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14 Additive-error Low-rank Matrix Approximation

Today, we will shift gears and begin to discuss RandNLA algorithms for low-rank matrix ap-
proximation. We will start with additive-error low-rank matrix approximation with sampling and
projections. These are of interest historically and since they illustrate several techniques (norm-
squared sampling, simple linear algebraic manipulations, the use of matrix perturbation theory,
etc.), but they are much coarser than more recent finer bounds that can be obtained. Importantly,
these additive-error bounds can be improved (and we will get to this soon). Depending on whether
one is interesting in random sampling or random projection algorithms, the improvement comes
either in the algorithm or in the analysis. Understanding this improvement will lead to a structural
condition that extends the structural conditions for rectangular least squares problems to one for
general “fat” matrices. As we will see, this condition underlies many of the theoretically and/or
practically most interesting RandNLA algorithms for low-rank approximation.

Here is the reading for today and the next class.

• Drineas, Kannan, and Mahoney, “Fast Monte Carlo Algorithms for Matrices II: Computing
Low-Rank Approximations to a Matrix”

• Deshpande and Vempala, “Adaptive Sampling and Fast Low-rank Matrix Approximation”

Today, in particular, we will cover the following topics.

• Basics of low-rank matrix approximation.

• Two simple matrix perturbation theory results.

• An overview of RandNLA methods for low-rank approximation.

• A basic random sampling algorithm and a quality-of-approximation result for it.
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14.1 Basics of Low-rank Matrix Approximation

Since we are going to shift gears now and talk about how to use randomized algorithms to com-
pute low-rank approximation of matrices, we will start with a brief overview of low-rank matrix
approximation. Hopefully, this should just be a review to set notation, and in fact we have already
covered some of these topics in our discussion of regression for very rectangular matrices, but we
describe it here in detail since some of the details are different for matrices where both the number
of rows and the number of columns are very large and of comparable size.

(BTW, this has mattered less in TCS and ML, where one is typically interested in quality-of-
approximation metrics that depend only on how well one reproduces the top part of the spectrum,
but it has mattered more in areas such as NLA and scientific computing, where one is also inter-
ested in controlling how the top and bottom parts of the singular subspace of the matrix versus
approximated matrix interact.)

IfA ∈ Rm×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ Rm×m and V = [v1v2 . . . vn] ∈
Rn×n where

{
ut
}m
t=1
∈ Rm and

{
vt
}n
t=1
∈ Rn are such that

UTAV = Σ = Diag(σ1, . . . , σρ), (1)

where Σ ∈ Rm×n, ρ = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σρ ≥ 0. Equivalently,

A = UΣV T .

The three matrices U , V , and Σ constitute the Singular Value Decomposition (SVD) of A. The
σi are the singular values of A and the vectors ui, vi are the i-th left and the i-th right singular
vectors, respectively. The columns of U and V satisfy the relations Avi = σiu

i and ATui = σiv
i.

For symmetric positive definite (or semi-definite) matrices the left and right singular vectors are
the same. The singular values of A are the non-negative square roots of the eigenvalues of ATA
and of AAT . Furthermore, the columns of U , i.e., the left singular vectors, are eigenvectors of AAT

and the columns of V , i.e., the right singular vectors, are eigenvectors of ATA.

The SVD can reveal important information about the structure of a matrix. If we define r by
σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σρ = 0, then rank(A) = r, null(A) = span{vr+1, . . . , vρ}, and
range(A) = span{u1, . . . , ur}. In particular, if we let Ur ∈ Rm×r denote the matrix consisting of
the first r columns of U , Vr ∈ Rr×n denote the matrix consisting of the first r columns of V , and
Σr ∈ Rr×r denote the principal r × r sub-matrix of Σ, then

A = UrΣrV
T
r =

r∑
t=1

σtu
tvt

T
. (2)

(BTW, this is the usual linear algebraic notion of rank. Note, however, that one can also define
other notions of “soft rank,” sometimes called the “effective rank” and typically defined as the ratio
of the Frobenius to spectral norm, both defined below, and this is sometimes of greater interest in
machine learning and data analysis applications. We won’t explicitly cover that much, but we note
that many of the analysis tools we do discuss are also useful more or less directly for dealing with
this softer notion of rank.)

