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17 Toward Randomized Low-rank Approximation in Practice

Today, we will continue with the discussion of improved low-rank matrix approximation algorithms
by describing a slightly different but much more powerful structural result that will allow us to
reparameterize the low-rank approximation problem to obtain improved results both in theory and
in practice. Here is reading for today.

• Lemma 2 (of arXiv-v2, or Lemma 4.2 of SODA) of: Boutsidis, Mahoney, and Drineas “An
Improved Approximation Algorithm for the Column Subset Selection Problem”

• Theorem 9.1 of: Halko, Martinsson, and Tropp, “Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions”

In particular, today we will cover the following topics.

• A discussion of theory-practice gap issues in low-rank matrix approximation algorithms.

• A finer structural result that we will use in the next few classes to bridge that gap.

17.1 Some Challenges for Low-rank Matrix Approximation in Practice

As with the LS problem and algorithms, here we also want to understand how these theoretical
ideas for randomized low-rank matrix approximation can be used in practice. As we will see, just
as with the LS problem and algorithms, the basic ideas do go through to practical situations, but
some of the theory must be modified in certain ways. Among the issues that will come up for the
randomized low-rank approximation situation are the following.

• It might be too expensive to sample O
(
k log(k)
ε2

)
rows/columns, and it might be difficult to do

so if the constant in the big-O is left unspecified. Instead, we might want to choose exactly
k, or we might want to choose k + p, where p is a small integer such as 5 or 10.

• In many applications, and in particular in those that are particularly interested moderate- to
high-precision low-rank matrix approximation, e.g., numerical analysis and scientific comput-
ing applications, there are other goals of interest. For example, given a good approximation to
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an orthogonal basis Q approximating A, one might want to find other types of matrix decom-
positions (e.g., various QR decompositions, thin SVDs, interpolative decompositions, etc.).

• One might want to parameterize problems/algorithms in terms of fixed rank version (where
the input is a rank parameter, which is the approach we have taken), or one might want to
parameterize problems/algorithms in terms of a fixed precision version (roughly, fix a pre-
specified precision level, e.g., near machine precision, and look for an approximation that
provides that numerical error).

• If the spectrum decays somewhat slowly but not very slowly, then one might be interested in
doing some sort of power iteration, which will help the spectrum to decay more quickly, and
it might be of interest to incorporate this process directly into the algorithm.

• Rather than asking for a priori worst-case error bounds, one might be interested in doing a
posteriori error estimation and deciding whether to continue with the algorithm based on the
output of that estimation procedure.

We will briefly describe all of these issues—many of the issues are similar to those that arose when
we discussed how RandNLA algorithms for the LS problem work in practice, but here we are
considering the low-rank matrix approximation problem—but before we do that, let’s give a more
refined structural result. This result gives improved results in general; and, in particular, it makes
it easier to perform these extensions.

17.2 A More Refined Structural Result for Low-rank Approximation

Recall that when we discussed the LS problem, we described a deterministic structural result, and
then we showed how random sampling and random projections interface to that result. Moreover,
how the randomization interfaced to that structure differed for algorithms that obtained the best
results in worst-case theory versus those that obtained the best results in practice. For the versions
of the low-rank approximation problem that we discussed in the last class, i.e., the 1 ± ε relative-
error sampling and projection algorithms, we just related them to the LS problem. Thus, we really
didn’t take into account the low-rank structure, e.g., how the top and bottom subspaces of the
input matrix interacted, in a particularly refined way. The reason was two-fold: (1) we were only
interested in how the sample reproduced the top part of the spectrum and the top subspace of the
matrix; and (2) we were willing to oversample to a level sufficient to obtain worst-case bounds. If
we are interested in obtaining more refined results, as is common in practice, then we need a more
refined structural result that takes into account how the top and bottom part of the spectrum of a
matrix interact.

To do that, observe that there are actually two related ways that we can break up the generalized
LS problem. Given a matrix A ∈ Rm×n, where rank(A) = k and a matrix B ∈ Rm×p, consider the
generalized LS problem:

argminX∈Rn×p

∥∥ZTAX − ZTB∥∥
ξ

=
(
ZTA

)†
ZTB,

where ZTU is full rank (i.e., the rank = k). Then, we can split up the expression ‖AXopt −B‖ξ in
one of two ways.
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• ∥∥∥A (ZTA)† ZTB −B∥∥∥
ξ
≤

