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Abstract

We consider the problem of selecting the “best” sub-
set of exactly k columns from an m × n matrix A. In
particular, we present and analyze a novel two-stage
algorithm that runs in O(min{mn2, m2n}) time and re-
turns as output an m × k matrix C consisting of ex-
actly k columns of A. In the first stage (the random-
ized stage), the algorithm randomly selects O(k log k)
columns according to a judiciously-chosen probability
distribution that depends on information in the top-
k right singular subspace of A. In the second stage
(the deterministic stage), the algorithm applies a deter-
ministic column-selection procedure to select and return
exactly k columns from the set of columns selected in
the first stage. Let C be the m × k matrix containing
those k columns, let PC denote the projection matrix
onto the span of those columns, and let Ak denote the
“best” rank-k approximation to the matrix A as com-
puted with the singular value decomposition. Then, we
prove that

‖A − PCA‖2 ≤ O
(

k
3

4 log
1

2 (k) (n − k)
1

4

)

‖A − Ak‖2 ,

with probability at least 0.7. This spectral norm bound
improves upon the best previously-existing result (of Gu
and Eisenstat [21]) for the spectral norm version of this
Column Subset Selection Problem. We also prove that

‖A − PCA‖F ≤ O
(

k
√

log k
)

‖A − Ak‖F ,

with the same probability. This Frobenius norm bound
is only a factor of

√
k log k worse than the best previ-

ously existing existential result and is roughly O(
√

k!)
better than the best previous algorithmic result (both
of Deshpande et al. [11]) for the Frobenius norm version
of this Column Subset Selection Problem.
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1 Introduction

We consider the problem of selecting the “best” set of
exactly k columns from an m × n matrix A. More
precisely, we consider the following Column Subset
Selection Problem (CSSP):

Definition 1. (The CSSP) Given a matrix A ∈
R

m×n and a positive integer k, pick k columns of A
forming a matrix C ∈ R

m×k such that the residual

‖A − PCA‖ξ

is minimized over all possible
(

n
k

)

choices for the matrix
C. Here, PC = CC+ denotes the projection onto the
k-dimensional space spanned by the columns of C and
ξ = 2 or F denotes the spectral norm or Frobenius norm.

That is, the goal of the CSSP is to find a subset of
exactly k columns of A that “captures” as much of A
as possible, with respect to the spectral norm and/or
Frobenius norm, in a projection sense. The CSSP has
been studied extensively in numerical linear algebra,
where it has found applications in, e.g., scientific com-
puting [6]. More recently, a relaxation has been studied
in theoretical computer science, where it has been mo-
tivated by applications to large scientific and internet
data sets [15].

1.1 Complexity of the CSSP We briefly comment
on the complexity of the problem. Clearly, in O(nk)
time we can generate all possible matrices C and
thus solve the problem exactly, i.e., find the optimal
solution. However, from a practical perspective, in
data analysis applications of the CSSP (see Section
1.2), n is often in the order of hundreds or thousands.
Thus, in practice, algorithms that run in O(nk) time
are prohibitively slow even if k is, from a theoretical
perspective, a constant. Finally, the NP-hardness
of the CSSP is an interesting open problem. Note,
though, that a similar problem asking for the k columns
of the m × n matrix A that maximize the volume of
the parallelepiped spanned by the columns of C, is
provably NP-hard [10].



Existential Result
Ref p(k,n) Time

ξ = 2 [22]
√

k(n − k) + 1 O(nk)

ξ = F [12]
√

k + 1 O(nk)

Algorithmic Result
Ref p(k,n) Time

[21] O(k
1

2 (n − k)
1

2 ) O(mn2)

[12]
√

(k + 1)! O(mnk)

Our Result
p(k,n) Time

O(k
3

4 (n − k)
1

4 ) O(mn2)
O(k

√
log k) O(mn2)

Table 1: Comparison of the results of this paper with the state-of-the-art existential and algorithmic results for
the CSSP. Here, p(k, n) is involved in the approximation ‖A − PCA‖ξ ≤ p(k, n) ‖A − Ak‖ξ. (In addition, m ≥ n
for this table.)

1.2 The CSSP in statistical data analysis In
data applications, where the input matrix A models m
objects represented with respect to n features, the CSSP
corresponds to unsupervised feature selection. Standard
motivations for feature selection include facilitating
data visualization, reducing training times, avoiding
overfitting, and facilitating data understanding.

Consider, in particular, Principal Components
Analysis (PCA), which is the predominant linear di-
mensionality reduction technique, and which has been
widely applied on datasets in all scientific domains, from
the social sciences and economics, to biology and chem-
istry. In words, PCA seeks to map or embed data points
from a high dimensional Euclidean space to a low di-
mensional Euclidean space while keeping all the rele-
vant linear structure intact. PCA is an unsupervised
dimensionality reduction technique, with the sole input
parameters being the coordinates of the data points and
the number of dimensions that will be retained in the
embedding (say k), which is typically a constant inde-
pendent of m and n; often it is k ≪ {m, n} too. Data
analysts often seek a subset of k actual features (that
is, k actual columns, as opposed to the k eigenvectors
or eigenfeatures returned by PCA) that can accurately
reproduce the structure derived by PCA. The CSSP is
the obvious optimization problem associated with such
unsupervised feature selection tasks.