Note that this dyadic decomposition property given in Eqn. (2) provides a canonical description of
a matrix as a sum of r rank one matrices of decreasing importance. If k ≤ r and we define

Ak = UkΣkV
T
k =

k∑
t=1

σtu
tvt

T
(3)
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then Ak = UkU
T
k A =

(∑k
t=1 u

tut
T
)
A and Ak = AVkV

T
k = A

(∑k
t=1 v

tvt
T
)

, i.e., Ak is the projec-

tion of A onto the space spanned by the top k singular vectors of A. Furthermore, the distance (as
measured by both ‖·‖2 and ‖·‖F ) between A and any rank k approximation to A is minimized by
Ak, i.e.,

min
D∈Rm×n:rank(D)≤k

‖A−D‖2 = ‖A−Ak‖2 = σk+1(A) (4)

and

min
D∈Rm×n:rank(D)≤k

‖A−D‖2F = ‖A−Ak‖2F =
r∑

t=k+1

σ2t (A). (5)

Thus, Ak constructed from the k largest singular triplets of A is the optimal rank k approximation
to A with respect to both ‖ · ‖F and ‖ · ‖2. (It is actually optimal with respect to the more
general class of unitarily-invariant norms.) More generally, one can also show that ‖A‖2 = σ1 and
that ‖A‖2F =

∑r
i=1 σ

2
i .

We reviewed the above since our main m.o. will be that we will project onto a set of random
columns (or random linear combinations of columns) that is not the optimal set of columns, and
we will show that the error incurred is not much worse than the optimal set of columns.

Finally, let’s conclude this linear algebra review of general fat matrices with a brief word about the
running time of computing the SVD and of low-rank approximations to the SVD. It might seem
like this should be a simple question with a simple answer, but it is actually a rather complicated
topic, and the answer depends on your background and your perspective as to what’s important to
count and what is acceptable to be ignored. Here are the key points for us to keep in mind.

• One can compute the full SVD of a general matrix A, in infinite precision arithmetic, with
various direct methods, in Θ

(
n3
)

time (or in min{mn2,m2n} time, if A is an m× n matrix)
operations in the RAM model (which is actually not such a good model here). One can
compute a rank-k low-rank approximation to A in that same Θ

(
n3
)

time by computing the
full SVD and keeping only those top k components of interest.

• Of course, that naive approach throws away a lot, but as an inequality the running time is
O
(
n3
)

time. Alternatively, one must read the full input, and so the running time is Ω
(
n2
)

for general matrices and Ω (nnz(A)), where nnz(A) is the number of non-zero entries in the
matrix A, for sparse matrices.

• Even aside from roundoff issues, this O
(
n3
)

running time provides a straw-man comparison,
in the sense that one almost never needs the full SVD. Indeed, one almost never needs the
full rank-k approximation to the SVD. Instead one typically only computes what one needs,
e.g., a basis for the left or right singular subspace, the top k singular values, all or some of the
diagonal elements for a projection matrix onto the span of A, an orthogonal matrix spanning
a subspace close to the top k left or right singular subspace, etc.

• In these cases, some sort of iterative algorithm is typically used, and the running time of these
iterative algorithms depends on lots of details about the matrix, the implementations, whether
the matrix is represented explicitly or implicitly, whether communication is expensive, etc.
(You got a feeling for some of these things when we discussed Blendenpik, but the situation
is much more complex for general matrices.)
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• We won’t dwell on these issues too much, since we aren’t focused primarily on implementations
and since different disciplines say very different things about this. For the development of
RandNLA algorithms (and matrix algorithms in machine learning and data analysis more
generally) it is at least as important to understand some of the details/subtleties of what
different research areas say is important for running time as it is to know any simple statement
of running time.

• All that being said and as a rule of thumb (and ignoring things like condition number and
other related issues), think of the running time as being roughly Θ (mnk), where the matrix
A is of size m × n and where one is interested in a rank k approximation. Informally, you
have to touch each entry once, and you have to touch each dimension once. Also, roughly, if
the matrix is sparse, then the mn can be replaced with nnz(A). (We will see that, roughly,
randomized algorithms can be used to improve the k to log(k), but they also have many other
benefits—robustness, parallelizability, simplicity, etc.—that are at least as important as the
running time improvements.)

14.2 Two Results from Matrix Perturbation Theory

Matrix perturbation theory has to do with how properties of a matrix such as its spectrum change
(or are perturbed) as the elements of the matrix are varied. It is a large area, with many varied
applications, and we will need only a very small part of it. In particular, from the perturbation
theory of matrices it is known that the size of the difference between two matrices can be used to
bound the difference between the singular value spectrum of the two matrices. More precisely, if
A,E ∈ Rm×n,m ≥ n, then:

max
t:1≤t≤n

|σt(A+ E)− σt(A)| ≤ ‖E‖2 (6)

and
n∑
k=1

(σk(A+ E)− σk(A))2 ≤ ‖E‖2F . (7)

The latter inequality is known as the Hoffman-Wielandt inequality.