∥∥∥U⊥U⊥TB∥∥∥
ξ

+
∥∥∥UTZZTU⊥U⊥TB∥∥∥

ξ

+ max
i

∣∣σi (ZTU)− σ−1i (
ZTU

)∣∣ ∥∥∥ZTU⊥U⊥TB∥∥∥
ξ

• ∥∥∥A (ZTA)† ZTB −B∥∥∥
ξ
≤
∥∥∥U⊥U⊥TB∥∥∥

ξ
+
∥∥∥(UTZ)† ZTU⊥U⊥TB∥∥∥

ξ

Note that these two correspond to a generalization of the two related ways that we proved the
tall LS result. Here, though, the two different ways to split up this expression will lead to two
different structural results. One is the immediate generalization of the LS result that can be used
to get (1 + ε) relative-error bounds on the top part of the spectrum that we saw in the last class.
The other can be used to do that, but it is more general; in particular, it can be used to get a
more refined structural result that leads to better algorithms for the CSSP as well as for random
projection algorithms with very aggressive downsampling.

The main issue is that the generalized LS algorithm we had assumes that the matrix is exactly
rank k, which essentially means that it is exactly rectangular and just artificially fat. Then, we
applied it to arbitrary matrices by carefully wedging projection matrices at various places, but the
consequence of this is that we only got control on the top part of the spectrum. Now, let’s do better
by getting a structural result that says how the sampling operator interacts with both the top and
bottom part of the spectrum. This structural result will hold for any sketching/sampling/projection
matrix, and the randomness will enter only through it, so in that sense it will decouple the linear
algebraic structure from the randomness.

Here is the basic setup. Let A ∈ Rm×n, and let its SVD, A = UΣV T , be represented as

A = U

(
Σ1 0
0 Σ2

)(
V T
1

V T
2

)
where Σk is the k×k diagonal matrix consisting of the top k singular values, Σ2 is the (min{m,n}−
k)× (min{m,n} − k) diagonal matrix consisting of the bottom min{m,n} − k singular values, V T

1

and V T
2 are the matrices of the associated singular vectors, etc. (Note that we are using subscripts

differently/inconsistently with respect to how we used them before, as well as how we will use them
later; here, “1” and “2” refer to the top and bottom part of the spectrum, respectively.)

In this case, assume that we have the sketching matrix S ∈ R`×k, which could be a sampling or
projection or some other matrix, and where ` ≥ k. For example, ` = k or ` = k + p for p = 5 or
p = 10, or ` = O

(
k log(k)/ε2

)
are three regimes of particular interest to us. Then, we can define{

Ω1 = V T
1 S

Ω2 = V T
2 S

to be the perturbed version of the singular subspaces. To obtain good low-rank matrix approxi-
mation, we will want to control the singular subspaces of Ω1 and Ω2. In the absence of sketching,
they are orthogonal, i.e., V T

2 V1 = 0, and thus we will want to show that the sketched versions of
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the subspaces are approximately orthogonal. This is different than before, where we just needed to
show that ∥∥Ω1Ω

T
1 − I

∥∥
2

=
∥∥V T

1 SS
TV1 − I

∥∥
2
< 1/2,

i.e., that the top part of the subspace is well-behaved. That is, here we want to control both the
top and bottom part of the spectrum as well as how they interact with each other via the sketching
matrix S.

To do this, let C = AS, in which case we can write

C = U

(
Σ1V

T
1 S

Σ2V
T
2 S

)
= U

(
Σ1Ω

T
1

Σ2Ω
T
2

)
,

where Σ1V
T
1 S is k× ` and Σ2V

T
2 S is (n−k)× `. (Note that C does not need to be actual columns,

unless S is a sampling matrix, but instead it is any sketch of the columns.)

If Q is an orthonormal basis for the range of C (in this discussion, we are not filtering through
the best rank k approximation to C, which corresponds to the “easier” situation before), then
QQT = PC , and we want to bound∥∥A−QQTA∥∥

ξ
= ‖(I − PC)A‖ξ .

One can then prove the following, which is our main structural result for low-rank matrix approx-
imation via randomized algorithms.

Theorem 1 Given the above setup, then assuming that Ω1 = V T
1 S has full rank, then

‖(I − PC)A‖ξ ≤ ‖A−Ak‖ξ +
∥∥∥Σ2Ω2Ω

†
1

∥∥∥
ξ
,

where Ω1 = V T
1 S and Ω2 = V T

2 S.

Remark. This structural result was first established and proven by Boutsidis et al. in the context
of the Column Subset Selection Problems, and it was reproved with more complicated methods
by Halko et al. in the context of parameterizing random projection algorithms for high-quality
implementations. Gittens, Gu, and several others have used it since then in one form or another.
That and other prior work which used this structural result only established if for the spectral
and Frobenius norms, but it actually holds for any unitarily-invariant norm. This result is due to
Drineas and Mahoney, but we haven’t published it yet, so I’ll include it here.

