
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 15 - 10/23/2013

Lecture 15: Additive-error Low-rank Matrix Approximation

with Sampling and Projections, Cont.

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

15 Additive-error Low-rank Matrix Approximation, Cont.

We continue with the discussion from last time. There is no new reading, just the same as last class.

Today, in particular, we will cover the following topics.

• A spectral norm bound for reconstruction error for the basic low-rank approximation random
sampling algorithm.

• A discussion of how similar bounds can be obtained with a variety of random projection
algorithms.

• A discussion of possible ways to improve the basic additive error bounds.

• An iterative algorithm that leads to additive error with much smaller additive scale. This
will involve using the additive error sampling algorithm in an iterative manner in order to
drive down the additive error quickly as a function of the number of iterations.

15.1 Reconstruction Error for Low-rank Approximation, Cont.

Recall what we did last time: we introduced the LinearTimeSVD algorithm, and we proved a
result that characterized the Frobenius norm error in terms of an approximation of the product of
two matrices. Let’s now provide a similar spectral norm error bound and show how both results
can be used with the right sampling probabilities to get additive error bounds.

We start with the following result, which characterizes the reconstruction error with respect to the
spectral norm. Note that the factor

√
k that we had before is not present.

Theorem 1 Suppose A ∈ Rm×n and let Hk be constructed from the LinearTimeSVD algorithm.
Then, ∥∥A−HkH

T
k A
∥∥2
2
≤ ‖A−Ak‖22 + 2

∥∥AAT − CCT∥∥
2
.

1

Proof: Let Hk = range(Hk) = span{h1, ..., hk} and Hm−k be the orthogonal complement of Hk.
Let x ∈ Rm and let x = αy + βz where y ∈ Hk, z ∈ Hm−k, and α2 + β2 = 1; then,∥∥A−HkH

T
k A
∥∥
2

= max
x∈Rm,|x|=1

∣∣xT (A−HkH
T
k A)

∣∣
= max

y∈Hk,|y|=1,z∈Hm−k,|z|=1,α2+β2=1

∣∣(αyT + βzT)(A−HkH
T
k A)

∣∣
≤ max

y∈Hk,|y|=1

∣∣yT (A−HkH
T
k A)

∣∣+ max
z∈Hm−k,|z|=1

∣∣zT (A−HkH
T
k A)

∣∣ (1)

= max
z∈Hm−k,|z|=1

∣∣zTA∣∣ . (2)

(1) follows since α, β ≤ 1 and (2) follows since y ∈ Hk and z ∈ Hm−k. We next bound (2):∥∥zTA∥∥2
2

= zTCCT z + zT
(
AAT − CCT

)
z

≤ σ2k+1(C) +
∥∥AAT − CCT∥∥

2
(3)

≤ σ2k+1(A) + 2
∥∥AAT − CCT∥∥

2
(4)

≤ ‖A−Ak‖22 + 2
∥∥AAT − CCT∥∥

2
. (5)

(3) follows since maxz∈Hm−k
|zTC| occurs when z is the (k + 1)-st left singular vector, i.e., the

maximum possible in the Hm−k subspace. (4) follows since σ2k+1(C) = σk+1(CC
T) and since by

the spectral norm variant of the Hoffman-Wielandt inequality we have that σ2k+1(C) ≤ σk+1(AA
T)+∥∥AAT − CCT∥∥

2
; (5) follows since ‖A−Ak‖2 = σk+1(A). The theorem then follows by combining

(2) and (5).
�

This result for the spectral norm error, as well as the result we derived in the last class for the
Frobenius norm error, holds for any set of sampling probabilities {pi}ni=1. That is, the choice of
sampling probabilities and thus the choice of columns enters the approximation quality bound for
‖A − HkH

T
k A‖2ξ only via a term ‖AAT − CCT ‖ξ that is of the form of an approximate matrix

multiplication product.

For completeness, we state the following theorem, in which we specialize the sampling probabilities
to be those that are nearly optimal. By choosing enough columns, we obtain an additive-error low
rank approximation to the matrix A, and the additional error in the approximation of the SVD
can be made arbitrarily small.

