
Stat260/CS294: Randomized Algorithms for Matrices and Data

Homework 2

Instructor: Michael Mahoney Due: November 13, 2013

Problem 1

Here, we will consider one approach for extending the ideas underlying the least-squares algorithm we
discussed in class to non-tall matrices. Let A ∈ Rn×d matrix, where both n and d are large, and where
rank(A) = k exactly, and let B ∈ Rn×t. Consider the problem

minX∈Rn×t‖AX −B‖,

where ‖ · ‖ is a unitarily-invariant matrix norm. The solution to this problem is Xopt = A+B, and here we
consider approximating Xopt with the solution of a sketched problem, where the sketching matrix Z ∈ Rn×r.
The sketching matrix Z could be a random sampling or random projection matrix, but for now assume only
that rank(ZTU) = k, i.e., the r× k matrix ZTU had full rank, where the n× k matrix U consists of the top
k left singular vectors of A, i.e., all the singular vectors associated with nonzero singular values. Recall that
the min-length solution to the sketched problem can be expressed as

argminX∈Rn×t‖ZTAX − ZTB‖ = (ZTA)+ZTB.

(a) First, show that

‖A(ZTA)+ZTB −B‖ξ ≤ ‖U⊥U⊥
T
B‖ξ + ‖(UTZ)+ZTU⊥U⊥

T
B‖ξ,

where U⊥ is an n×(n−k) orthogonal matrix spanning the complement of span(A) = span(U). Establish
this result for both ξ = 2, F , i.e., for both the spectral and Frobenius norm. Comment on the structure
of the proof and how this result would generalize to other unitarily-invariant matrix norms.

(b) Next, show that

‖A(ZTA)+ZTB−B‖ξ ≤ ‖U⊥U⊥
T
B‖ξ+‖UTZZTU⊥U⊥

T
B‖ξ+max

i
|σi(ZTU)−σ−1i (ZTU)|‖ZTU⊥U⊥TB‖ξ.

Again, comment on the structure of the proof and how this result would generalize to other unitarily-
invariant matrix norms.

(c) Next, assume that Z is a random sampling matrix like we discussed in class, but don’t make any

assumptions about the probabilities, i.e., let them be arbitrary. Provide a bound for ‖ZTU⊥U⊥TB‖F ,
first in expectation and then with probability at least 1− δ by using Markov’s inequality.

(d) Next assume that Z is a random sampling matrix, where the importance sampling probabilities depend

on the leverage scores of A, which recall is exactly rank k. Provide a bound on ‖UTZZTU⊥U⊥TB‖ξ,
first in expectation and then with probability at least 1 − δ by using Markov’s inequality. Do this by
extending the approximate matrix multiplication algorithm we discussed in class, but note that the

sampling probabilities only depend on information in UT and not in U⊥U⊥
T
B.

(e) Next, provide a bound on maxi |σi(ZTU)− σ−1i (ZTU)|, by modifying the bound we derived in class.

(f) Finally, put all these results together to show that the solution to the original problem, when ξ = 2, F ,
i.e., when the error is measured with respect to the spectral and Frobenius norm, can be approximated
to (1 ± ε) relative error, if leverage score importance sampling probabilities are used. Be precise about
the number of samples that need to be chosen, etc. to get (1± ε) error, with probability at least 1− δ.
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Problem 2

In the class, we considered random sampling algorithms for low-rank approximation, and in particular an
additive-error column-sampling algorithm that involved sampling with respect to an importance sampling
distribution proportional to the Euclidean norms squared of the columns of the input matrix, and a relative-
error column-sampling algorithm that involved sampling with respect to an importance sampling distribution
proportional to the leverage scores, relative to a low-rank space, of the input matrix. Here, we consider the
extension of these ideas to random projection algorithms. In particular, given as input an m× n matrix A
and a rank parameter k, construct a n× ` random projection matrix Π, where ` & αk/ε2 for some constant
α, and compute B = AΠ.

(a) By applying the matrix perturbation analysis we used in the additive-error random sampling algorithm
as well as Johnson-Lindenstrauss ideas applied to the rows of A, show that

‖A− PBk
A‖F ≤ ‖A− PUk

A‖F + ε‖A‖F ,

where PBk
is a projection matrix onto the best rank-k approximation to B, and where PUk

is a projection
matrix onto the top k left singular vectors of A.

(b) By applying the analysis we used in the relative-error random sampling algorithm as well as Johnson-
Lindenstrauss ideas applied to the rows of the truncated matrix consisting of the top-k singular vectors
of A, show that

‖A− PBk
A‖F ≤ (1 + ε)‖A− PUk

A‖F .

