
A that capture essentially the same information as do the top k principal components of A. Jol-
liffe [18] surveys various methods for the above task. Four of them (called B1, B2, B3, and B4
in [18]) employ the Singular Value Decomposition of A in order to identify columns that are some-
how correlated with its top k left singular vectors. In particular, B3 employs exactly the leverage
scores in order to greedily select the k columns corresponding to the highest scores; no theoretical
results are reported. An experimental evaluation of the methods of [18] on real datasets appeared
in [19]. Another approach employing the matrix of the top k right singular vectors of A and a
Procrustes-type criterion appeared in [20]. From an applications perspective, [30] employed the
methods of [18] and [20] for gene selection in microarray data analysis. From a complementary
viewpoint, feature selection for clustering seeks to identify those features that have the most dis-
criminative power among the set of all features. Continuing the aforementioned line of research,
many recent papers present methods that somehow employ the SVD of the input matrix in order
to select discriminative features; see, for example, [23, 5, 25, 26]. Finally, note that employing
the leverage scores in a randomized manner similar to Algorithm 1 has already been proven to be
accurate for least-squares regression [8] and PCA [7, 2].

3.1 Connections with the SVD

A well-known property connects the SVD of a matrix and k-means clustering. Recall Definition
1, and notice that XoptX

T
optA is a matrix of rank at most k. From the SVD optimality [11], we

immediately get that (see section 4.1 for useful notation)

∥Aρ−k∥2F = ∥A−Ak∥2F ≤
∥∥A−XoptX

T
optA

∥∥2
F
= Fopt. (5)

A more interesting connection between the SVD and k-means appeared in [6]. If the n × d matrix
A is projected on the subspace spanned by its top k left singular vectors, then the resulting n × k

matrix Â = UkΣk corresponds to a mapping of the original d-dimensional space to the optimal
k-dimensional space. This process is equivalent to feature extraction: the top k left singular vectors
(the columns of Uk) correspond to the constructed features (Σk is a simple rescaling operator).
Prior to the work of [6], it was empirically known that running k-means clustering algorithms on
the low-dimensional matrix Â was a viable alternative to clustering the high-dimensional matrix A.
The work of [6] formally argued that if we let the cluster indicator matrix X̂opt denote the optimal
k-means partition on Â, i.e.,

X̂opt = arg min
X∈X

∥∥∥Â−XXT Â
∥∥∥2
F
, (6)

then using this partition on the rows of the original matrix A is a 2-approximation to the optimal
partition, a.k.a., ∥∥∥A− X̂optX̂

T
optA

∥∥∥2
F
≤ 2 min

X∈X

∥∥A−XXTA
∥∥2
F
. (7)

The above result is the starting point of our work here. Indeed, we seek to replace the k artificial
features that are extracted via the SVD with a small number (albeit slightly larger than k) of actual
features. On the positive side, an obvious advantage of feature selection vs. feature extraction is
the immediate interpretability of the former. On the negative side, our approximation accuracy is
slightly worse (2 + ϵ, see Theorem 1 with γ = 1) and we need slightly more than k features.
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4 The proof of Theorem 1

This section gives the proof of Theorem 1. We start by introducing useful notation; then, we present
a preliminary lemma and the proof itself.

4.1 Notation

Given an n × d matrix A, let Uk ∈ Rn×k (resp. Vk ∈ Rd×k) be the matrix of the top k left (resp.
right) singular vectors of A, and let Σk ∈ Rk×k be a diagonal matrix containing the top k singular
values of A. If we let ρ be the rank of A, then Aρ−k is equal to A − Ak, with Ak = UkΣkV

T
k .

∥A∥F and ∥A∥2 denote the Frobenius and the spectral norm of a matrix A, respectively. A+

denotes the pseudo-inverse of A and ||A+||2 = σmax(A
+) = 1/σmin(A), where σmax(X) and

σmin(X) denote the largest and the smallest non-zero singular values of a matrix X , respectively.
A useful property of matrix norms is that for any two matrices X and Y , ∥XY ∥F ≤ ∥X∥F ∥Y ∥2
and ∥XY ∥F ≤ ∥X∥2 ∥Y ∥F ; this is a stronger version of the standard submultiplicavity property
for matrix norms. We call P a projector matrix if it is square and P 2 = P . We use E[y] to take the
expectation of a random variable y and Pr[e] to take the probability of a random event e. Finally, we
abbreviate “independent identically distributed” to “i.i.d” and “with probability” to “w.p”.

