
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 12 - 10/14/2013

Lecture 12: Randomized Least-squares Approximation in Practice, Cont.

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

12 Randomized Least-squares Approximation in Practice, Cont.

We continue with the disucssion from last time. There is no new reading, just the same as last class.

Today, we will focus on three things.

• We will describe condition numbers and how RandNLA algorithms can lead to good precon-
ditioning.

• We will describe two different ways that randomness can enter into the parameterization of
RandNLA problems.

• We will describe the Blendenpik RandNLA LS solver.

12.1 Condition numbers and preconditioning in RandNLA algorithms

Recall that we are interested in the conditioning quality of randomized sketches constructed by
RandNLA sampling and projection algorithms.

For simplicity of comparison with the Blendenpik paper, I’ll state the results as they are stated in
that paper, i.e., with a Hadamard-based projection, and then I’ll point out the generalization (e.g.,
to leverage score sampling, to other types of projections, etc.) to other related RandNLA sketching
methods.

Recall that after pre-multiplying by the randomized Hadamard transform H, the leverage scores of
HA are roughly uniform, and so one can sample uniformly. Here is a definition we have mentioned
before.

Definition 1 Let A ∈ Rn×d be a full rank matrix, with n > d and let U ∈ Rn×d be an orthogonal
matrix for span(A). Then, if U(i) is the ith row of U , the coherence of A is

µ (A) = max
i∈[n]

∥∥U(i)

∥∥2
2

That is, the coherence is—up to a scaling that isn’t standardized in the literature—equal to the
largest leverage score. Equivalently, up to the same scaling, it equals the largest diagonal element

1

of PA = A
(
ATA

)†
AT , the projection matrix onto the column span of A. Defined this way, i.e.,

not normalized to be a probability distribution, possible values for the coherence are

d

n
≤ µ (A) ≤ 1.

Thus, with this normalization:

• If µ (A) & d
n , then the coherence is small, and all the leverage scores are roughly uniform.

• If µ (A) . 1, then the coherence is large, and the leverage score distribution is very nonuniform
(in that there is at least one very large leverage score).

The following result (which is parameterized for a uniform sampling process) describes the relation-
ship between the coherence µ (A), the sample size r, and the condition number of the preconditioned
system.

Lemma 1 Let A ∈ Rn×d be a full rank matrix, and let S ∈ Rr×n be a uniform sampling operator.
Let

τ = C
√
mµ (A) log(r)/r,

where C is a constant in the proof. Assume that δ−1τ < 1, where δ is a failure probability. Then,
with probability ≥ 1− δ, we have that

rank (SA) = d,

and is the QR decomposition of SA is SA = Q̃R̃, then

κ
(
AR̃−1

)
=

1 + δ−1τ

1− δ−1τ
.

Before proceeding with the proof, here are several things to note about this result.

• We can obtain a similar result on the condition number if we sample non-uniformly based on
the leverage scores, and in this case the coherence µ (A) (which could be very large, rendering
the results as stated trivial) does not enter into the expression. This is of interest more
generally, but we’ll state the result for uniform sampling for now. The reason is that the
Blendenpik solver does a random projection which uniformizes (approximately) the leverage
scores, i.e., it preprocesses the input matrix to have a small coherence.

• Also, κ (A), i.e., the condition number of the original problem instance, does not enter into

the bound on κ
(
AR̃−1

)
.

• If we are willing to be very aggressive in downsampling, then the condition number of the pre-
conditioned system might not be small enough. In this case, all is not lost—a high condition
number might lead to a large number of iterations of LSQR, but we might have a distribution
of eigenvalues that is not too bad and leads to a number of iterations that is not too bad. In
particular, the convergence of LSQR depends on the full distribution of the singular value of
κ
(
AR−1

)
and not just the ratio of the largest to smallest (considering just that ratio leads

to sufficient but not necessary conditions), and if only a few singular values are bad then this
can be dealt with. We will return to this topic below.

2

• As we will see, the proof of this lemma directly uses ideas, e.g., subspace preserving em-
beddings, that were introduced in the context of low-precision RandNLA solvers, but it uses
them toward a somewhat different aim.

Proof:[of Lemma 1] To prove the lemma, we need the following specialization of a result we stated
toward the beginning of the semester. Again, since the lemma is formulated in terms of a uniform
sampling process, we state the following lemma as having the coherence factor (µ (U)), which is
necessary when uniform sampling is used. We saw this approximate matrix multiplication result
before when the uniform sampling operator was replaced with a random projection operator or a
non-uniform sampling operator, and in both cases the coherence factor did not appear.