Note that both of these results are of the form of the `p norm of the difference of the singular values
of a matrix and a perturbed version of the matrix is bounded above by a matrix norm that equals
the `p norm of the singular values of the perturbation. (These two results are for p =∞ and p = 2,
respectively.)

Note also that neither of these bounds depends on the structure of the perturbation. Given the
large fraction of RandNLA algorithms that boil down to matrix perturbation results such as these
two results, and given that the perturbations from random sampling or random projection that
RandNLA algorithms perform are quite structured, it is of interest to see if one can get finer bounds
by taking advantage of the structured form of the perturbation.

14.3 Randomization for Low-rank Matrix Approximation

In the randomized algorithms for low-rank approximation that we will discuss, there will be several
“knobs,” and the details of how these knobs are handled are important. Not only will those details
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make a big difference for how successful various algorithms are in theory and/or in practice, but—if
not given appropriate attention—those same details can be the source of a great deal of confusion
about how different algorithms related to each other.

The reason for this latter comment is that different research communities find it more or less
natural/convenient to fiddle with different knobs in different ways, and (relatedly) different re-
search communities find it more or less natural/convenient to ask for different types of quality-
of-approximation guarantees. This has led to a confusing array of algorithms, which are often
superficially quite different, but which in reality have very strong (algorithmic or statistical or
structural) similarities and connections. In the next few weeks, we will try to focus on these
commonalities, trying to highlight structural properties responsible for seemingly-different results.

As with our description of algorithms for least-square approximation, we will discuss algorithms
for low-rank matrix approximation first in terms of basic random sampling algorithms, and then
in terms of extensions to random projection algorithms.

Here are examples of different perspectives that people adopt on these algorithms.

• Additive-error bounds versus relative-error bounds. Let’s say that we would like to
quantify how well a matrix C, or perhaps the best rank k approximation to C if C has more
than k columns, captures the top part of the spectrum of a matrix A, and (for now) let’s say
that we are interested in the error with respect to the Frobenius norm. One type of bound
one could hope for is to show that

‖A− PCk
A‖F ≤ ‖A− PUk

A‖F + ε ‖A‖F . (8)

In the theory of algorithms, bounds of the form (8) are known as additive-error bounds, the
reason being that the “additional” error (above and beyond that incurred by the SVD) is
bounded above by an additive factor of the form ε times the scale ‖A‖F .

Bounds of this form are very different and in general weaker than when the additional error
enters as a multiplicative factor, such as when the error bounds are of the form

||A− PCk
A|| ≤ f(m,n, k, η)||A− PUk

A||,

where f(·) is some function and η represents other parameters of the problem. Bounds of
this type are of greatest interest when f(·) does not depend on m or n, in which case they
are known as a constant-factor bounds, or when they depend on m and n only weakly. The
strongest bounds are when f = 1 + ε, for an error parameter ε, i.e., when the bounds are of
the form

‖A− PCk
A‖F ≤ (1 + ε) ‖A− PUk

A‖F . (9)

These relative-error bounds are the gold standard (in TCS, but not necessarily in other areas),
since the scale of the additive error becomes the residual error itself, and they provide a much
stronger notion of approximation than additive-error or weaker multiplicative-error bounds.

• Other notions of reconstruction quality. Eqn. (8) and Eqn. (9) measure in two different
ways how much of A is captured by the sample C, and they do so by measuring a particular
norm (the Frobenius norm) of the difference between two matrices. Of course, one might be
interested in other norms, e.g., the spectral norm, which is the largest singular value and thus
the `∞ norm of the vector of singular values, or the trace/nuclear norm, which is the sum of
the singular values and thus the `1 norm on the vector of singular values. (The Frobenius
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norm is the `2 or Euclidean norm on the singular value vector.) There are still other norms of
interest. Alternatively, one might want to measure the quality in some other way, e.g., with
respect to a divergence or whatever.

