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Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

13 Randomized Least-squares Approximation in Practice, Cont.

We continue with the disucssion from last time. There is no new reading, just the same as last class.

Today, we will focus on three things.

• We will discuss issues with good implementations that arise when downsampling more ag-
gressively than worst-case theory needs.

• We will talk more about generalized eigenvalues and their relationship with perturbations of
good preconditioners.

• We will talk about how those ideas are used in RandNLA solvers.

(This will wrap up our discussion of least squares. Next time, we will move onto RandNLA
algorithms for low-rank matrix approximation.)

13.1 Issues with good implementations

Recall that last time we were discussing Blendenpik, which provides an implementation of a
RandNLA algorithm to solve the very overdetermined LS problem. There is a bit of a theory-
practice gap, and looking at how Blendenpik addresses some of those issues is illustrative more
generally for other problems such as low-rank matrix approximation.

The basic idea is that rather than doing a QR decomposition of A, do a QR decomposition on ΠA,
where Π is a FJLT (or some other, e.g., data-aware subspace embedding), and then use the R̃−1

from QR on the subproblem as a preconditioner for an iterative algorithm on the original problem.

We saw that if ΠA = Q̃R̃ then κ
(
AR̃−1

)
= κ (SU). If we sample “enough,” i.e., Ω (d log(d)/ε),

then this condition number is ≤ 1 + ε and the very good subspace embedding provides a very good
preconditioner.

While this sampling complexity is basically necessary if we want to use ΠA and Πb to solve the
subproblem and obtain 1± ε approximation guarantees, this might be overkill, if these methods are
coupled with an iterative algorithm. This is fortunate, since in practice one typically down-samples

more aggressively s.t. κ
(
AR̃−1

)
is still somewhat large (and/or that the sample looses rank, which
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essentially means that it is infinite). In this situation, the worst-case TCS theory fails, but we
we might still be able to use these RandNLA methods to construct a good preconditioner for a
traditional NLA iterative algorithm. Even if we are not in such an extreme situation, constructing
preconditioners, whether with deterministic or randomized methods, is expensive, and there is a
tradeoff between very good preconditioners that need very few iterations and moderately good
preconditioners that are less expensive but need more iterations. Having control over this tradeoff
is very important in practice.

Said another way, here is the main issue.

• What if there are just a very few rows with very bad leverage scores (and we sample uniformly),
or (if we sample non-uniformly) we get estimates of the leverage scores (via the fast leverage
score algorithm, except that we down-sample more aggressively in the Π1 projection inside
that algorithm) that are good for most of the leverage scores but severely underestimate the
leverage of a small number of rows? In this case, the following is true.

– We don’t have a go0d subspace embedding, and so solving the subproblem does not lead
to a good solution, in worst case analysis.

– Since we don’t have a good subspace embedding, when using the sketch as a precondi-
tioner, the condition number of the preconditioner is large (or infinite, if rank is lost),
and so a naive bound that uses the condition to bound the number of iterations leads
to poor results.

– We can often still use this as a preconditioner for iterative methods such as LSQR and get
good convergence in a small number of iterations in practice. Thus, it is still a reasonably
good preconditioner, and there is theory to explain this—basically, the reason is since a
small perturbation of it is a good preconditioner, and we will discuss that now.

• The basic idea here is that if there are a few rows that are missed (either with uniform
sampling since they have high leverage, or with nonuniform sampling if we down-sample too
aggressively), then the number of large singular values is bounded by the condition number

of the large rows. Having just a few large rows means that κ
(
AR̃−1

)
is large, but is doesn’t

much affect the convergence properties of LSQR.

• Somewhat more precisely, the “R” factor from a QR decomposition of a perturbation Ã of
A is effective as a preconditioner for A; if is A is poorly conditioned, then it is ok if Ã is
well-conditioned. Ditto for ATA and ÃT Ã. Results of this form hold in general; and, for
RandNLA, A is the matrix from the sample, and Ã is some other matrix that isn’t explicitly
constructed.

Now, we’ll go into more detail on this. In particular, we will outline some of the ideas from the
ANT paper, but we will skip some of the details that are less relevant.

13.2 Using perturbed QR factorizations to solve linear LS problems

Before we go into some of the details, let’s describe the notion of generalized eigenvalues and
generalized condition numbers that we mentioned a few classes ago.

Recall that if we use CG with a preconditionerM , then we solve Ax = b by solvingM−1Ax = M−1b.
If M = A, the we are basically solving the linear system with a direct method, while of M = I, then
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we are basically solving it with unpreconditioned iterative method. So, the goal is to find an M
such that M is easy to compute and κ

(
M−1A

)
is small. Recall also the definitions of generalized

eigenvalues and generalized condition numbers.