Theorem 2 Suppose A ∈ Rm×n, let Hk be constructed from the LinearTimeSVD algorithm by

sampling c columns of A with probabilities {pi}ni=1 such that pi ≥ β
∥∥A(i)

∥∥2
2
/ ‖A‖2F for some positive

β ≤ 1, and let η = 1 +
√

(8/β) log(1/δ). Let ε > 0. If c ≥ 4k/βε2, then

E
[∥∥A−HkH

T
k A
∥∥2
F

]
≤ ‖A−Ak‖2F + ε ‖A‖2F , (6)

and if c ≥ 4kη2/βε2 then with probability at least 1− δ∥∥A−HkH
T
k A
∥∥2
F
≤ ‖A−Ak‖2F + ε ‖A‖2F . (7)

In addition, if c ≥ 4/βε2, then

E
[∥∥A−HkH

T
k A
∥∥2
2

]
≤ ‖A−Ak‖22 + ε ‖A‖2F , (8)

2

and if c ≥ 4η2/βε2 then with probability at least 1− δ∥∥A−HkH
T
k A
∥∥2
2
≤ ‖A−Ak‖22 + ε ‖A‖2F . (9)

Note that the norm on the approximate matrix multiplication error in Theorem 1 and in our
theorem from last class is the same as the norm on the low-rank approximation we are interested
in. That is, spectral/Frobenius norm on the matrix multiplication term if we are interested in
spectral/Frobenius on the low-rank error. When specializing to nearly-optimal probabilities, for
‖·‖F , we use our previous bound on

∥∥AAT − CCT∥∥
F

. For ‖·‖2, we use that ‖·‖2 ≤ ‖·‖F to get
an additive error spectral norm, the scale of which depends on the Frobenius norm of the matrix.
(This is weak in some sense, but we can’t expect a relative-error bound for the spectral norm when
choosing a small number of columns.) Alternatively, we note that one could use our previous bound
on
∥∥AAT − CCT∥∥

2
, which would provide spectral norm bounds, under assumptions on the number

of samples and/or parameterized in terms of the stable rank. We do not do that here, but others
have considered it, and it could be of interest, under assumptions on the input matrices.

15.2 Low-rank Approximation via Random Projections

So far, we have been mostly discussing random sampling algorithms for low-rank matrix approxi-
mation. To obtain interesting results, these algorithms need to use a data-dependent importance
sampling distribution, and then they need to choose parameters such that they achieve the needed
measure concentration. Very similar ideas extend to random projection algorithms for low-rank
matrix approximation, and we can derive similar bounds by using a wide range of random pro-
jection constructions. Essentially, these use a data-independent transformation that “rotates” the
input to a random basis where the norm-squared importance sampling distribution is uniformized.

To see this, note that the error for our random sampling algorithm for low-rank matrix approx-
imation depends on

∥∥AAT −ASSTAT∥∥, where S is a sketching matrix that has a special form
that is the “sampling matrix” constructed by our LinearTimeSVD algorithm. But, nowhere in the
analysis of our theorems did we use the fact that this sketching matrix had any particular form.
Indeed, we have seen before that we can get similar matrix multiplication bounds by using random
projection matrices such as matrices consisting of i.i.d. Gaussian entries, {±1} entries, structured
Hadamard matrices, input-sparsity-time projections, etc. So, if S is a random projection matrix,
with parameters chosen appropriately, then we can get the same additive-error bounds, if we have
bounds on

∥∥AAT −ASSTAT∥∥ (which we do). I won’t go through the details on this here, since
you will do this in detail in the second homework.

I should note that a variant of this random projection algorithm has actually been implemented
and used in several high performance scientific computing applications. We will discuss this below,
along with modifications to it that are necessary to bridge the theory-practice gap. But it is
important to note that it has been used, not due to the additive-error bounds, which are actually
rather weak, but instead since much stronger 1± ε bounds are possible. Let’s take a step back and
ask what exactly is this random projection doing. Essentially, what it is doing is applying JL ideas
to the columns of A, which is why we get additive-error guarantees. The improvement we will get
to later in the semester applies JL ideas to a different set of vectors associated with the columns of
A—essentially, to the truncated subspace vectors that are gotten by an orthogonal matrix spanning
the top part of the spectrum.

