
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 21 - 11/18/2013

Lecture 21: Low-rank Approximation with Element-wise Sampling, Cont.

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

21 Low-rank Matrix Approximation with Element-wise Sampling,
Cont.

We continue with the discussion from last time. There is no new reading, just the same as last class.

In particular, today we will cover the following topics.

• A more sophisticated version of the element-wise sampling algorithm that is roughly compa-
rable to the additive-error column/row sampling algorithms.

• Introductory discussion of the extension of element-wise sampling algorithm to the matrix
completion problem.

21.1 A More Sophisticated Version of the Element-wise Sampling Algorithm

Let’s start by describing a more sophisticated version of the element-wise random sampling algo-
rithm we discussed last time. This is interesting in and of itself as well as since it will enable us to
make a connection with the additive-error random sampling algorithm.

Again, we’ll follow the motivation from AM07, which describes it nicely. Observe that in the
algorithm from last class that when we sparsify the matrix A by keeping every entry with the same
probability p, then we get

Var
[
Âij

]
=

1− p
p

Aij ∀i, j.

In particular, this means that smaller entries of A lead to random variables with smaller variance.

On the other hand, the bound on
∥∥∥A− Â∥∥∥

2
depends on the maximum variance. Thus, to improve

the results, one idea is to keep entries of Aij with probability pij ≤ p, so that all entries in Â
have roughly the same variance. This will help us to get sparser matrices, while keeping similar
quality-of-approximation bounds.

In more detail, if we choose

Âij =

{
Aij/pij with probability pij
0 otherwise

,

1

then

E
[
Âij

]
= Aij

Var
[
Âij

]
= A2

ij

(
1

pij
− 1

)
.

In this case, if pij = p
A2

ij

b2
. where p ∈ (0, 1] and b = maxij |Aij |, then

Var
[
Âij

]
=
b2

p
−Aij ≈

b2

p
,

∀i, j. With this choice of pij , we have that

E [number of entries kept] =
∑
ij

pij =
∑
ij

p
A2
ij

b2
=

p

b2
‖A‖2F =

b

p2
mnAvg(Aij)

2 � pmn,

where pmn is what is obtained for uniform sampling.

There is the technical issue here that complicates things, but it is a real issue, and that is the
so-called range constraint, i.e., the bound on the range that the random variable is allowed to take.
The issue if that if we choose a very low-probability element, then we must rescale it by a lot, and
this might violate the range constraint. (Many in the improvements since AM07 have to do with
fixing this issue; we will summarize these below.) If we let

pij = max

τij ,
√
τij

8 (log(n))4

n

 ,

where τ = p (Aij/b)
2, then we have the following theorem.

Theorem 1 Let A ∈ Rm×n, with 76 ≤ m ≤ n, and let b = maxij |Aij |. For p > 0, let

τij =
p

b2
A2
ij

pij = max
ij

{
τij , τij

8 (log(n))4

n

}
.

Let Â ∈ Rm×n be a random matrix with entries identically distributed as

Âij =

{
Aij/pij with probability pij
0 otherwise

.

Then, we have the following.

• W.p. ≥ 1− exp
(
−19 (log(n))4

)
, the matrix ∆ = A− Â satisfy the following:

‖Nk‖2 < 4b
√
n/p

‖Nk‖F < 4b
√
kn/p.

2

• E
[
nnz(Â

]
≤ p

b2
‖A‖2F+m (8 log(n))4 = pmn·Avg

[(
Aij

b

)2]
+m (8 log(n))4 , where Avg

[(
Aij

b

)2]
=

‖A‖2F
mn .

Proof: Choosing pij = max {·, ·} ensures that the range constraint is not violated, since no proba-

bility is too small. Since pij ≤ τij+ (8 log(n))4

n , using pij instead of τij adds no more than mn (8 log(n))4

n

elements of Â in expectation. The rest of the proof is similar to what we did before.
�

Remark. We have bounded the number of nonzero entries in the sampled matrix in terms of various
parameters, but we haven’t actually showed that it is small, e.g., in the sense of guaranteeing that
it is not larger than a pre-specified value. We will get to his soon.