• Reconstructing the matrix versus other notions of approximation quality. Eqn. (8)
and Eqn. (9) make statements about how well C captures the information in the top part of
this spectrum of A. This is reasonable, but sometimes one is also interested in other things.
(For example, we saw this before in `2 regression, where we wanted not just relative error
on the objective function value, but we also wanted to say that the actual solution vectors
were close.) In the case of low-rank approximation via Uk, the matrix consisting of the top k
left singular vectors of A, in addition to capturing the maximum amount of A with respect
to any unitarily-invariant matrix norm, Uk is also “good” for other reasons: the columns of
Uk are orthogonal to each other and thus maximally “spread out,” the matrix Uk is exactly
orthogonal to the matrix Uk,⊥, where the latter is the matrix consisting of the bottom m− k
singular vectors, and thus the approximation is maximally far from the optimal residual
subspace, etc.

In more general low-rank matrix approximation methods, these considerations manifest them-
selves by, e.g., asking for an interpolative decomposition, where the condition number of the
sample matrix C is relatively good, asking for a rank-revealing decomposition, where one
shows that the singular values of the part of the matrix that is not captured are not too large,
that there is not much overlap between the sample and the bottom m− k singular directions
of A, etc. Importantly, while these notions are all vaguely related and in many cases coincide
when considering the exactly optimal SVD-based low-rank approximation, approximately op-
timizing one of them often says very little about exactly or approximately optimizing another
one of them. Depending on the downstream application, one or the other of these objectives
might be of greatest interest.

These observations hold in general, e.g., with deterministic algorithms like rank-revealing QR
decompositions, but we will be mostly interested in how they hold for randomized algorithms
via using random sampling or random projections. We will discuss how to deal with some of
these issues with RandNLA algorithms. As we will see, in some cases this difference manifests
itself in the algorithm, while in other cases it manifests itself in the analysis.

• Sampling versus projection. As we saw before, roughly, random projections correspond
to uniform sampling in randomly rotated spaces. The same holds true, again at one level
of granularity, in the case of randomized algorithms for low-rank approximation. Indeed,
that perspective is often a helpful way to think about similarities between seemingly-different
problems and algorithms, and so we will emphasize that perspective. But, if we get greedy in
optimizing various factors (e.g., as needs to be done with the oversampling parameter when
providing high-quality implementations), then sometimes it is better to do it directly and not
view it as this two step process. Alternatively, it is sometimes convenient (e.g., in scientific
computing) to view a random projection as providing an estimator for the range space of a
matrix; and it is sometimes convenient (e.g., in TCS) to view a random projection as pro-
viding a data-oblivious or data-agnostic subsapce embedding. Whether projections directly
“boil down” to sampling uniformly in a randomly-rotated space or do so only indirectly and
approximatelly, it is helpful to think of sampling and projections on a similar footing and
providing two different types of randomized “sketching” matrices.

• More aggressive downsampling. Sometimes, we are interested in sampling fewer than
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roughly O(k log k/ε2) or even O(k/ε) columns. For example, we might want to sample exactly
k columns, or we might want to project onto exactly k+p columns, where p is a small integer
like 5 or 10. In these cases, the simplest analysis typically fails for worst-case matrices, and
this is basically for coupon collector reasons, but this might be ok if there is a quick way to
check whether some property has been satisfied. This is sometimes of interest by themselves
and sometimes for their numerical properties (as we saw with LS), and we need to control
different structures—consider CSSP and “slow” extensions to projections.

• Reproducing the data versus reproducing hypothesized data. Eqn. (8) and Eqn. (9)
are statements about how well an algorithm does with respect to the data sitting in front
of us. This is a very natural thing to ask for in NLA and TCS. Alternatively, one might be
interested in how well the algorithm does with respect to hypothesized but unseen data. This
latter approach is more natural in statistics and machine learning. The MSE, the usefulness
of the low-rank approximation in a prediction task such as kernel ridge regression, etc., are
all examples of such a metrics, and there are many others.

14.4 The LinearTimeSVD Algorithm

We will start with a very simple random sampling algorithm. Given an m× n matrix A, we wish
to choose columns of A such that the projection of the matrix onto those columns “captures” as
much of the matrix as possible, i.e., that is a basis for a space close to the space spanned by the
top singular vectors of the matrix. Thus, in particular, if A is well approximated by a low-rank
matrix, then we would like A ≈ Pspan(C)A, where C is a matrix consisting of the chosen columns
and where Pspan(C) is a projection onto the column space of C. To this end, the LinearTimeSVD
algorithm randomly samples a small number of columns from an input matrix, and it returns an
approximation to the singular values and left singular vectors of that matrix. This algorithm is
somewhat too simple to have found widespread use in practice (for reasons we will discuss), but it
is important historically, and it is pedagogically convenient since it’s analysis will illustrate several
important concepts.