4.2 Sampling and rescaling matrices

We introduce a simple matrix formalism in order to conveniently represent the sampling and rescal-
ing processes of Algorithm 1. Let S be a d × r sampling matrix that is constructed as follows: S
is initially empty. For all t = 1, . . . , r, in turn, if the i-th feature of A is selected by the random
sampling process described in Algorithm 1, then ei (a column vector of all-zeros, except for its i-th
entry which is set to one) is appended to S. Also, let D be a r × r diagonal rescaling matrix con-
structed as follows: D is initially an all-zeros matrix. For all t = 1, . . . , r, in turn, if the i-th feature
of A is selected, then the next diagonal entry of D is set to 1/

√
rpi. Thus, by using the notation of

this paragraph, Algorithm 1 outputs the matrix Ã = ASD ∈ Rn×r.

4.3 A preliminary lemma and sufficient conditions

Lemma 1 presented below gives upper and lower bounds for the largest and the smallest singular
values of the matrix V T

k SD, respectively. This also implies that V T
k SD has full rank. Finally, it

argues that the matrix ASD can be used to provide a very accurate approximation to the matrix Ak.

Lemma 1 provides four sufficient conditions for designing provably accurate feature selection al-
gorithms for k-means clustering. To see this notice that, in the proof of eqn. (4) given below, the
results of Lemma 1 are sufficient to prove our main theorem; the rest of the arguments apply to all
sampling and rescaling matrices S and D. Any feature selection algorithm, i.e. any sampling matrix
S and rescaling matrix D, that satisfy bounds similar to those of Lemma 1, can be employed to
design a provably accurate feature selection algorithm for k-means clustering. The quality of such
an approximation will be proportional to the tightness of the bounds of the three terms of Lemma
1 (||V T

k SD||2, ||(V T
k SD)+||2, and ||E||F ). Where no rescaling is allowed in the selected features,

the bottleneck in the approximation accuracy of a feature selection algorithm would be to find a
sampling matrix S such that only ||(V T

k S)+||2 is bounded from above. To see this notice that, in
Lemma 1, for any S, ||V T

k S||2 ≤ 1, and (after applying the submultiplicavity property of Section
4.1 in eqn. 13) ||E||F ≤ ||(V T

k S)+||2||A − Ak||. It is worth emphasizing that the same factor
||(V T

k S)+||2 appeared to be the bottleneck in the design of provably accurate column-based low-
rank approximations (see, for example, Theorem 1.5 in [17] and eqn. (3.19) in [12]). It is evident
from the above observations that other column sampling methods (see, for example, [17, 3, 2] and
references therein), satisfying similar bounds to those of Lemma 1, immediately suggest themselves
for the design of provably accurate feature selection algorithms for k-means clustering. Finally,
equations (101) and (102) of Lemma 4.4 in [31] suggest that a sub-sampled randomized Fourier
transform can be used for the design of a provably accurate feature extraction algorithm for k-means
clustering, since they provide bounds similar to those of Lemma 1 by replacing the matrices S and
D of our algorithm with a sub-sampled randomized Fourier transform matrix (see the matrix R of
eqn. (6) in [31]).
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Lemma 1 Assume that the sampling matrix S and the rescaling matrix D are constructed using
Algorithm 1 (see also Section 4.2) with inputs A, k, and ϵ ∈ (0, 1). Let co and c1 be absolute
constants that will be specified later. If the sampling parameter r of Algorithm 1 satisfies

r ≥ 2c1c
2
ok log(c1c

2
ok/ϵ

2)/ϵ2,

then all four statements below hold together with probability at least 0.5:

1.
∥∥V T

k SD
∥∥
2
= σmax(V

T
k SD) ≤

√
1 + λ.

2.
∥∥(V T

k SD)+
∥∥
2
= 1/σmin(V

T
k SD) ≤

√
1/(1− λ.

3. V T
k SD is a full rank matrix, i.e. rank(V T

k SD) = k.

4. Ak = (ASD)(V T
k SD)+V T

k + E, with ∥E∥F ≤ µ ∥A−Ak∥F .