In each case, provide the tightest bounds you can for `, when the random projection matrix Π is a matrix
of i.i.d. Gaussians and when it is a Hadamard-based random projection. In addition, provide the tightest
bound you can for the running time in each case, both for when the input matrix is dense and when the
input matrix is sparse.

Problem 3

Here, we will consider the empirical performance of random sampling and random projection algorithms for
approximating least-squares. You may use Matlab, or C, or R, or whatever software package you prefer to
do your implementations, but be sure to describe what you used in sufficient detail that someone else could
reproduce your results.

Let A be an n × d matrix, with n � d, b be an n-vector, and consider approximating the solution to
minx ||Ax − b||2. Generate the matrices A from one of three different classes of distributions introduced
below.

• Generate a matrix A from multivariate normal N(1d,Σ), where the (i, j)th element of Σij = 2×0.5|i−j|.
(Refer to as GA data.)

• Generate a matrix A from multivariate t-distribution with 3 degree of freedom and covariance matrix
Σ as before. (Refer to as T3 data.)

• Generate a matrix A from multivariate t-distribution with 1 degree of freedom and covariance matrix
Σ as before. (Refer to as T1 data.)

To start, consider matrices of size n× d equal to 500× 50.

(a) First, for each matrix, consider approximating the solution by randomly sampling a “small” number r
of rows/elements (i.e., constraints of the overconstrained least-squares problem) in one of three ways:
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uniformly at random; according to an importance sampling distribution that is proportional to the
Euclidean norms squared of the rows of A; and according to an importance sampling distribution that
is proportional to the leverage scores of A. In each case, plot the error as a function of the number r of
samples, paying particular attention to two regimes: r = d, d+ 1, d+ 2, . . . , 2d; and r = 2d, 3d, . . .. Show
that the behavior of these three procedures is most similar for GA data, intermediate for T3 data, and
most different for T1 data; and explain why, and explain similarities and differences.

(b) Next, for each matrix, consider approximating the solution by randomly projecting rows/elements (i.e.,
constraints of the overconstrained least-squares problem) in one of two ways: a random projection matrix,
in which each entry is i.i.d. {±1}, with appropriate variance; and a random projection matrix, in which
each entry is i.i.d. Gaussian, with appropriate variance. In each case, plot the error as a function of the
number of samples, i.e., dimensions on which the data are projected, paying particular attention to two
regimes: r = d, d+ 1, d+ 2, . . . , 2d; and r = 2d, 3d, . . .. Describe and explain similarities and differences
between these three procedures for GA data, T3 data, and T1 data.

(c) Finally, for each matrix, consider approximating the solution by randomly projecting rows/elements
(i.e., constraints of the overconstrained least-squares problem) with “sparse” projection matrices. In
particular, consider a random projection matrix, in which each entry is i.i.d. either 0 or Gaussian, where
the probability of 0 is q and the probability of Gaussian is 1 − q. (Remember to rescale the variance
of the Gaussians appropriately, depending on q, as we discussed in class.) For q varying from 0 to
1, in increments sufficiently small to illustrate the phenomena we discussed in class, plot the error for
solving the least-squares problem. Describe and explain how this varies as a function of the number of
samples, i.e., dimensions on which the data are projected, paying particular attention to two regimes:
r = d, d+ 1, d+ 2, . . . , 2d; and r = 2d, 3d, . . .. Describe and explain similarities and differences between
these three procedures for GA data, T3 data, and T1 data.

Next, we describe how these behave for larger problems. To do so, we will work with dense random projection
algorithms in which the projection matrix consists of i.i.d. {±1} random variables, with appropriate variance.
Fix a value of d, and let n increase from roughly 2d to roughly 100d. The exact value of d and n will depend
on your machine, your computational environment, etc., so be sure to describe what you are using. Choose
a value of the oversampling parameter, etc., so that you get reasonably-good low-precision approximate
solutions to the original least-squares problem. (You should expect d ≈ 500 should work; and if you can’t do
the full plot to 100d, don’t worry, since the point is to get large enough to illustrate the phenomena below.)

(d) Plot the running time of the random projection algorithm versus the running time of solving the problem
with a call to a QR deccomposition routine provided by your system as well as the running time of solving
the problem with a call to an SVD routine provided by your system. Illustrate that, for smaller problems
the random projection methods are not faster, but that for larger problems, the random projection
mathods are slightly faster and/or can be used to solve larger problems than QR or SVD. Explain why
is this the case, since you are not using “fast” Hadamard-based projections.
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