We should note that similar formulations appeared
in [23, 33, 36, 37, 26, 1]. In addition, applications of such
ideas include: (i) [34], where a “compact CUR matrix
decomposition” was applied to static and dynamic data
analysis in large sparse graphs; (ii) [25, 24, 13], where
these ideas were used for compression and classifica-
tion of hyperspectral medical data and the reconstruc-
tion of missing entries from recommendation systems
data in order to make high-quality recommendations;
and (iii) [30], where the concept of “PCA-correlated
SNPs” (Single Nucleotide Polymorphisms) was intro-
duced and applied to classify individuals from through-
out the world without the need for any prior ancestry
information. Finally, see the full version of this paper [4]
for an empirical evaluation of our main algorithm; and

see [3] for a detailed evaluation of our main algorithm
as an unsupervised feature selection strategy in three
application domains of modern statistical data analysis
(finance, document-term data, and genetics).

1.3 Our main results We present a novel two-stage
algorithm for the CSSP. This algorithm is presented in
detail in Section 3 as Algorithm 1. In the first stage
of this algorithm (the randomized stage), we randomly
select O(k log k) columns of V T

k , i.e., of the transpose
of the n × k matrix consisting of the top k right
singular vectors of A, according to a judiciously-chosen
probability distribution that depends on information
in the top-k right singular subspace of A. Then, in
the second stage (the deterministic stage), we apply
a deterministic column-selection procedure to select
exactly k columns from the set of columns of V T

k selected
by the first stage. The algorithm then returns the
corresponding k columns of A. In Section 4 we prove
the following theorem.

Theorem 1. There exists an algorithm (the two-stage
Algorithm 1) that approximates the solution to the
CSSP. This algorithm takes as input an m×n matrix A
of rank ρ ≤ min{m, n} and a positive integer k; it runs
in O(min{mn2, m2n}) time; and it returns as output
an m×k matrix C consisting of exactly k columns of A
such that with probability at least 0.7:

‖A − PCA‖2≤O
(

k3/4 log1/2(k) (ρ − k)1/4
)

‖A − Ak‖2 ,

‖A − PCA‖F ≤O
(

k log1/2 k
)

‖A − Ak‖F .

Here, PC = CC+ denotes a projection onto the column
span of the matrix C, and Ak denotes the best rank-
k approximation to the matrix A as computed with the
singular value decomposition (SVD).

Note that we can trivially boost the success probability
in the above theorem to 1−δ by repeating the algorithm
O (log (1/δ)) times. Note also that the running time of
our algorithm is linear in the larger of the dimensions
m and n, quadratic in the smaller one, and independent
of k. Thus, it is practically useful and efficient.



To put our results into perspective, we compare
them to the best existing results for CSSP. Prior work
provided bounds of the form

‖A − PCA‖ξ ≤ p(k, n) ‖A − Ak‖ξ ,(1.1)

where p(k, n) is a polynomial on n and k. For ξ =
2, i.e., for the spectral norm, the best previously-
known bound for approximating the CSSP is p(k, n) =

O
(

√

1 + k(n − k)
)

[21], while for ξ = F , i.e., for

the Frobenius norm, the best bound is p(k, n) =
√

(k + 1)! [11]. Both results are algorithmically effi-
cient, running in time polynomial in all three parame-
ters m, n, and k; the former runs in O(min{mn2, m2n})
time and the latter runs in O(mnk+kn) time. Thus, our
approach asymptotically improves the best previously-
known result for the spectral norm version of the CSSP
by a factor of n1/4. (Here we assume that k is inde-
pendent of n, as is typically the case in data applica-
tions of these techniques.) Our approach also provides
an algorithmic bound for the Frobenius norm version
of the CSSP that is roughly O(

√
k!) better than the

best previously-known algorithmic result. It should be
noted that [11] also proves that by exhaustively testing
all
(

n
k

)

possibilities for the matrix C, the best one will

satisfy eqn. (1.1) with p(k, n) =
√

k + 1. Our algo-
rithmic result is only O(

√
k log k) worse that this exis-

tential result. A similar existential result for the spec-
tral norm version of the CSSP is proved in [22] with
p(k, n) =

√

1 + k(n − k). Obviously, the result in [11]
is a lower bound for the Frobenius norm version of the
CSSP. On the other hand, the result in [22] is the best
existing existential result for the spectral norm version
of the CSSP. A lower bound for the spectral norm ver-
sion of the CSSP, which should be between ||A − Ak||2
and

√

1 + k(n − k)||A − Ak||2, is an interesting open
problem. These results are summarized in Table 1.

Finally, we should emphasize that a novel feature
of the algorithm that we present in this paper is that
it combines in a nontrivial manner recent algorithmic
developments in the theoretical computer science com-
munity with more traditional techniques from the nu-
merical linear algebra community in order to obtain im-
proved bounds for the CSSP.

2 Background and prior work

2.1 Notation and linear algebra Let [n] denote
the set {1, 2, . . . , n}. For any matrix A ∈ R

m×n, let
A(i), i ∈ [m] denote the i-th row of A as a row vector,

and let A(j), j ∈ [n] denote the j-th column of A as

a column vector. In addition, let ‖A‖2
F =

∑

i,j A2
ij

denote the square of its Frobenius norm, and let ‖A‖2 =
supx∈Rn, x 6=0 |Ax|2 / |x|2 denote its spectral norm. If

A ∈ R
m×n, then the Singular Value Decomposition

(SVD) of A can be written as

A = UAΣAV T
A

=
(

Uk Uρ−k

)

(

Σk 0
0 Σρ−k

)(

V T
k

V T
ρ−k

)

.