Definition 1 Let S, T ∈ Rn×n, then λ = λ (S, T ) ∈ Rn is a finite generalized eigenvalue of the

matrix pencil (S, T ) if there exists a vector v 6= 0 such that

{
Sv = λTv
Tv 6= 0

. In addition, ∞ is an

infinite generalized eigenvalue of (S, T ) if there exists a v 6= 0 such that

{
Tv = 0
Sv 6= 0

. Note that ∞

is a eigenvalue of (S, T ) iff 0 is an eigenvalue of (T, S).

Definition 2 The finite and infinite eigenvalues of a pencil are determined eigenvalues, i.e., the
eigenvector uniquely determines the eigenvalue. If Sv = Tv = 0 for some v 6= 0, then v is an
indeterminate eigenvector, since Sv = λTv, for all λ ∈ R. We can denote the set of determined
eigenvalues of (S, T ) by Λ (S, T ).

Definition 3 Let S, T ∈ Rn×n have the same null space. The generalized condition number is

κ (S, T ) =
λmax (S, T )

λmin (S, T )
,

where them max and min are over the determined eigenvalues of (S, T ).

Here is a fact. The behavior of preconditioned iterative methods is determined by the clustering
of the generalized eigenvectors, and the number of iterations is bounded by a quantity that is
proportional to the generalized condition number.

• CG converges in O
(√

κ (A,M)
)

iterations.

• LSQR on A preconditioned by R converges in O
(√

κ (ATA,RTR)
)

iterations.

Note that these bounds provide sufficient conditions; but since these bounds come from a more
refined analysis that depends on the entire spectrum, they are not necessary. We now turn to a
theory that provides a more refined analysis.

In particular, here we describe a theory (from the ANT paper) that is more general than RandNLA
preconditioning but which can be applied directly to RandNLA preconditioning.

Let A be a matrix and let Â =

(
A
B

)
. Then,

(
ÂT Â

)−1
ATA =

(
ATA+BTB

)−1
ATA

=
(
ATA+BTB

)−1 (
ATA+BTB −BTB

)
= I −

(
ATA+BTB

)−1
BTB︸ ︷︷ ︸

=Ω

.
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Here is a fact:
rank (Ω) ≤ rank (B) .

So, in particular, if the matrix B is low-rank, then the matrix
(
ÂT Â

)−1
ATA is a low-rank pertur-

bation of the identity I.

The important consequence of this is that a symmetric rank-k perturbation of the identity I has
≤ k non-unit eigenvalues. In exact arithmetic, this is sufficient to guarantee the convergence in k
iterations of several Krylov methods. So, in particular, for the LS problem, the Cholesky factor of
ÂT Â, which is the R matrix from the QR decomposition of Â, is a good LS preconditioner for A.

The same analysis extends to other types of perturbations, e.g., to the case when the perturbation
is such that rows of A are dropped. The Avron, Ng, and Toledo paper generalized this to other
matrix perturbations.

• To when Â is singular.

• To when rows are removed instead of added.

• To when columns are exchanged.

• To preconditioners for Â other than the R factor.

They also bound the size of the non-unit eigenvalues, which is important when A is rank deficient.

Observe that the generalized spectrum of
(
ATA,ATA

)
is very simple: the pencil has rank (A)

eigenvalues that are 1 and the rest are indeterminate. In light of this, let’s describe the spectra of
the following perturbed pencils.

•
(
ATA,ATA+BTB − CTC

)
•
(
ATA, ÂT Â

)
, when A =

(
D E

)
and Â =

(
D F

)
.

The perturbations of ATA shift some of the eigenvalues of
(
ATA,ATA

)
. Let’s call the eigenvalues

that move away from 1 runaway eigenvalues. We will analyze the runaway eigenvalues, which
govern the convergence of LSQR when a factorization or approximation of a perturbed matrix is
used as a preconditioner.

To start simple, let’s give a result that bounds the number of runaway eigenvalues (and other
aspects of the spectrum) when we add/subtract a symmetric product from a matrix.

Theorem 1 Let A ∈ Rm×n, B ∈ Rk×n, C ∈ Rr×n, for some 1 ≤ k+r ≤ n, and define χ =

(
B
C

)
.

Then,

• In the pencil
(
ATA,ATA+BTB − CTC

)
, at most rank (χ) ≤ k + r generalized determined

eigenvalues may be different than 1.
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• If 1 is not a generalized eigenvalue in the pencil
(
BTB,CTC

)
, and if ATA + BTB − CTC

is full rank, then: (1) the pencil
(
ATA,ATA+BTB + CTC

)
does not have indeterminate

eigenvectors, and (2) the multiplicity of eigenvalue 1 is exactly dim-null (χ) ≥ n− k− r, and
(3) the multiplicity of the zero eigenvalue is exactly dim-null (A).

• The sum pencil
(
ATA,ATA+BTB

)
cannot have an infinite eigenvalue, and all of its eigen-

values are in the interval [0, 1].

Similar results can be obtained for modifying A in other ways, e.g., a set of columns of A. Here is
one such result. To state it, denote the columns of A that are not modified by D, and denote the
modified columns before and after by E and F , respectively.