Given the result in Theorem 1, let’s ask the following questions.

• How long does it take to compute this approximation?

• How does this approximation compare with the previous additive-error and relative-error
bounds that we had with column/row sampling?

• Can these results be improved/extended, either in worse-case or under assumptions on the
input?

Running time. To answer the question about running time, we will now give an algorithm that,
given n and any s > 0, in one pass over the data produces a matrix Â with probability p = sb2

‖A‖2F
,

s.t. E
[
nnz

(
Â
)]
≤ sm (8 log(n))4. That is, it is efficient in the Pass Efficient Model, since it uses

only 2 passes over the data and roughly linear in m+ n additional space and time.

Note that, given n, b, and fixed p, it is easy to do non-uniform sampling in a single pass over the
data using probabilities

pij = max

{
τij , τij

(8 log(n))4

n

}
,

with τij = p (Aij/b)
2. This gives E

[
nnz

(
Â
)]
≤ p‖A‖2F

b2
+ m (8 log(n))4. This is problematic if

we want to implement the algorithm since the first term is not known at the outset, and that
might correspond to more entries than we want to keep. To remedy this will involve a slight re-
parameterization. In particular, to make this term = s, for a pre-specified s, we can let p = sb2

‖A‖2F
.

To compute this takes one full pass over the data (which is acceptable in the pass efficient model).
Here is the entire algorithm to do this.

This Sample(s, n) algorithm takes as input s and n, and it does the following.

1. Let Q be an empty priority queue, and let z = 0

2. For all Aij , do the following.

(a) z ← z +A2
ij .

(b) Choose a number rij u.a.r. from [0, 1].

3

(c) Insert Aij into Q with key κij = max

{
sA2

ij

rij
,
sA2

ij

r2ij

(8 log(n))4

n

}
(d) Remove from Q all the elements with key smaller than z

3. Return the contents of Q.

Given this Sample(s, n) algorithm, here is a lemma regarding its performance.

Lemma 1 Let A ∈ Rm×n, with 76 ≤ m ≤ n. Then, Sample(s, n) yields a matrix Â such that

• w.p. ≥ 1− exp
(
−19 (log(n))4

)
, we have that the matrix ∆ = A− Â is s.t.

‖∆k‖2 ≤ 4

√
n

s
‖A‖F

‖∆k‖F ≤ 4

√
kn

s
‖A‖F

• E
[
nnz

(
Â
)]
≤ s+m (8 log(n))4

Proof: Let p = sb2

‖A‖2F
, and define τij = p

(
Aij

b

)2
= s

(
Aij

‖A‖F

)2
. Then, by Theorem 1, it suffices to

show that each entry of Aij is kept by Sample(s, n) w.p. = pij = max
{
τij , τij

(8 log(n))4

n

}
. But an

element Aij is in Q when Sample(s, n) terminates iff

sA2
ij

rij
≥ ‖A‖F or

sA2
ij

r2ij

(8 log(n))4

n
≥ ‖A‖F .

But this is equivalent to rij ≤ pij and each rij chosen uniformly over [0, 1].
�

Comparison with column/row sampling algorithms. To answer the question about com-
paring this element-wise sampling algorithm with the previous column/row sampling methods,
observe the following. Given a matrix A, we can call Sample(s, n), where s = 16n

ε2
to get a ma-

trix Â ∈ Rm×n, where Â has O
(
n/ε2 +m (log(n))4

)
non-zeros, sampled from the distribution of

the main theorem, with p = 16nb2

ε2‖A‖2F
. This Õ (m+ n) dependency corresponds roughly to keeping

a small number of columns/rows. Then, by the structural lemma and the main theorem, w.p.

≥ 1− exp
(
−19 (log(n))4

)
, we have that∥∥∥A− Âk∥∥∥

2
≤ ‖A−Ak‖2 + ε ‖A‖F∥∥∥A− Âk∥∥∥

F
≤ ‖A−Ak‖F + 3

√
εk1/4 ‖A‖F

So, the element-wise sampling algorithm, when the sampling is done with probability distribution
that is proportional to the entries-squared, gives additive-error bounds, where the scale of the addi-
tive error is ‖·‖F (just as with the additive-error version of the column/row sampling algorihtms).
(Thus, the results are very similar to the additive-error column/row sampling algorithms, but they
are not directly comparable, due to some minor differences; see AM07 for the details.)