In this expression, ρ ≤ min{m, n} denotes the rank of
A, UA ∈ R

m×ρ is an orthonormal matrix, ΣA is a ρ× ρ
diagonal matrix, and VA ∈ R

n×ρ is an orthonormal
matrix. Also, Σk denotes the k × k diagonal matrix
containing the top k singular values of A, Σρ−k denotes
the (ρ − k)×(ρ − k) matrix containing the bottom ρ−k
singular values of A, Vk denotes the n×k matrix whose
columns are the top k right singular vectors of A, and
Vρ−k denotes the n× (ρ − k) matrix whose columns are
the bottom ρ − k right singular vectors of A, etc.

The m × k orthogonal matrix Uk consisting of the
top k left singular vectors of A is the “best” set of k
linear combinations of the columns of A, in the sense
that Ak = PUk

A = UkΣkV T
k is the “best” rank k

approximation to A. Here, PUk
= UkUT

k is a projection
onto the k-dimensional space spanned by the columns
of Uk. In particular, Ak minimizes ‖A − A′‖ξ, for both
ξ = 2 and F , over all m × n matrices A′ whose rank is
at most k. We will use the notation ‖·‖ξ when writing
an expression that holds for both the spectral and the
Frobenius norm. We will subscript the norm by 2 and
F when writing expressions that hold for one norm
or the other. Finally, the Moore-Penrose generalized
inverse, or pseudoinverse, of A, denoted by A+, may be
expressed in terms of the SVD as A+ = VAΣ−1

A UT
A .

2.2 Related prior work Since solving the CSSP ex-
actly is a hard combinatorial optimization problem, re-
search has historically focused on computing approxi-
mate solutions to it. Since ‖A − Ak‖ξ provides an im-
mediate lower bound for ‖A − PCA‖ξ, for ξ = 2, F and
for any choice of C, a large number of approximation
algorithms have been proposed to select a subset of k
columns of A such that the resulting matrix C satisfies

‖A − Ak‖ξ ≤ ‖A − PCA‖ξ ≤ p(k, n) ‖A − Ak‖ξ

for some function p(k, n). Within the numerical linear
algebra community, most of the work on the CSSP has
focused on spectral norm bounds and is related to the
so-called Rank Revealing QR (RRQR) factoriza-
tion:

Definition 2. (The RRQR factorization) Given a
matrix A ∈ Rm×n (m ≥ n) and an integer k (k ≤ n),
assume partial QR factorizations of the form:

AΠ = QR = Q

(

R11 R12

0 R22

)

,



Method Reference p(k,n) Time

Pivoted QR [Golub, 1965] [19]
√

(n − k)2k O(mnk)

High RRQR [Foster, 1986] [16]
√

n(n − k)2n−k O(mn2)

High RRQR [Chan, 1987] [5]
√

n(n − k)2n−k O(mn2)

RRQR [Hong and Pan, 1992] [22]
√

k(n − k) + k O(nk)

Low RRQR [Chan and Hansen, 1994] [7]
√

(k + 1)n2k+1 O(mn2)

Hybrid-I RRQR [Chandrasekaran and Ipsen, 1994] [8]
√

(k + 1)(n − k) O(nk)

Hybrid-II RRQR [8]
√

(k + 1)(n − k) O(nk)

Hybrid-III RRQR [8]
√

(k + 1)(n − k) O(nk)

Strong RRQR [Gu and Eisenstat, 1996] [21]
√

k(n − k) + 1 O(nk)

Strong RRQR [21] O(
√

k(n − k) + 1) O(mn2)

DGEQPY [Bischof and Orti, 1998] [2] O(
√

(k + 1)2(n − k)) -

DGEQPX [2] O(
√

(k + 1)(n − k)) O(nk)
SPQR [Stewart, 1999] [32] - -

PT Algorithm 1 [Pan and Tang, 1999] [29] O(
√

(k + 1)(n − k)) -

PT Algorithm 2 [29] O(
√

(k + 1)2(n − k)) -

PT Algorithm 3 [29] O(
√

(k + 1)2(n − k)) -

Pan Algorithm 2 [Pan, 2000] [28] O(
√

k(n − k) + 1) O(mn2)

Table 2: Accuracy of deterministic algorithms for the CSSP. A dash means that the algorithm either runs in
O(nk) time, or the authors do not provide a running time bound. (In addition, m ≥ n for this table.)

where Q ∈ Rm×n is an orthonormal matrix, R ∈ Rn×n

is upper triangular, R11 ∈ Rk×k, R12 ∈ Rk×(n−k),
R22 ∈ R(n−k)×(n−k), and Π ∈ Rn×n is a permutation
matrix. The above factorization is called a RRQR
factorization if it satisfies

σk(A)

p1(k, n)
≤ σmin(R11) ≤ σk(A)

σk+1(A) ≤ σmax(R22) ≤ p2(k, n)σk+1(A),

where p1(k, n) and p2(k, n) are functions bounded by low
degree polynomials in k and n.

The work of Golub on pivoted QR factoriza-
tions [19] was followed by much research addressing
the problem of constructing an efficient RRQR factor-
ization. Most researchers improved RRQR factoriza-
tions by focusing on improving the functions p1(k, n)
and p2(k, n) in Definition 2. Let Πk denote the first k
columns of a permutation matrix Π. Then, if C = AΠk

is an m × k matrix consisting of k columns of A, it is
straightforward to prove that

‖A − PCA‖ξ = ‖R22‖ξ ,

for both ξ = 2, F . Thus, in particular, when applied to
the spectral norm, it follows that

‖A − PCA‖2 ≤ p2(k, n)σk+1(A) = p2(k, n) ‖A − Ak‖2 ,

i.e., any algorithm that constructs an RRQR factoriza-
tion of the matrix A with provable guarantees also pro-
vides provable guarantees for the CSSP. See Table 2 for
a summary of existing results, and see [17] for a survey
and an empirical evaluation of some of these algorithms.
More recently, [27, 35] proposed random-projection type
algorithms that achieve the same spectral norm bounds
as prior work while improving the running time.