To simplify notation, we set λ = ϵ
√
36/c1 and µ = ϵ

√
6/(2c1c2o log(c1c

2
ok/ϵ

2)) +
√
6λ2/(1− λ).

Proof: First, we will apply Theorem 3.1 of [29] for an appropriate random vector y. Toward that end,
for i = 1, ..., d, the i-th column of the matrix V T

k is denoted by (V T
k )(i). We define the random vector

y ∈ Rk as follows: for i = 1, ..., d Pr[y = yi] = pi, where yi = (1/
√
pi)(V

T
k )(i) is a realization of

y. This definition of y and the definition of the sampling and rescaling matrices S and D imply that
V T
k SDDSTVk = 1

r

∑d
i=1 yiy

T
i . Our choice of pi = ||(V T

k )(i)||2/k implies that ||y||2 ≤
√
k. Note

also that E[yyT ] =
∑d

i=1 pi
1√
pi
(V T

k )(i) 1√
pi
(V T

k )(i))T = V T
k Vk = Ik. Obviously, ||E[yyT ]||2 =

1. Our choice of r allows us to apply Theorem 3.1 of [29], which, combined with the Markov’s
inequality on the random variable z =

∥∥V T
k SDDSTVk − Ik

∥∥
2

implies that w.p at least 1− 1/6,∥∥V T
k SDDSTVk − Ik

∥∥
2
≤ 6c0

√
k log(r)/r,

for a sufficiently large (unspecified in [29]) constant co. Standard matrix perturbation theory re-
sults [11] imply that for i = 1, ..., k∥∥V T

k SDDSTVk − Ik
∥∥
2
=

∣∣σ2
i

(
V T
k SD

)
− 1

∣∣ ≤ 6co
√
k log(r)/r.

Our choice of r and simple algebra suffices to show that log(r)/r ≤ ϵ2/(c1c
2
ok), which implies that

the first two statements of the Lemma hold w.p at least 1 − 5/6. To prove the third statement, we
only need to show that the k-th singular value of V T

k SD is positive. Our choice of ϵ ∈ (0, 1) and
the second condition of the Lemma imply that σk(V

T
k SD) > 0. To prove the fourth statement:∥∥Ak −ASD(V T

k SD)+V T
k

∥∥
F

=
∥∥Ak −AkSD(V T

k SD)+V T
k −Aρ−kSD(V T

k SD)+V T
k

∥∥
F

(8)

≤
∥∥Ak −AkSD(V T

k SD)+V T
k

∥∥
F︸ ︷︷ ︸

θ1

+
∥∥Aρ−kSD(V T

k SD)+V T
k

∥∥
F︸ ︷︷ ︸

θ2

.(9)

In the above, in eqn. (8) we replaced A by Ak+Aρ−k, and in eqn. (9) we used the triangle inequality.
The first term of eqn. (9) is bounded by

θ1 =
∥∥Ak − UkΣkV

T
k SD(V T

k SD)+V T
k

∥∥
F

(10)

=
∥∥Ak − UkΣkIkV

T
k

∥∥
F
= 0. (11)

In the above, in eqn. (10) we replaced Ak by UkΣkV
T
k , and in eqn. (11) we set

(V T
k SD)(V T

k SD)+ = Ik, since V T
k SD is a rank-k matrix w.p 1 − 5/6. The second term of

eqn. (9) is bounded by
θ2 =

∥∥Uρ−kΣρ−kV
T
ρ−kSD(V T

k SD)+V T
k

∥∥
F

(12)

≤
∥∥Σρ−kV

T
ρ−kSD(V T

k SD)+
∥∥
F
. (13)

In the above, in eqn. (12) we replaced Aρ−k by Uρ−kΣρ−kV
T
ρ−k, and in eqn. (13) Uρ−k and V T

k can
be dropped without increasing a unitarily invariant norm such as the Frobenius matrix norm. If the
first three statements of the lemma hold w.p at least 1− 5/6, then w.p at least 1− 1/3,∥∥Σρ−kV

T
ρ−kSD(V T

k SD)+
∥∥
F
≤ (ϵ

√
6/(2c1c2o log(c1c

2
ok/ϵ

2)) +
√
6λ2/(1− λ)) ∥A−Ak∥F .