3

Said another way, by applying JL ideas on the columns of A, the analysis of the algorithm is weaker
than possible. Random projections uniformize a lot of things, only one of which is the norms of
input matrices. To see this, we will introduce a more sophisticated random sampling algorithm,
which will also achieve 1± ε bounds for the Frobenius norm reconstruction error. This will involve
sampling with respect to the empirical statistical leverage scores of the input matrix. Thus, for
that improved random sampling algorithm, we will be putting the nonuniformity into the algorithm,
while for the improved random projection algorithm, we will obtain improved results by performing
a more refined analysis.

15.3 Toward Better Bounds for Low-rank Approximation

Before we do that, let’s ask what are possible extensions of these ideas of choosing columns according
to their size/norm.

• Find a more sophisticated “univariate statistic,” meaning a score assigned to each column/row,
to sample with respect to (and one that is hopefully still tractable to compute exactly or ap-
proximately). This will involve using the statistical leverage scores. This approach has gained
a lot of traction, both in theory and in numerical implementation practice and in machine
learning and data analysis applications. In addition, these ideas can be used directly as the
basis for other random projection ideas that are also used in theory and in practice, essentially
since random projections preprocess or precondition to uniformize these scores. We will cover
these methods, starting next class.

• Iteratively choose sets of columns according to their “size” relative to what is not captured
yet. Since this approach is iterative, the columns chosen in successive trials are dependent on
previous trials, and thus there is no simple “univariate statistic” associated with the columns
that says that they are all the “same” in some sense, e.g., sampled from the same distribution.
In spite of that, this is a randomized or softer version of popular greedy heuristics, and not
surprisingly this can do quite well in practice. We will cover this next, and we will show
that the additional error drops off very quickly, in the sense that with the right parameters
it drops off exponentially in the number of rounds.

• Choose sets of k columns according to the “size” of that set, e.g., proportional to the volume
of the parallelpiped or simplex that they define. This is not a univariate statistic, but it is a
k-variate statistic, in that it depends on sets of columns/rows of cardinality k. This method
is intractable for most notions of best. That being said, note that RVW, DRVW, DV show
that the previous iterative approach can approximate this method, and thus this method can
get a 1± ε approximation that is “fast” in at least a theoretical sense. These ideas have not
gained widespread traction, in theory and certainly not in applications, and so we will not
focus on them.

Remark. It is an open question, and one with likely practical significance, whether one can
use the iterative method to approximate the leverage scores, and, relatedly, what exactly are the
connections between the leverage scores and the notions of volume that are used in the third bullet.

4

15.4 An Iterative Additive-error Low-rank Approximation Algorithm

Here, we will describe a variant of the iterative algorithm of RVW, DRVW, DV. For simplicity, we
will describe a variant that does not filter the data through a rank-k space. (Note that the previous
additive-error algorithm didn’t need to, but it did filter through a low-rank space, and that is a
stronger result.)

The SelectColumnsSinglePass algorithm takes as input a matrix A and a number c of columns
to choose. It returns as output a matrix C such that the columns of C are chosen from the columns
of A in c i.i.d. trials by sampling randomly according to the probability distribution (10). More
formally, for an m × n matrix A and a multiset S ⊆ {1, . . . , n}, let C = AS denote the m × |S|
matrix whose columns are the columns of A with indices in S. The SelectColumnsSinglePass
constructs the multiset S by randomly sampling according to (10) and returns the matrix C = AS .
Note that this is basically just the same algorithm we had before, just parameterized a little
differently, e.g., probabilities are inside the algorithm, the algorithm returns the matrix C rather
than just the top k singular vectors, and consequently the quality-of-approximation theorem won’t
filter the matrix through a rank k space.

Algorithm 1 The SelectColumnsSinglePass Algorithm.