Algorithm 1 The LinearTimeSVD Algorithm.

Input: An m×n matrix A, integers c, k s.t. 1 ≤ k ≤ c ≤ n, and a probability distribution {pi}ni=1.
Output: An m× k orthogonal matrix Hk and numbers σt(C), t = 1, . . . , k.
1: for t = 1 to c do
2: Pick it ∈ 1, . . . , n with Pr [it = α] = pα, α = 1, . . . , n.
3: Set C(t) = A(it)/

√
cpit .

4: end for
5: Compute CTC and its singular value decomposition; say CTC =

∑c
t=1 σ

2
t (C)ytyt

T
.

6: Compute ht = Cyt/σt(C) for t = 1, . . . , k.

7: Return Hk, where H
(t)
k = ht, and σt(C), t = 1, . . . , k.

We have formulated this algorithm to say that it returns the top k left singular vectors of C, but
we could have just returned the matrix C. (By that, we mean that the quality-of-approximation
and running time claims that we discuss today and next time work for both C and Ck. If we
were interested in different objectives, like we just discussed above, then the difference between C
and Ck can become important. We will revisit this issue later with other low-rank approximation
algorithms.)
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The point here is that we want to say that the matrix C is in some sense close to the matrix A. It is
not immediately obvious how to make that comparison, however, given that the two matrices have
different dimensions. Note, though, that the ambient dimensionality of the range space of both
matrices is the same, i.e., Rm, and so we will say that they are similar if their left singular subspaces
are similar, or relatedly if CCT ≈ AAT . (Other notions of similarity are certainly possible, but
this notion says that the two matrices have a similar correlational structure on the non-sampled
dimension, and one important aspect of this notion is that we can relate it back to approximation
algorithms for the matrix multiplication primitive.)

Before presenting our quality-of-approximation results, here is a summary of the running time of
this algorithm.

• If we work with probabilities that are approximately proportional to the squared Euclidean
norms of the columns of A, as in Eqn. (14) below, then one pass and O(c), where c is the
number of random samples to be drawn, i.e., the number of independent counters that are
run in parallel in the pass efficient model, additional space and time are needed to choose the
indices of the columns to choose. (Of course, if we work with uniform sampling probabilities,
then we can choose the columns to be sampled without even looking at the data and store
the indices of those columns in O(c) additional space.)

• Given the indices of the columns to be sampled, then one additional pass andO(mc) additional
space and time is needed to select the columns from A and construct the matrix C.

• Given the matrix C, then computing CTC requires O(mc2) additional space and time, and
computing the SVD of CTC requires O(c3) additional space and time.

• Given the SVD of CTC, then computing Hk requires k matrix-vector multiplications, for a
total of O(mck) additional space and time.

• So, on the whole, if c, k = O(1), then O(m) additional space and time are needed. That is,
the LinearTimeSVD algorithm has additional running space and time that is linear in the
dimensionality of the data/features and not in the size or number of non-zeros of the matrix.

Next, we will be interested in establishing quality-of-approximation results for this algorithm. To
separate clearly the effect of linear algebraic structure from the effect of randomization on the
quality-of-approximation claims, we will first do this for general sampling probabilities, and we will
then specialize the result to the case that the probabilities depend on the Euclidean norms squared
of the columns of A. In the former case, the additional error, above and beyond that incurred by
the best rank-k approximation, will depend on ||AAT − CCT ||ξ, for ξ = {2, F}. Then, we will call
our previous matrix multiplication results to bound that additional error. So, the choice of columns
will enter only in the form of an approximate matrix multiplication bound.

Let’s start with what we can establish for the Frobenius norm error.

Theorem 1 Suppose A ∈ Rm×n and let Hk be constructed from the LinearTimeSVD algorithm.
Then, ∥∥A−HkH

T
k A
∥∥2
F
≤ ‖A−Ak‖2F + 2

√
k
∥∥AAT − CCT∥∥

F
.
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Proof: Recall that for matrices X and Y , ‖X‖2F = Tr
(
XTX

)
, Tr (X + Y ) = Tr (X)+Tr (Y ), and

also that HT
k Hk = Ik. Thus, we may express

∥∥A−HkH
T
k A
∥∥2
F

as:∥∥A−HkH
T
k A
∥∥2
F

= Tr
(
(A−HkH

T
k A)T (A−HkH

T
k A)

)
= Tr

(
ATA− 2ATHkH

T
k A+ATHkH

T
k HkH

T
k A
)