(The proof of this last argument is omitted from this extended abstract.) Finally, notice that the first
three statements have the same failure probability 1/6 and the fourth statement fails w.p 1/3; the
union bound implies that all four statements hold together with probability at least 0.5.

⋄
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4.4 The proof of eqn. (4) of Theorem 1

We assume that Algorithm 1 fixes r to the value specified in Lemma 1; note that this does not violate
the asymptotic notation used in Algorithm 1. We start by manipulating the term

∥∥A−Xγ̃X
T
γ̃ A

∥∥2
F

in eqn. (4). Replacing A by Ak+Aρ−k, and using the Pythagorean theorem (the subspaces spanned
by the components Ak −Xγ̃X

T
γ̃ Ak and Aρ−k −Xγ̃X

T
γ̃ Aρ−k are perpendicular) we get∥∥A−Xγ̃X

T
γ̃ A

∥∥2
F
=

∥∥(I −Xγ̃X
T
γ̃ )Ak

∥∥2
F︸ ︷︷ ︸

θ2
3

+
∥∥(I −Xγ̃X

T
γ̃ )Aρ−k

∥∥2
F︸ ︷︷ ︸

θ2
4

. (14)

We first bound the second term of eqn. (14). Since I−Xγ̃X
T
γ̃ is a projector matrix, it can be dropped

without increasing a unitarily invariant norm. Now eqn. (5) implies that
θ24 ≤ Fopt. (15)

We now bound the first term of eqn. (14):
θ3 ≤

∥∥(I −Xγ̃X
T
γ̃ )ASD(VkSD)+V T

k

∥∥
F
+ ∥E∥F (16)

≤
∥∥(I −Xγ̃X

T
γ̃ )ASD

∥∥
F

∥∥(VkSD)+
∥∥
2
+ ∥E∥F (17)

≤ √
γ
∥∥(I −XoptX

T
opt)ASD

∥∥
F

∥∥(VkSD)+
∥∥
2
+ ∥E∥F (18)

≤ √
γ
∥∥(I −XoptX

T
opt)ASD(VkSD)+

∥∥
F
∥(VkSD)∥2

∥∥(VkSD)+
∥∥
2
+ ∥E∥F (19)

=
√
γ
∥∥(I −XoptX

T
opt)ASD(VkSD)+V T

k

∥∥
F︸ ︷︷ ︸

θ5

∥(VkSD)∥2
∥∥(VkSD)+

∥∥
2
+ ∥E∥F (20)

In eqn. (16) we used Lemma 1, the triangle inequality, and the fact that I − X̃γX̃
T
γ is a projector

matrix and can be dropped without increasing a unitarily invariant norm. In eqn. (17) we used
submultiplicativity (see Section 4.1) and the fact that V T

k can be dropped without changing the
spectral norm. In eqn. (18) we replaced Xγ̃ by Xopt and the factor

√
γ appeared in the first term. To

better understand this step, notice that Xγ̃ gives a γ-approximation to the optimal k-means clustering
of the matrix ASD, and any other n× k indicator matrix (for example, the matrix Xopt) satisfies∥∥(I −Xγ̃X

T
γ̃

)
ASD

∥∥2
F
≤ γ min

X∈X

∥∥(I −XXT )ASD
∥∥2
F
≤ γ

∥∥(I −XoptX
T
opt

)
ASD

∥∥2
F
.

In eqn. (19) we first introduced the k × k identity matrix Ik = (V T
k SD)+(V T

k SD)
(rank(V T

k SD) = k) and then we used submultiplicativity (see Section 4.1). In eqn. (20) we intro-
duced V T

k without changing the Frobenius norm. We further manipulate the term θ5 of eqn. (20):
θ5 ≤

∥∥(I −XoptX
T
opt)Ak

∥∥
F
+

∥∥(I −XoptX
T
opt)E

∥∥
F

(21)

≤
∥∥(I −XoptX

T
opt)AVkV

T
k

∥∥
F
+ ||E||F (22)

≤ (1 + µ)
√
Fopt (23)

In eqn. (21) we used Lemma 1 and the triangle inequality. In eqn. (22) we replaced Ak by AVkV
T
k

and dropped I −XoptX
T
opt from the second term (I −XoptX

T
opt is a projector matrix and does not

increase the Frobenius norm). In eqn. (23) we dropped the projector matrix VkV
T
k and used eqn. (5)

and Definition 1. Combining equations (20), (23), (5), Lemma 1, and the fact that γ ≥ 1, we get

θ3 ≤ √
γ (

√
1 + λ

1− λ
(1 + µ) + µ)︸ ︷︷ ︸
θ6

√
Fopt.