Input: An m× n matrix A, and an integer c s.t. 1 ≤ c ≤ n.
Output: An m× c matrix C, s.t. CC+A ≈ A.
1: Compute (for some positive β ≤ 1) probabilities {pi}ni=1 s.t.

pi ≥ β
∥∥∥A(i)

∥∥∥2
2
/ ‖A‖2F , (10)

where A(i) is the i-th column of A as a column vector.
2: S = {}
3: for t = 1 to c do
4: Pick it ∈ {1, . . . , n} with Pr [it = α] = pα
5: S = S ∪ {it}
6: end for
7: Return C = AS .

The SelectColumnsSinglePass algorithm is so-named since, given probabilities of the form
(10), the matrix C can be constructed in one pass over the (externally-stored) data matrix A. The
following theorem is our main quality-of-approximation result for theSelectColumnsSinglePass
algorithm.

Theorem 3 Suppose A ∈ Rm×n, and let C be them×c matrix constructed by sampling c columns of
A with the SelectColumnsSinglePass algorithm. If η = 1+

√
(8/β) log(1/δ) for any 0 < δ < 1,

then, with probability at least 1− δ,∥∥A− CC+A
∥∥2
F
≤ ‖A−Ak‖2F + ε ‖A‖2F , (11)

if c ≥ 4η2k/(βε2).

Proof: Let the m × c matrix Ĉ be that matrix whose columns consist of appropriately rescaled
copies of the columns of C, as discussed in conjunction with the LinearTimeSVD algorithm of

5

the last class. First, note that since CC+ = PC = PĈ = ĈĈ+ is a projection onto the full column
space of C, it follows that ∥∥A− CC+A

∥∥2
F
≤
∥∥∥A− PĈ,kA∥∥∥2F . (12)

The theorem follows by combining this with the results of the last class.
�

One final comment on this algorithm. The relationship of this algorithm with the LinearTimeSVD
algorithm should also be emphasized. In the LinearTimeSVD algorithm, the columns of A that
are sampled by the algorithm are scaled prior to being included in C, by dividing each sampled
column by a quantity proportional to the square root of the probability of picking it. This scaling
allows one to prove that the top k singular values of the matrix Ĉ, i.e., the scaled version of C, and
the top k singular values of A are close. Additionally, it allows one to prove that under appropriate
assumptions ∥∥∥A− PĈ,kA∥∥∥2ξ ≤ ‖A−Ak‖2ξ + ε ‖A‖2F , (13)

in both expectation and with high probability, for both the spectral and Frobenius norms, ξ = 2, F .
Here, in the projection matrix to the full space spanned by the columns of C, namely PC = CC+ =
ĈĈ+ = PĈ rather than PĈ,k. Clearly, any scaling of the columns of C does not affect this full
projection matrix.

Next, we will choose columns in multiple rounds, where in each round we choose c columns. So,
this is a randomized version of a greedy algorithm that chooses the next column based on who has
the largest residual. This algorithm was first presented by RVW, and it was extended by DRVW,
DV. In particular, Rademacher, Vempala and Wang provided the first proof of a theorem in which
the additional error drops exponentially with the number of passes. In more detail, they proved
that there exists a rank k matrix in the subspace spanned by C that satisfies (in expectation) a
bound of the form (16). Thus, by Markov’s inequality, they obtain a bound of the form (16) that
holds with probability at least 1− δ̄ if c = O(t2/δ̄). The proof below is simpler. In addition, observe
that it obtains (16) with probability at least 1− δ̄ if c = O(t log(t/δ̄)).

The SelectColumnsMultiPass algorithm takes as input a matrix A, a number t of rounds to
perform, and a number c of columns to choose per round. It returns as output a matrix C such that
the columns of C are chosen from the columns of A in the following manner. There are t rounds, and
each round consists of 2 passes over the data. In the first round, let ` = 1. Sampling probabilities
of the form (10) are computed in the first pass of the first round, and in the second pass a multiset
S1 of columns of A is picked in c i.i.d. trials by sampling according to the probabilities (10). For
each subsequent round ` = 2, . . . , t, sampling probabilities of the form (15) are constructed that
depend on the lengths of the columns of the the m×n matrix E` that is the residual of the matrix
A after subtracting the projection of A on the subspace spanned by the columns sampled in the
first `− 1 rounds.