= Tr
(
ATA

)
−Tr

(
ATHkH

T
k A
)

= ‖A‖2F −
∥∥ATHk

∥∥2
F
. (10)

We may relate
∥∥ATHk

∥∥2
F

and
∑k

t=1 σ
2
t (C) by the following:∣∣∣∣∣ ∥∥ATHk

∥∥2
F
−

k∑
t=1

σ2t (C)

∣∣∣∣∣ ≤ √
k

(
k∑
t=1

(∥∥ATht∥∥2
2
− σ2t (C)

)2)1/2

=
√
k

(
k∑
t=1

(∥∥ATht∥∥2
2
−
∥∥CTht∥∥2

2

)2)1/2

=
√
k

(
k∑
t=1

(
ht
T

(AAT − CCT )ht
)2)1/2

≤
√
k
∥∥AAT − CCT∥∥

F
. (11)

The first inequality follows by applying the Cauchy-Schwartz inequality; the last inequality follows
by writing AAT and CCT with respect to a basis containing {ht}kt=1. By again applying the
Cauchy-Schwartz inequality, noting that σ2t (X) = σt(XX

T ) for a matrix X, and applying the
Hoffman-Wielandt inequality, (7), we may also relate

∑k
k=1 σ

2
t (C) and

∑k
k=1 σ

2
t (A) by the following:∣∣∣∣∣

k∑
t=1

σ2t (C)−
k∑
t=1

σ2t (A)

∣∣∣∣∣ ≤ √
k

(
k∑
t=1

(
σ2t (C)− σ2t (A)

)2)1/2

=
√
k

(
k∑
t=1

(
σt(CC

T )− σt(AAT )
)2)1/2

≤
√
k

(
m∑
t=1

(
σt(CC

T )− σt(AAT )
)2)1/2

≤
√
k
∥∥CCT −AAT∥∥

F
. (12)

Combining the results of (11) and (12) allows us to relate
∥∥ATHk

∥∥2
F

and
∑k

t=1 σ
2
t (A) by the

following:

‖
∥∥ATHk

∥∥2
F
−

k∑
t=1

σ2t (A)‖ ≤ 2
√
k
∥∥AAT − CCT∥∥

F
. (13)

Combining (13) with (10) yields the theorem.
�

Let’s conclude today with several observations about this theorem.
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• This theorem says that the error in any low-rank approximation, above and beyond that
provided by the best rank-k approximation, can be related to an error in approximating the
product of two matrices. Thus, if we can make that matrix multiplication error small, then
we get a good low-rank matrix approximation.

• In particular, if we use probabilities {pi}ni=1 that are close to the Euclidean norms squared of
A, in the sense that

pi ≥ β
∥∥A(i)

∥∥2
2

‖A‖2F
, (14)

for some positive β ≤ 1 (e.g., just set β = 1 and use the Euclidean norms squared of the
columns of A), then one has that worst-case additive-error bounds of the form∥∥A−HkH

T
k A
∥∥2
F
≤ ‖A−Ak‖2F + ε ‖A‖2F (15)

hold in expectation and with high probability, if one chooses c & k/ε2 in the algorithm.

• If the Euclidean norms of the columns of A are approximately uniform, then uniform sam-
pling is approximately optimal, in the sense that the probabilities pi = 1/n are close to the

probabilities pi =
∥∥A(i)

∥∥2
2
/ ‖A‖2F , e.g., in the sense that β is not too small (and thus 1/β is

not too large). Then, with an appropriately small choice of β that can be absorbed into the
sampling complexity, one can get bounds of the form Eqn. (15) with c & k/βε2 (for a value
of β which doesn’t make this expression too large).

• On the other hand, if the uniform sampling probabilities are very different than the norm-
squared probabilities, then one must choose β to be very small (and thus 1/β to be very
large) to get bounds of the form Eqn. (15). For example, c & k/βε2—where the value of β
makes this very large. In particular, this can be a very large number of uniformly-sampled
columns if β depends on n (in theory) of if, say, β = 1/1000 (in practice).

• Alternatively, one can sample c & k/ε2 columns uniformly, i.e., where c has no β dependency,
and obtain bounds of the form∥∥A−HkH

T
k A
∥∥2
F
≤ ‖A−Ak‖2F + εn2. (16)

This is also an additive-error bound, but the scale of the additive error is much worse that
before—so much worse, in fact, that bounds with additive scale factor don’t even provide a
qualitative guide to the practical performance of the algorithm.
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