Simple algebra suffices to show that for any ϵ ∈ (0, 1), for any positive integer k ≥ 1, and for some
sufficiently large constant c1, it is

θ6 ≤
√
1 + ϵ,

thus
θ23 ≤ γ(1 + ϵ)Fopt. (24)

Combining eqn. (24) with eqns. (14) and (15) concludes the proof of eqn. (4). Using asymptotic
notation our choice of r satisfies r = Ω(k log(k/ϵ)/ϵ2). Note that Theorem 1 fails only if Lemma 1
or the γ-approximation k-means clustering algorithm fail, which happens w.p at most 0.5 + δγ .
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NIPS (k = 3)
Bio (k = 3)

r = 5k
P F

.847 .758

.742 .764

r = 10k
P F

.847 .751

.935 0.726

r = 20k
P F

.859 .749
1 .709

All
P F

.881 .747
1 .709

Table 1: Numerics from our experiments (Leverage scores).
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Figure 1: Leverage scores for the NIPS dataset.

5 Empirical study

We present an empirical evaluation of Algorithm 1 on two real datasets. We show that it selects the
most relevant features (Figure 1) and that the clustering obtained after feature selection is performed
is very accurate (Table 1). It is important to note that the choice of r in the description of Algorithm
1 is a sufficient - not necessary - condition to prove our theoretical bounds. Indeed, a much smaller
choice of r, for example r = 10k, is often sufficient for good empirical results.

We first experimented with a NIPS documents dataset (see http://robotics.stanford.
edu/˜gal/ and [10]). The data consist of a 184 × 6314 document-term matrix A, with Aij de-
noting the number of occurrences of the j-th term in the i-th document. Each document is a paper
that appeared in the proceedings of NIPS 2001, 2002, or 2003, and belongs to one of the following
three topic categories: (i) Neuroscience, (ii) Learning Theory, and (iii) Control and Reinforcement
Learning. Each term appeared at least once in one of the 184 documents. We evaluated the accuracy
of Algorithm 1 by running the Lloyd’s heuristic1 on the rescaled features returned by our method.
In order to drive down the failure probability of Algorithm 1, we repeated it 30 times (followed by
the Lloyd’ heuristic each time) and kept the partition that minimized the objective value. We report
the percentage of correctly classified objects (denoted by P , 0 ≤ P ≤ 1), as well as the value of
the k-means objective (i.e., the value F = ||A−Xγ̃X

T
γ̃ A||2F /||A||2F of Theorem 1; the division by

the ||A||2F is for normalization). Results are depicted in Table 1. Notice that only a small subset of
features suffices to approximately reproduce the partition obtained when all features were kept. In
Figure 1 we plotted the distribution of the leverage scores for the 6314 terms (columns) of A; we
also highlighted the features returned by Algorithm 1 when the sampling parameter r is set to 10k.
We observed that terms corresponding to the largest leverage scores had significant discriminative
power. In particular, ruyter appeared almost exclusively in documents of the first and third cate-
gories, hand appeared in documents of the third category, information appeared in documents
of the first category, and code appeared in documents of the second and third categories only. We
also experimented with microarray data showing the expression levels of 5520 genes (features) for
31 patients (objects) having three different cancer types [27]: 10 patients with gastrointestinal stro-
mal tumor, 12 with leiomyosarcoma, and 9 with synovial sarcoma. Table 1 depicts the results from
our experiments by choosing k = 3. Note that the Lloyd’s heuristic worked almost perfectly when r
was set to 10k and perfectly when r was set to 20k. Experimental parameters set to the same values
as in the first experiment.

1We ran 30 iterations of the E-M step with 30 different random initializations and returned the partition that
minimized the k-means objective function, i.e. we ran kmeans(A, k, ’Replicates’, 30, ’Maxiter’, 30) in MatLab.
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