More formally, let the indices of the columns that have been chosen in the first `−1 rounds form the
multiset {S1, S2, . . . , S`−1} (where the multiset of columns Si were chosen in the i-th round) and
let C`−1 = A{S1,S2,...,S`−1} denote the m× |S1||S2| · · · |S`−1| matrix whose columns are the columns
of A with indices in {S1, S2, . . . , S`−1}. Then,

E` = A−A{S1,...,S`−1}A
+
{S1,...,S`−1}A = A− C`−1C+

`−1A. (14)

Sampling probabilities of the form (15) are then constructed in the first pass of each round ` =
2, . . . , t, and c columns are chosen from A by sampling in c i.i.d. trials according to the probabilities

6

(15) in the second pass of each round ` = 2, . . . , t. (Note that if, by definition, E1 = A, then for
` = 1 the sampling probabilities (15) are the same as those of (10).)

Algorithm 2 The SelectColumnsMultiPass Algorithm.

Input: An m× n matrix A, and an integer c s.t. 1 ≤ c ≤ n, and a positive integer t.
Output: An m× c matrix C, s.t. CC+A ≈ A.
1: S = {}
2: for ` = 1 to t do
3: if ` == 1 then
4: E1 = A
5: else
6: E` = A−ASA+

SA
7: end if
8: Compute (for some positive β ≤ 1) probabilities {pi}ni=1 s.t.

pi ≥ β
∥∥∥E(i)

`

∥∥∥2
2
/ ‖E`‖2F , (15)

where E
(i)
` is the i-th column of E` as a column vector.

9: for t = 1 to c do
10: Pick it ∈ {1, . . . , n} with Pr [it = α] = pα
11: S = S ∪ {it}
12: end for
13: end for
14: Return C = AS .

The SelectColumnsMultiPass algorithm is so-named since, given probabilities of the form (15),
c columns can be extracted in one pass over the (externally-stored) data matrix A. Then, of course,
in each round the probabilities {pi}ni=1 that are used by the algorithm may be computed with one
pass over the data and O(1) additional space. The algorithm is thus efficient in the Pass Efficient
Model.

Here are several things to note. This algorithm takes t rounds, and each round is 2 passes over the

data. In the first round, it computes the simple sampling probabilities pi =
‖(j)‖2

2

‖A‖2F
in the first pass

and then pulls out the actual columns in the second pass. In the second and subsequent rounds,
ditto, except that the sampling probabilities depend on the length of the columns of the matrix
E, that is the residual after you subtract the projection of A onto the subspace spanned by the
columns in the first `− 1 rounds. That is, if {S1, S2, . . . , S`−1} is a multiset chosen in the first `− 1
rounds, then C`−1 = AS1S2···A`−1

is the m × |S1||S2| · · · |S`−1| matrix with columns of A that has
indices in {S1, S2, · · · , S`}. So, E` = A−A{S1,...,S`−1}A

+
{S1,...,S`−1}A = A− C`−1C+

`−1A.

Theorem 4 Suppose A ∈ Rm×n and let C be them×tc matrix constructed by sampling c columns of
A in each of t rounds with the SelectColumnsMultiPass algorithm. If η = 1+

√
(8/β) log(1/δ)

for any 0 < δ < 1, then, with probability at least 1− tδ,∥∥A− CC+A
∥∥2
F
≤ 1

1− ε
‖A−Ak‖2F + εt ‖A‖2F , (16)

if c ≥ 4η2k/(βε2) columns are picked in each of the t rounds.

7

Recall that we will go with the following, which is a simpler and improved proof, compared with
that of RVW.