Within the theoretical computer science commu-
nity, much work has followed that of Frieze, Kannan,
and Vempala [18] on selecting a small subset of rep-
resentative columns of A, forming a matrix C, such
that the projection of A on the subspace spanned by
the columns of C is as close to A as possible. The al-
gorithms from this community are randomized, which
means that they come with a failure probability, and
focus mainly on the Frobenius norm. It is worth noting
that they provide a strong tradeoff between the number
of selected columns and the desired approximation ac-
curacy. A typical scenario for these algorithms is that
the desired approximation error (see ǫ below) is given
as input, and then the algorithm selects the minimum
number of appropriate columns in order to achieve this
error. One of the most relevant results for this paper is
a bound of [11], which states that there exist exactly k
columns in any m × n matrix A such that

∥

∥A − CC+A
∥

∥

F
≤

√
k + 1 ‖A − Ak‖F .



Here, C contains exactly k columns of A. The only
known algorithm to find these k columns is to try all
(

n
k

)

choices and keep the best. This existential result
relies on the so-called volume sampling method [11,
12]. In [12], an adaptive sampling method is used to
approximate the volume sampling method and leads to
an O(mnk + kn) algorithm which finds k columns of A
such that

∥

∥A − CC+A
∥

∥

F
≤
√

(k + 1)! ‖A − Ak‖F .

As mentioned above, much work has also considered al-
gorithms choosing slightly more than k columns. This
relaxation provides significant flexibility and improved
error bounds. For example, in [12], an adaptive sam-
pling method leads to an O

(

mn
(

k/ǫ2 + k2 log k
))

al-
gorithm, such that

∥

∥A − CC+A
∥

∥

F
≤ (1 + ǫ) ‖A − Ak‖F

holds with high probability for some matrix C con-
sisting of O

(

k/ǫ2 + k2 log k
)

columns of A. Simi-
larly, in [14, 15], Drineas, Mahoney, and Muthukrish-
nan leverage the subspace sampling method to give an
O(min{mn2, m2n}) algorithm such that

(2.2)
∥

∥A − CC+A
∥

∥

F
≤ (1 + ǫ) ‖A − Ak‖F

holds with high probability if C contains at most
O(k log k/ǫ2) columns of A.

3 A two-stage algorithm for the CSSP

In this section, we present and describe Algorithm 1,
our main algorithm for approximating the solution to
the CSSP. This algorithm takes as input an m × n ma-
trix A and a rank parameter k. After an initial setup,
the algorithm has two stages: a randomized stage and
a deterministic stage. In the randomized stage, a ran-
domized procedure is run to select O(k log k) columns
from the k × n matrix V T

k , i.e., the transpose of the
matrix containing the top-k right singular vectors of A.
The columns are chosen by randomly sampling accord-
ing to a judiciously-chosen nonuniform probability dis-
tribution that depends on information in the top-k right
singular subspace of A. Then, in the deterministic stage,
a deterministic procedure is employed to select exactly
k columns from the O(k log k) columns chosen in the
randomized stage. The algorithm then outputs exactly
k columns of A that correspond to those columns chosen
from V T

k . Theorem 1 states that the projection of A on
the subspace spanned by these k columns of A is (up to
bounded error) close to the best rank k approximation
to A.

3.1 Detailed description of our main algorithm
In more detail, Algorithm 1 first computes a proba-
bility distribution p1, p2, . . . , pn over the set {1, . . . , n},
i.e., over the columns of V T

k , or equivalently over the
columns of A. The probability distribution depends on
information in the top-k right singular subspace of A.
In particular, for all i ∈ [n], define

pi =

1
2

∥

∥

∥
(Vk)(i)

∥

∥

∥

2

2

∑n
j=1

∥

∥

∥
(Vk)(j)

∥

∥

∥

2

2

+

1
2

∥

∥

∥

∥

(

Σρ−kV T
ρ−k

)(i)
∥

∥

∥

∥

2

2

∑n
j=1

∥

∥

∥

∥

(

Σρ−kV T
ρ−k

)(j)
∥

∥

∥

∥

2

2

,

(3.3)

and note that pi ≥ 0, for all i ∈ [n], and that
∑n

i=1 pi =
1. We will describe the computation of probabilities of
this form below.

In the randomized stage, Algorithm 1 employs the
following randomized column selection algorithm to
choose O(k log k) columns from V T

k to pass to the
second stage. Let c = Θ(k log k) be a positive integer.
For each i ∈ [n], independently, the algorithm keeps
the i-th column of V T

k with probability min {1, cpi}.
Additionally, if the i-th column is kept, then a scaling
factor equal to 1/

√

min {1, cpi} is kept as well. Thus, at
the end of this process, we will be left with c̃ columns of
V T

k and their corresponding scaling factors. Notice that
due to random sampling, c̃ will generally be different
than c. However, it can be proved that if c = Θ(k log k)
then c̃ = O(k log k) with constant probability.