4

Improving/extending these results. To answer the question about possible extensions and
improvements, observe that there are several types of extensions of this basic set up that are
interesting.

• Dealing with small entries. We followed AM07, where smaller entries are sampled with
higher probability, but there were complexities having to do with the range constraint, etc.
Similar but slightly stronger results can be gotten by dealing with smaller entries in other
ways. For example: Drineas-Zouzias-11 zero out sufficiently small entries; Achlioptas-Karnin-
Liberty-13 sample with respect to |Aij | and get bounds with respect to the stable rank; and
Kundu-Namirajan-Drineas-13 sample with respect to a convex combination of a distribution
that is proportional to the elements and a distribution that is proportional to the square of the
elements. We are not going to go though these results, although they lead to improvements
in some of what we have discussed, and there are likely additional improvements that can
be made. They also lead to somewhat simpler results, due to recent developments in matrix
concentration bounds.

• Getting better bounds. We should note something about the structure of the bounds and

what one might hope to achieve. We might hope for bounds on
∥∥∥A− Â∥∥∥

2
and

∥∥∥A− Âk∥∥∥
2
;

and although we have bounds for
∥∥∥A− Âk∥∥∥

F
, we can’t expect to get interesting bounds for∥∥∥A− Â∥∥∥

F
(basically since we have zeroed out most of the elements of the input matrix,

which leads to a large Frobenius norm difference between the two matrices). This is true,
even though the low-rank approximations to them are close with respect to the Frobenius
norm, which is all that is needed to apply the sparsified matrix in the context of an iterative
algorithm, which was the original motivation.

One might wonder what happens if we make additional assumptions on the matrix, e.g.,
what if the matrix is exactly rank k? In that case, i.e., when the matrix is exactly rank
k, then relative-error approximation algorithms like we have for column/row sampling mean
that the error is ε times 0, meaning that the matrix is reconstructed exactly. That is, if
the matrix is exactly rank k, then one can use the leverage-based sampling algorithms or a
random projection algorithm to reconstruct the matrix exactly. (Of course, in that case, the
column/row-wise sampling is less interesting, since in that case any set of exactly k columns
can be used to reconstruct the matrix—numerical and robustness issues aside.)

• Matrix Completion. This leads to the question of whether we can get relative error ap-
proximations and/or reconstruct the matrix exactly using element-wise sampling. The short
answer is No, or Probably No, in general, but the answer is Yes under some assumptions
(that are rather strong, but that are difficult to remove). This work has gone on subsequent
to but somewhat-independently of the AM07 developments in TCS, and it goes by the name
“matrix completion.” This it is loosely motivated by recommendation systems problems, and
several key papers in the area are due to Candes-Recht-09; Candes-Tao-10; Recht-11; and
Gross-11.

BTW, the question of exactly versus approximately low-rank for element-wise methods is actually
quite non-trivial. Reconstructing or well-approximating a matrix with element-wise sampling is
a much harder problem than with column/row sampling/projection methods, and getting relative
error or stronger additive error guarantees is challenging. In general, where there are such results,

5

one needs to make rather strong assumptions to obtain them. Here are two examples of assumptions
that people have used to get better results with element-wise sampling.

• For Matrix Completion. Here, the goal is to impute missing entries from an unobserved
matrix. The assumption on the input is that that the coherence properties are nice, e.g.,
flat leverage scores, and that data are presented ii.d.; or that the coherence properties are
arbitrary but that the data are presented in a way that conform to that; etc.

• For Laplacian Solvers. Here, the goal is to sample entires from an adjacency matrix to
sparsity the graph to get faster solvers. The assumption on the input is that the matrix is not
arbitrary but has additional structure such as that it is the adjacency matrix or the Laplacian
matrix of a graph. In this case, one can take advantage of the graph theoretic structure to get
interesting results. The reason is basically that the entries of the Laplacian matrix correspond
to rows/columns of the edge-incidence matrix, and thus careful element-wise sampling of the
matrix corresponds to column/row sampling of a different matrix.