Remark. The Ω2Ω
†
1 term describes the interaction between the top and bottom part of the

spectrum. The “unsketched” version of this is V T
2 V

T
1
†

= V T
2 V1 = 0, in which case there is no

interaction between these orthogonal subspaces.

Remark. The assumption that Ω1 is full rank is very nontrivial. Indeed, the entire point of using
leverage-based sampling or random projections for the overdetermined LS problem is to ensure
that. Here, it holds for worst-case input if we use leverage-based sampling or if we use random
projections, with parameters set appropriately. Of course, if one can do an after-the-fact check to
confirm that it is true (which is what one often does in practice), then one can use this theorem.

Proof:[of theorem] First note that

‖A− PCA‖ξ =
∥∥∥A−AS (AS)†A

∥∥∥
ξ

(1)
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and also that
(AS)† = argminX∈Rk×n ‖A−ASX‖ξ (2)

and also that these two results hold for any unitarily invariant matrix norm. So, we can replace
(AS)† in (1) with any other k × n matrix and replace the equality (=) with an inequality (≤). In
particular, we will replace (AS)†A with (AkS)†Ak. Doing this, we get the following.

‖A− PCA‖ξ =
∥∥∥A−AS (AS)†A

∥∥∥
ξ

≤
∥∥∥A−AS (AkS)†Ak

∥∥∥
ξ

=
∥∥∥A−Ak +Ak − (A−Ak +Ak)S (AS)†A

∥∥∥
ξ

≤
∥∥∥Ak −AkS (AkS)†Ak

∥∥∥
ξ︸ ︷︷ ︸

γ1

+ ‖A−Ak‖ξ︸ ︷︷ ︸
γ2

+
∥∥∥(A−Ak)S (AkS)†Ak

∥∥∥
ξ︸ ︷︷ ︸

γ3

.

Let’s bound each of those three terms. Since γ2 is simply ‖A−Ak‖ξ, we’ll bound the other two
terms. First, bound γ1 as follows:

γ1 =
∥∥∥Ak −AkS (AkS)†Ak

∥∥∥
ξ

=
∥∥∥Ak −AkS (UkΣkV

T
k S
)†
Ak

∥∥∥
ξ

=
∥∥∥Ak −AkS (V T

k S
)†

(UkΣk)
†Ak

∥∥∥
ξ

(since both V T
k S and UkΣk are full rank)

=

∥∥∥∥∥∥∥Ak − UkΣk V
T
k S

(
V T
k S
)†︸ ︷︷ ︸

Ik

(UkΣk)
† UkΣk︸ ︷︷ ︸
Ik

V T
k

∥∥∥∥∥∥∥
ξ

=
∥∥Ak − UkΣkV

T
k

∥∥
ξ

= 0.

Next, bound γ3 as follows:

γ3 =
∥∥∥(A−Ak)S (AkS)†Ak

∥∥∥
ξ

=
∥∥∥(A−Ak)S

(
UkΣkV

T
k S
)†
Ak

∥∥∥
ξ

=
∥∥∥(A−Ak)S

(
V T
k S
)†

(UkΣk)
†Ak

∥∥∥
ξ

(since both matrices are full rank)

=

∥∥∥∥∥∥∥Uk,⊥Σk,⊥V
T
k,⊥S

(
V T
k S
)†

(UkΣk)
† UkΣk︸ ︷︷ ︸
Ik

V T
k

∥∥∥∥∥∥∥
ξ

=
∥∥∥Uk,⊥Σk,⊥V

T
k,⊥S

(
V T
k S
)†
V T
k

∥∥∥
ξ

≤
∥∥∥Σk,⊥V

T
k,⊥S

(
V T
k S
)†∥∥∥

ξ
(since the orthogonal matrices can be dropped)

Here, we use Uk,⊥, Σk,⊥, Vk,⊥ to refer to the parts of U , Σ, and V that are orthogonal to the best
rank k approximation to A.
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The theorem then follows.
�

Two final remarks. First, you can prove the generalization of this result to when there is a square
on the norm using more sophisticated methods. Second, you can prove the generalization of this
result to when Ak = AVkV

T
k is replaced with AY Y T is any approximation to Vk. This is of interest,

since one can then choose Y to be any approximation to Vk, e.g., one constructed with a random
projection algorithm.

6