In order to conveniently represent the c̃ selected
columns and the associated scaling factors, we will use
the following sampling matrix formalism. First, define
an n × c̃ sampling matrix S1 as follows: S1 is initially
empty; for all i, in turn, if the i-th column of V T

k is
selected by the random sampling process, then ei (an n-
vector of all-zeros, except for its i-th entry which is set to
one) is appended to S1. Next, define the c̃× c̃ diagonal
rescaling matrix D1 as follows: if the i-th column of
V T

k is selected, then a diagonal entry of D1 is set to

1/
√

min {1, cpi}. Thus, we may view the randomized
stage as outputting the matrix V T

k S1D1 consisting of a
small number of rescaled columns of V T

k , or simply as
outputting S1 and D1.

In the deterministic stage, Algorithm 1 employs a
deterministic column selection algorithm to the output
of the first stage in order to choose exactly k columns
from the input matrix A. To do so, we run the
Algorithm 1 of [28] on the k × c̃ matrix V T

k S1D1,
i.e., the column-scaled version of the columns of V T

k

chosen in the first stage.1 Thus, a matrix VkS1D1S2

is formed, or equivalently, in the sampling matrix

1Most deterministic algorithms for the CSSP operate on



formalism described previously, a new matrix S2 is
constructed. Its dimensions are c̃ × k, since it selects
exactly k columns out of the c̃ columns returned after
the end of the randomized stage. The algorithm then
returns the corresponding k columns of the original
matrix A, i.e., after the second stage of the algorithm is
complete, the m × k matrix C = AS1S2 is returned as
the final output.

Input: m × n matrix A, integer k.
Output: m× k matrix C with k columns of A.

1. Initial setup:

• Compute the top k right singular
vectors of A, denoted by Vk.

• Compute the sampling probabilities
pi, for i ∈ [n], using eqn. (3.3) or
(3.4).

• Let c = Θ(k log k).

2. Randomized Stage:

• For i = 1, . . . , n, keep the i-th index
with probability min{1, cpi}. If the
i-th index is kept, keep the scaling
factor

√

min{1, cpi}.
• Form the sampling matrix S1 and the

rescaling matrix D1 (see text).

3. Deterministic Stage:

• Run Algorithm 1 of Pan [28] (see also
Lemma 3.5 in [28]) on the matrix
V T

k S1D1 in order to select exactly k
columns of V T

k S1D1, thereby forming
the sampling matrix S2 (see text).

• Return the corresponding k columns
of A, i.e., return C = AS1S2.

Algorithm 1: A two-stage algorithm for the
CSSP.

3.2 Running time analysis We now discuss the
running time of our algorithm. Note that manipulating
the probability distribution (3.3) yields:

matrices that are m × n with m ≥ n. In our case, in the second
stage, we need to apply a deterministic column selection algorithm
to a matrix with more columns than rows. Even though, to the
best of our understanding, theoretical bounds for most of the
algorithms reviewed in Section 2 hold even if m < n, for our
theoretical analysis we opt to employ Algorithm 1 (and the related
Lemma 3.5) of [28] which is explicitly designed to work for m < n.

(3.4) pi =

∥

∥

∥
(Vk)(i)

∥

∥

∥

2

2

2k
+

∥

∥

∥
(A)

(i)
∥

∥

∥

2

2
−
∥

∥

∥

(

AVkV T
k

)(i)
∥

∥

∥

2

2

2
(

‖A‖2
F −

∥

∥AVkV T
k

∥

∥

2

F

) .

Thus, knowledge of Vk, i.e., the n×k matrix consisting of
the top-k right singular vectors of A, suffices to compute
the pi’s.

2 By (3.4), O(min{mn2, m2n}) time suffices
for our theoretical analysis; in practice, of course,
Lanczos/Arnoldi algorithms could be used to speed up
the algorithm. Note also that in order to obtain a
Frobenius norm bound of the form in Theorem 1, our
theoretical analysis holds if the sampling probabilities
are of the form:

pi =
∥

∥

∥
(Vk)(i)

∥

∥

∥

2

2
/k.(3.5)

That is, the Frobenius norm bound of Theorem 1 holds
even if the second term in the sampling probabilities
of (3.3) or (3.4) is omitted. Finally, the deterministic
stage of our algorithm (using Algorithm 1 of [28]) takes
O(k3 log k) time, since V T

k S1D1 has w.h.p. O (k log k)
columns.

An interesting open problem would be to identify
other suitable importance sampling probability distri-
butions that avoid the computation of a basis for the
top-k right singular subspace.

3.3 Intuition underlying our main algorithm
Intuitively, we achieve improved bounds for the CSSP
because we apply the deterministic algorithm to a
lower dimensional matrix (the matrix V T

k S1D1 with
O(k log k) columns, as opposed to the matrix A with
n columns) in which the columns are “spread out” in a
“nice” manner. To see this, note that the probability
distribution of equation (3.5), and thus one of the two
terms in the probability distribution of (3.3) or (3.4),
equals (up to scaling) the diagonal elements of the pro-
jection matrix onto the span of the top-k right singular
subspace. In diagnostic regression analysis, these quan-
tities have a natural interpretation in terms of statisti-
cal leverage, and thus they have been used extensively
to identify “outlying” data points [9]. Thus, the im-
portance sampling probabilities that we employ in the
randomized stage of our main algorithm provide a bias
toward more “outlying” columns, which then provide
a “nice” starting point for the deterministic stage of
our main algorithm. (This also provides intuition as
to why using importance sampling probabilities of the
form (3.5) leads to relative-error low-rank matrix ap-
proximation bounds of the form (2.2); see [14, 15].)

2Actually, from (3.4) it is clear that any orthogonal matrix
spanning the top-k right singular subspace suffices.