For the next two classes we will deal with the first of these topics, and for the two classes after that
we will deal with the second of these two topics.

21.2 Introduction to matrix completion

Since we have a bit of time left, we will cover some of the introduction to matrix completion now.
During the next two classes, we will get into more detail.

The so-called matrix completion problem has to do with imputing or predicting the entries of a
matrix from a partially observed version of the matrix. Since the problem is ill-posed, one needs
to make assumptions on the matrix. This need not have anything to do with sampling elements,
e.g., one could do other randomized or deterministic things, but—motivated by recommendation
systems applications—one popular variant of the problem does consider element-wise sampling.

We will be covering the results in the following two papers.

• Recht, “A Simpler Approach to Matrix Completion”

• Chen, Bhojanapalli, Sanghavi, and Ward, “Coherent Matrix Completion”

As I mentioned above, the basic connection between these papers and the AM07 TCS-style results is
that the element-wise sampling algorithm we discussed gives additive-error algorithms for arbitrary
input (just as did row/column sampling when the sampling was with respect row norms and not
leverage scores). In general, to get relative-error algorithms is much harder, e.g., one needs the
matrices to be exactly low rank, one needs very strong incoherence assumptions, one needs to use
tools from convex optimization, etc. But, if one has a relative-error approximation, then under the
assumption that the matrix is exactly low-rank, the matrix is reconstructed exactly.

(That is, a relative-error algorithms gives the exact answer if the matrix is exactly low-rank. The
reason is that the additional error is ε times a scale which equals 0. That’s not the way most people
think about it, but it’s true, and it’s helpful to know that to understand the connections between
RandNLA algorithms and recent work on matrix completion. Of course, in the particular context
of reconstructing exactly rank k matrices, that is not so helpful, since one just needs to choose

6

any set of k linearly independent columns. And the AM07 algorithm is not helpful, since it is an
additive-error algorithm.)

So far, we have considered a problem parameterized roughly as follows. Given a matrix A, sample
entires to construct a matrix Â such that Ã ≈ A in some sense (i.e., we have adopted mostly the
algorithmic perspective). To understand the connections with recent work on matrix completion,
we need to ask a different question (more like the statistical perspective) with the following pa-
rameterization. Given an unseen matrix A that satisfies some niceness assumptions, and assuming
that I see entries from in some way, reconstruct A, exactly or approximately.

The simplest thing to do is to make strong assumptions on A and the element presentation. For
example, assume that A is “nice” in that the leverage scores, cross leverage scores, etc., are uniform,
and assume that the elements of A are presented u.a.r. and also assume that A is exactly rank k,
then we can call a black box (that involves convex optimization, in the form or `1 minimization or
some related nuclear norm minimization) and we solve the problem. There are of course extensions
of this basic setup to exactly low-rank plus a few point-wise spikes, to very small additional noise,
etc., but that is the basic setup.

We should note that the incoherence assumption is an extremely strong assumption and that the
assumption that the entries are sampled i.i.d. is also extremely strong (e.g., with respect to plausible
data generative processes in the motivating application domains). The CBSW paper describes a
variant of this approach to matrix completion that is designed to relate to some of what we have
been discussing.

• A will still need to be exactly rank k

• A can be arbitrary, i.e., there is no niceness assumption

• The elements of A are presented according to a complicated leverage-based distribution.

Some comments on this approach.

• The point is that this coherence-based or leverage-based approach of CBSW is a strictly
stronger result, since the assumption of data presentation essentially takes care of the problem
with bad cases with respect to niceness. In particular, we can assume that A is nice with
respect to its coherence properties, in which case the complicated leverage-based distribution
becomes the uniform distribution.

• This approach is more like the structural approach we have been following, where it highlights
the key structural property. Then, if one wants to make strong assumptions about data
presentation and matrix niceness one can, but this approach makes explicit the relationship
between the two. Moreover, this approach makes it easier to relate this more statistical
perspective to the more algorithmic perspective we have been following.

7