Proof: The proof will be by induction on the number of rounds t. Let S1 denote the set of columns
picked at the first round, and let C1 = AS1 . Thus, C1 is an m × c matrix, where c ≥ 4η2k/(βε2).
By Theorem 3 and since 1 < 1/(1− ε) for ε > 0, we have that∥∥∥A− C1

(
C1
)+
A
∥∥∥2
F
≤ 1

1− ε
‖A−Ak‖2F + ε ‖A‖2F (17)

holds with probability at least 1− δ, thus establishing the base case of the induction.

Next, let (S1, . . . , St−1) denote the set of columns picked in the first t − 1 rounds and let Ct−1 =
A(S1,...,St−1). Assume that the proposition holds after t − 1 rounds, i.e., assume that by choosing
c ≥ 4η2k/(βε2) columns in each of the first t− 1 rounds, we have that∥∥∥A− Ct−1 (Ct−1)+A∥∥∥2

F
≤ 1

1− ε
‖A−Ak‖2F + εt−1 ‖A‖2F (18)

holds with probability at least 1− (t− 1)δ.

We will prove that it also holds after t rounds. Let Et = A−Ct−1
(
Ct−1

)+
A be the residual of the

matrix A after subtracting the projection of A on the subspace spanned by the columns sampled in
the first t−1 rounds. (Note that it is ‖Et‖2F that is bounded by (18)). Consider sampling columns of
Et at round t with probabilities proportional to the square of their Euclidean lengths, i.e., according
to (15), and let Z be the matrix of the columns of Et that are included in the sample. (Note that
these columns of Et have the same span and thus projection as the corresponding columns of A
when the latter are restricted to the residual space.) Then, by choosing at least c ≥ 4η2k/(βε2)
columns of Et in the t-th round we can apply Theorem 3 to Et and get that∥∥Et − ZZ+Et

∥∥2
F
≤ ‖Et − (Et)k‖

2
F + ε ‖Et‖2F (19)

holds with probability at least 1− δ. By combining (18) and (19) we see that if at least 4η2k/(βε2)
columns are picked in each of the t rounds then∥∥Et − ZZ+Et

∥∥2
F
≤ ‖Et − (Et)k‖

2
F +

ε

1− ε
‖A−Ak‖2F + εt ‖A‖2F (20)

holds with probability at least 1− tδ. The theorem thus follows from (20) if we can establish that

Et − ZZ+Et = A− Ct
(
Ct
)+
A (21)

‖Et − (Et)k‖
2
F ≤ ‖A−Ak‖2F . (22)

But (21) follows from the definition of Et, since Ct
(
Ct
)+

= Ct−1
(
Ct−1

)+
+ZZ+ by the construction

of Z, and since ZZ+Ct−1
(
Ct−1

)+
= 0. To establish (22), and thus the theorem, notice that

‖Et − (Et)k‖
2
F =

∥∥∥(I − Ct−1 (Ct−1)+)A− ((I − Ct−1 (Ct−1)+)A)
k

∥∥∥2
F

(23)

≤
∥∥∥(I − Ct−1 (Ct−1)+)A− (I − Ct−1 (Ct−1)+)Ak∥∥∥2

F
(24)

≤
∥∥∥(I − Ct−1 (Ct−1)+) (A−Ak)

∥∥∥2
F

(25)

≤ ‖A−Ak‖2F . (26)

8

(23) follows by definition of Et, (24) follows since
(
I − Ct−1

(
Ct−1

)+)
Ak is a rank k matrix, but

not necessarily the optimal one, (25) follows immediately, and (26) follows since I −Ct−1
(
Ct−1

)+
is a projection.

�

This algorithm and theorem demonstrate that by sampling in t rounds and by judiciously computing
sampling probabilities for picking columns of A in each of the t rounds, the overall error drops
exponentially with t. This is a substantial improvement over the results of Theorem 3. In that
case, if c ≥ 4η2kt/(βε2) then the additional additive error is (ε/

√
t) ‖A‖2F . Note also that although

we have described this as an iterative additive-error low-rank matrix approximation algorithms,
it becomes a relative-error approximation if the number of iterations depends on the stable rank
(which is not known a priori, but which can in some senses be estimated).

9