4 Proof of Theorem 1

We start with an outline of our proof, pointing out
conceptual improvements that were necessary in order
to obtain improved bounds. An important condition
in the first phase of the algorithm is that when we
sample columns from the k × n matrix V T

k , we ob-
tain a k × c̃ matrix V T

k S1D1 that does not lose any
rank. To do so, we will apply a result from matrix per-
turbation theory to prove that if c = Θ(k log k) then
∣

∣σ2
k

(

V T
k S1D1

)

− 1
∣

∣ ≤ 1/2. (See Lemma 4.1 below.)
Then, under the assumption that V T

k S1D1 is full rank,
we will prove that the m × k matrix C returned by the
algorithm will satisfy:

‖A − PCA‖ξ ≤ ‖A − Ak‖ξ

+ σ−1
k

(

V T
k S1D1S2

)
∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

ξ

for both ξ = 2, F . (See Lemma 4.2 below.) Next, we will
provide a bound on σ−1

k

(

V T
k S1D1S2

)

. In order to get a
strong accuracy guarantee for the overall algorithm, the
deterministic column selection algorithm must satisfy

σk

(

V T
k S1D1S2

)

≥ σk

(

V T
k S1D1

)

p(k, c̃)
> 0,

where p(k, c̃) is a polynomial in both k and c̃. Thus,
for our main theorem, we will employ Algorithm 1
of Pan [28], which guarantees the above bound with
p(k, c̃) =

√

k (c̃ − k) + 1.3 (See Lemma 4.3 below.) Fi-
nally, we will show, using relatively straightforward ma-

trix perturbation techniques, that
∥

∥

∥
Σρ−kV T

ρ−kS1D1

∥

∥

∥

ξ

is not too much more, in a multiplicative sense, than
‖A − Ak‖ξ, where we note that the factors differ for
ξ = 2, F . (See Lemmas 4.4 and 4.5 below.) By combin-
ing these results, the main theorem will follow.

We should note here that existing proofs for the
relative error bound of eqn. (2.2) of Section 2 break
down if o(k log k) columns of A are selected. (Ω(k log k)
columns seem necessary to guarantee that the matrix
of the sampled columns preserves a certain rank con-
straint that does not seem easy to circumvent.) Thus,
extending the theoretical computer science results to
pick exactly k columns does not seem easy using existing
techniques. On the other hand, it should be noted that
if we allow existing numerical linear algebra algorithms
to pick more than k columns, it is not clear whether

3To be exact, in the parlance of this paper, Lemma 3.5 of [28]
guarantees that p(k, c̃) =

p

µ2k (c̃ − k) + 1, for a user-controlled
parameter µ ≥ 1. [28] suggests using µ = 1 + u, where u is
the machine precision. We note that by choosing a larger µ

the deterministic step of our algorithm becomes (up to constant
factors) faster. We defer a more detailed description of the work
of [28] to the full version of this paper [4].

relative error approximation guarantees of the form de-
scribed in eqn. (2.2) can be obtained. However, a hybrid
approach that first selects roughly k log k columns, and
then nails down exactly k columns using a determinis-
tic algorithm, seems to combine the best of both worlds
and thus achieve the stated improvement.

4.1 The rank of V T
k S1D1 The following lemma pro-

vides a bound on the singular values of the matrix
V T

k S1D1 computed by the randomized phase of Al-
gorithm 1, from which it will follow that the matrix
V T

k S1D1 is full rank. To prove the lemma, we apply
a recent result of Rudelson and Vershynin on approxi-
mating the spectral norm of an operator [31, 15]. Note
that probabilities of the form (3.5) actually suffice to
establish Lemma 4.1. Note also that, by the Coupon
Collecting Problem, we cannot set the column sampling
parameter c to be less than Θ(k log k) (in worst case) at
this step.

Lemma 4.1. Let S1 and D1 be constructed using Algo-
rithm 1. Then, there exists a choice for c = Θ(k log k)
such that with probability at least 0.9,

σk

(

V T
k S1D1

)

≥ 1/2.

In particular, V T
k S1D1 has full rank.

Proof: In order to bound σk

(

V T
k S1D1

)

, we will bound
∥

∥V T
k S1D1D1S

T
1 Vk − Ik

∥

∥

2
. Towards that end, we will

use Theorem 7 of [15] with β = 1/2. This theorem
(followed by Markov’s inequality) guarantees that given
our construction of S1 and D1, with probability at
least 0.9,

∥

∥V T
k S1D1D1S

T
1 Vk − Ik

∥

∥

2
≤ O(1)

√

log c

βc
‖Vk‖F ‖Vk‖2

≤ O(1)

√

k log c

c
.

Standard matrix perturbation theory results [20] now
imply that for all i = 1, . . . , k,

∣

∣σ2
i

(

V T
k S1D1

)

− 1
∣

∣ ≤ O(1)

√

k log c

c
≤ 1/2

for some c = Θ(k log k).