Theorem 2 Let D ∈ Rm×n, E ∈ Rm×k, and F ∈ Rm×k, for some 1 ≤ k < n. In addition, let

A =
(
D E

)
∈ Rm×(n+k)

Â =
(
D F

)
∈ Rm×(n+k).

Then in the pencil
(
ATA, ÂT Â

)
, at least n− k of the generalized finite eigenvalues are equal to 1.

Similarly,

• If a preconditioner M is effective for a matrix ATA, then it is also effective for the perturbed
matrices ATA+BTB − CTC ad also ÂT Â.

• If the rank of the matrices B, C, E, and F is low, then most of the generalized eigenvalues of
the perturbed preconditioned system will be bounded by the extreme generalized eigenvalues
of the unperturbed preconditioned system.

• I.e., the number of runaway eigenvalues is small, but the non-runaway eigenvalues are not
necessarily at 1, and they can move in an interval whose size determines the condition number
of the original preconditioned system.

Theorem 3 Let A ∈ Rm×n, B ∈ Rk×n, and C ∈ Rr×n, for some 1 ≤ k+ r < n. Let M ∈ Rn×n be
SPSD, and assume

null (M) ⊆ null(ATA)

null (M) ⊆ null(BTB)

null (M) ⊆ null(CTC)

Then, if we assume that

α ≤ λ1

(
ATA,M

)
≤ λrank(M)

(
ATA,M

)
≤ β,

then it follows that

α ≤ λr+1

(
ATA+BTB − CTC,M

)
≤ λrank(M)−k

(
ATA+BTB − CTC,M

)
≤ β
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Corollary 1 Let A ∈ Rn×d, B ∈ Rk×k, for 1 ≤ k ≤ d, be full rank matrices, and let M ∈ Rn×n be
SPSD. If the eigenvalues of

(
ATA,M

)
are in the interval (α, β), where α and β are numbers, then

the d− k smallest eigenvalues of
(
ATA+BTB,M

)
are in the same interval (α, β).

Similar results can be stated when columns are modified and for other types of perturbations.

13.3 Back to our preconditioned RandNLA LS solver

There are several applications of these ideas for preconditioned LS solvers: drop rows for sparsity;
updating (adding rows) and down-dating (drop rows); adding rows to help solve rank deficient
problems. We will describe how they are used in the Blendenpik solver; other RandNLA solvers
like LSRN do similar things.

A key aspect of implementations is that they project onto (say) 2d rows, rather than (say)
10d log(d)/ε rows. In that case, we might loose rank or have other problems; but the theory
we just outlined means that we can still obtain a good preconditioner. Here is an outline of how
that happens.

What if we project onto (say) 2d rows, so that we don’t uniforms the leverage scores, i.e., so that
there are still a few bad coherence rows? Relatedly, what if the input matrix has only a very few
high leverage rows and that we miss them in the random sample? Then, the sample can (sometimes)
still lead to a good preconditioner. The basic reason for this is that a few rows with large norm may
allow a few singular values of the preconditioned system AR̂−1 to be very large, but the number
of large singular values is bounded by the number of large rows (and those can be dealt with with
a few extra iterations of the iterative method). That is, a few large singular values can cause the
condition number of AR−1 to be large, and they can even lead to subspace-nonpreservation, leading
the worst-case bounds to fail, but they don’t much affect the convergence of LSQR.

Here is a basic lemma.

Lemma 1 Let A ∈ Rn×d, with n ≥ d, and suppose that A =

(
A1

A2

)
, where A2 has ` ≤

min{n − d, d}. In addition, let S ∈ Rk×(n−`) be a matrix such that SA1 is full rank, and let
its QR decomposition be SA1 = Q̂R̂. Then, at least n− ` of the singular values of AR̂−1 are in the

interval
(
σmin

(
A1R̂

−1
)
, σmax

(
AR̂−1

))
.

Proof: The singular values σi

(
A1R̂

−1
)

are the square roots of the generalized eigenvalues of(
AT

1 A1, (SA1)T SA1

)
; and the singular values σi

(
AR̂−1

)
are the square roots of the general-

ized eigenvalues of
(
AT

1 A1 +AT
2 A2, (SA1)T SA1

)
. The matrix ATA = AT

1 A1 + AT
2 A2 is a rank

` perturbation of AT
1 A1. So, by the corollary above, we know that at least d − ` eigenvalues of(

ATA, (SA1)T SA1

)
are in the interval between the smallest and largest of the generalized eigen-

values of
(
AT

1 A1, (SA1)T SA1

)
.

�

So, what this lemma says is that as long as the number of runaway eigenvalues is small, then we
can still use it as a good preconditioner. If we precondition more aggressively, etc., such that we
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loose rank, then similar ideas apply if we perturb the matrix to make it full rank. We won’t go
into the details now, except to say that there are many other variants of this possible, e.g., see the
related solver LSRN.
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