4.2 Bounding the spectral and Frobenius
norms of A − PCA

Lemma 4.2. Let S1, D1, and S2 be constructed as
described in Algorithm 1 and recall that C = AS1S2.
If V T

k S1D1 has full rank, then for ξ = 2, F ,

‖A − PCA‖ξ ≤ ‖A − Ak‖ξ

+ σ−1
k

(

V T
k S1D1S2

) ∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

ξ



Proof: We seek to bound the spectral and Frobenius
norms of A − PCA, where C = AS1S2 is constructed
by Algorithm 1. To do so, first notice that scaling
the columns of a matrix (equivalently, post-multiplying
the matrix by a diagonal matrix) by any non-zero scale
factors does not change the subspace spanned by the
columns of the matrix. Thus,

A − PCA = A − (AS1S2) (AS1S2)
+

A

= A − (AS1D1S2) (AS1D1S2)
+

A

= A − (AS) (AS)
+

A,(4.6)

where, in the last line, we have introduced the con-
venient notation S = S1D1S2 ∈ Rn×k that we will
use throughout the remainder of this proof. By using
the SVD of A (i.e., A = UAΣAV T

A ), it easily follows
from (4.6) that

‖A − PCA‖ξ

=
∥

∥

∥
UA

(

ΣA −
(

ΣAV T
A S
) (

UAΣAV T
A S
)+

UAΣA

)

V T
A

∥

∥

∥

ξ

=
∥

∥

∥
ΣA −

(

ΣAV T
A S
) (

ΣAV T
A S
)+

ΣA

∥

∥

∥

ξ
,(4.7)

where (4.7) follows since (QX)+ = X+QT , for any
matrix X and any orthogonal matrix Q, and since UA

and V T
A may be dropped by using the unitary invariance

of the spectral and the Frobenius norms. For this
equation we had Q = UA and X = ΣAV T

A S. In the
sequel, for notational simplicity, let

Π = (ΣAV T
A S)(ΣAV T

A S)+ ∈ Rρ×ρ

denote the projection matrix onto the column space of
ΣAV T

A S = ΣAV T
A S1D1S2, and let

ΣA =

(

Σk 0
0 Σρ−k

)

.

With this notation and some manipulations, (4.7) be-
comes

‖A − PCA‖ξ =

∥

∥

∥

∥

(

Σk

0

)

− Π

(

Σk

0

)∥

∥

∥

∥

ξ

+

∥

∥

∥

∥

(

0
Σρ−k

)

− Π

(

0
Σρ−k

)∥

∥

∥

∥

ξ

.(4.8)

We next bound the two terms in (4.8), starting with
the second term. Since I − (ΣAV T

A S)(ΣAV T
A S)+ is a

projection matrix, it may be dropped without increasing
a unitarily invariant norm. Thus,
∥

∥

∥

∥

(

0
Σρ−k

)

− Π

(

0
Σρ−k

)∥

∥

∥

∥

ξ

≤
∥

∥

∥

∥

(

0
Σρ−k

)∥

∥

∥

∥

ξ

= ‖A − Ak‖ξ ,(4.9)

thus providing a bound for the second term in (4.8). We
next bound the first term in (4.8). To do so, the critical
observation is that we can relate the first term to the
value of a least squares approximation problem:
∥

∥

∥

∥

(

Σk

0

)

− Π

(

Σk

0

)
∥

∥

∥

∥

ξ

= min
X∈Rk×k

∥

∥

∥

∥

(

Σk

0

)

−
(

ΣAV T
A S
)

X

∥

∥

∥

∥

ξ

.(4.10)

This follows for both ξ = 2, F from the fact that

Π

(

Σk

0

)

is the exact projection of the matrix
(

Σk

0

)

on the subspace spanned by the columns of

ΣAV T
A S. We will bound (4.10) by providing a bound

for a suboptimal – but for our purposes very convenient
– choice for X , namely

X =
(

ΣkV T
k S
)+

Σk ∈ R
k×k.

Since X is suboptimal for the least squares approxima-
tion problem (4.10), it follows that
∥

∥

∥

∥

(

Σk

0

)

− Π

(

Σk

0

)
∥

∥

∥

∥

ξ

≤
∥

∥

∥

∥

(

Σk

0

)

−
(

ΣAV T
A S
) (

ΣkV T
k S
)+

Σk

∥

∥

∥

∥

ξ

.(4.11)

Our suboptimal choice for X leads to an expression on
the right hand side in (4.11) that is easier to manipulate
and bound. We claim that

(4.12)
(

ΣkV T
k S
)+

=
(

V T
k S
)−1

Σ−1
k .

This follows since the statement of our lemma assumes
that the matrix V T

k S1D1 has full rank; also, the con-
struction of S2 guarantees that the columns of V T

k S1D1

that are selected in the second stage of Algorithm 1 are
linearly independent. Thus, the k × k matrix V T

k S =
V T

k S1D1S2 has full rank and thus is invertible, from
which (4.12) follows. Substituting (4.12) into (4.11), it
follows that
∥

∥

∥

∥

(

Σk

0

)

− Π

(

Σk

0

)
∥

∥

∥

∥

ξ

≤
∥

∥

∥

∥

(

Σk

0

)

−
(

ΣAV T
A S
) (

V T
k S
)−1
∥

∥

∥

∥

ξ

=

∥

∥

∥

∥

(

Σk

0

)

−
(

ΣkV T
k

Σρ−kV T
ρ−k

)

S
(

V T
k S
)−1
∥

∥

∥

∥

ξ

≤
∥

∥

∥
Σk − ΣkV T

k S
(

V T
k S
)−1
∥

∥

∥

ξ

+
∥

∥

∥
Σρ−kV T

ρ−kS
(

V T
k S
)−1
∥

∥

∥

ξ

≤
∥

∥

∥
Σρ−kV T

ρ−kS
(

V T
k S
)−1
∥

∥

∥

ξ
.(4.13)



In the above we used the triangle inequality for the
spectral and the Frobenius norms, and the fact that

V T
k S

(

V T
k S
)−1

is the k × k identity matrix.
By combining (4.8), (4.9), and (4.13) we claim that

‖A − PCA‖ξ ≤ ‖A − Ak‖ξ

+σ−1
k

(

V T
k S
) ∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

ξ
.(4.14)

To establish equation (4.14), note that

‖A − PCA‖ξ

≤ ‖A − Ak‖ξ +
∥

∥

∥
Σρ−kV T

ρ−kS
(

V T
k S
)−1
∥

∥

∥

ξ

≤ ‖A − Ak‖ξ +
∥

∥Σρ−kV T
ρ−kS

∥

∥

ξ

∥

∥

∥

(

V T
k S
)−1
∥

∥

∥

2

≤ ‖A − Ak‖ξ +
∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

ξ

∥

∥

∥

(

V T
k S
)−1
∥

∥

∥

2

≤ ‖A − Ak‖ξ + σ−1
k

(

V T
k S
) ∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

ξ
.

The inequality in the third line follows from the fact
that for any two matrices X and Y and ξ = 2, F ,
‖XY ‖ξ ≤ ‖X‖ξ ‖Y ‖2. The inequality in the fourth
line follows since S2 is an orthogonal matrix and thus
dropping it does not increase any unitarily invariant
norm. Finally, if σk

(

V T
k S
)

is the k-th singular value
of the k × k matrix V T

k S, the inequality in the last line
follows from standard linear algebra.

4.3 Upper bounds for σ−1
k

(

V T
k S1D1S2

)

and
∥

∥

∥
Σρ−kV T

ρ−kS1D1

∥

∥

∥

ξ
, ξ = 2, F

Lemma 4.3. Let S1, D1, and S2 be constructed using
Algorithm 1. If c = Θ(k log k), then with probability at
least 0.9,

σ−1
k

(

V T
k S1D1S2

)

≤ 2
√

k (c̃ − k) + 1.

Proof: From Lemma 4.1 we know that σi

(

V T
k S1D1

)

≥
1/2 holds for all i = 1, . . . , k with probability at
least 0.9. The deterministic construction of S2 (see
Algorithm 1 and Lemma 3.5 in [28]) guarantees that

σk(V T
k S1D1S2) ≥

σk(V T
k S1D1)

√

k (c̃ − k) + 1
≥ 1

2
√

k (c̃ − k) + 1
.

Lemma 4.4. (ξ = 2) If S1 and D1 are constructed
as described in Algorithm 1, then with probability at
least 0.9,

∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

2

≤
(

1 + O(1)

√

(ρ − k + 1) log c

c

)1/2

‖A − Ak‖2 .

Proof: We manipulate
∥

∥

∥
Σρ−kV T

ρ−kS1D1

∥

∥

∥

2

2
as follows:

∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

2

2

=
∥

∥Σρ−kV T
ρ−kS1D1D1S

T
1 Vρ−kΣρ−k

∥

∥

2

= ||Σρ−kV T
ρ−kS1D1D1S

T
1 Vρ−kΣρ−k

−Σρ−kV T
ρ−kVρ−kΣρ−k + Σρ−kV T

ρ−kVρ−kΣρ−k||2
≤ ||Σρ−kV T

ρ−kS1D1D1S
T
1 Vρ−kΣρ−k

−Σρ−kV T
ρ−kVρ−kΣρ−k||2 +

∥

∥Σ2
ρ−k

∥

∥

2
.

Given our construction of S1 and D1, and applying
Markov’s inequality and Theorem 7 of [15] with β =
1/2, we get that with probability at least 0.9,
∥

∥Σρ−kV T
ρ−kS1D1D1S

T
1 Vρ−kΣρ−k−Σρ−kV T

ρ−kVρ−kΣρ−k

∥

∥

2

≤ O(1)

√

log c

βc
‖Σρ−k‖F ‖Σρ−k‖2 .

Thus, by combining these expressions, we have that
∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

2

2

≤ O(1)

√

log c

c
‖Σρ−k‖F ‖Σρ−k‖2 + ‖Σρ−k‖2

2 .

Using ‖Σρ−k‖2 = ‖A − Ak‖2 and ‖Σρ−k‖F ≤√
ρ − k + 1 ‖A − Ak‖2 concludes the proof of the

lemma.

Lemma 4.5. (ξ = F) If S1 and D1 are constructed
as described in Algorithm 1, then with probability at

least 0.9,
∥

∥

∥
Σρ−kV T

ρ−kS1D1

∥

∥

∥

F
≤ 4 ‖A − Ak‖F .

Proof: It is straightforward to prove that with
our construction of S1 and D1, the expectation of
∥

∥

∥
Σρ−kV T

ρ−kS1D1

∥

∥

∥

2

F
is equal to

∥

∥

∥
Σρ−kV T

ρ−k

∥

∥

∥

2

F
. In ad-

dition, note that the latter quantity is exactly equal to
‖A − Ak‖2

F . Applying Markov’s inequality, we get that
with probability at least 0.9,

∥

∥Σρ−kV T
ρ−kS1D1

∥

∥

2

F
≤ 10 ‖A − Ak‖2

F ,

which implies the lemma.

4.4 Completing the proof of Theorem 1 To
prove the Frobenius norm bound in Theorem 1 we use
Lemmas 4.1, 4.2, 4.3, and 4.5. Notice that Lemmas 4.1
and 4.3 fail with probability at most 0.1, and that
Lemma 4.5 fails with probability at most 0.1. Overall,
by combining all these and applying the standard union
bound, it follows that the Frobenius norm bound in
Theorem 1 holds with probability at least 0.7. The proof
of the spectral norm bound in Theorem 1 is similar,
except for employing Lemma 4.4 instead of Lemma 4.5.
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