Lemma 2 Let U ∈ Rn×d be an orthogonal matrix, and let S ∈ Rn×n be a uniform sampling-and-
resacling operator. Then

E
[∥∥I − UTSTSU

∥∥
2

]
≤ C

√
mµ (U) log(r)

r
.

Since SU is full rank, so too is SA full rank. Then, we can claim that

κ (SU) = κ
(
AR̃−1

)
.

To prove the claim, recall that

SU = USUΣSUV
T
SU by definition

SA = Q̃R̃ by definition

USU = Q̃W, for a d× d unitary matrix W , since they span the same space.

In this case, it follows that

R̃ = Q̃TSA

= Q̃TSUΣV T

= Q̃TUSUΣSUV
T
SUΣV T

= WΣSUV
T
SUΣV T .

From this (and since ΣSU is invertible, by the approximate matrix multiplication bound, since we
have sampled sufficiently many columns), it follows that

AR̃−1 = UΣV TV Σ−1VSUΣ−1SUW

= UVSUΣ−1SUW.

From this, it follows that∥∥∥∥(AR̃−1)T AR̃−1∥∥∥∥
2

=
∥∥WΣ−1SUV

T
SUU

TUVSUΣ−1SUW
T
∥∥
2

=
∥∥WΣ−2SUW

T
∥∥
2

=
∥∥Σ−2SU

∥∥
2

=
∥∥Σ−1SU

∥∥2
2
,

3

where the penultimate equality follows since W is orthogonal and the last equality follows since
ΣSU is diagonal. Similarly, ∥∥∥∥∥

((
AR̃−1

)T (
AR̃−1

))−1∥∥∥∥∥
2

= ‖ΣSU‖22

This, using that κ (α) =
(∥∥αTα

∥∥
2

∥∥∥(αTα
)−1∥∥∥

2

)1/2
for a matrix α, if follows that

κ
(
AR̃−1

)
=

(∥∥∥∥(AR̃−1)T AR̃−1∥∥∥∥
2

∥∥∥∥∥
((

AR̃−1
)T

AR̃−1
)−1∥∥∥∥∥

2

)1/2

=
(∥∥Σ−1SU

∥∥2
2
‖ΣSU‖22

)1/2
=

∥∥Σ−1SU

∥∥
2
‖ΣSU‖2

= κ (SU) .

This establishes the claim.

So, given that claim, back to the main proof. Recall that

E
[∥∥I − UTSTSU

∥∥
2

]
≤ τ.

By Markov’s Inequality, it follows that

Pr
[∥∥I − UTSTSU

∥∥
2
≥ δ−1τ

]
≤ δ.

This, with probability ≥ 1− δ, we have that∥∥I − UTSTSU
∥∥
2
< δ−1τ < 1,

and thus SU is full rank.
�

Next, recall that every eigenvalue λ of UTSTSU is the Rayleigh quotient of some vector x 6= 0, i.e.,

λ =
xTUTSTSUx

xTx

=
xTx− xT

(
UTSTSU − I

)
x

xTx
= 1 + η,

where η is the Rayleigh quotient of I − UTSTSU .

Since this is a symmetric matrix, it’s singular values are the absolute eigenvalues. Thus, |η| < δ−1τ .
Thus, all the eigenvalues of UTSTSU are in the interval

(
1− δ−1τ, 1 + δ−1τ

)
. Thus,

κ (SU) ≤
√

1 + δ−1τ

1− δ−1τ
.

4

12.2 Randomness in error guarantees versus in running time

So far, we have been describing algorithms in the “deterministic running time and probabilistic error
guarantees” framework. That is, we parameterize/formulate the problem such that we guarantee
that we take not more than

O (f (n, ε, δ))

time, where f (n, ε, δ)) is some function of the size n of the problem, the error parameter ε, and a
parameter δ specifying the probability with which the algorithm may completely fail.

That is most common in TCS, where simpler analysis for worst-case input is of interest, but in
certain areas, e.g., NLA and other areas concerned with providing implementations, it is more con-
venient to parameterize/formulate the problem in a “probabilistic running time and deterministic
error” manner. This involves making a statement of the form

Pr [Number of FLOPS for ≤ ε relative error ≥ f (n, ε, δ)] ≤ δ.

That is, in this case, we can show that we are guaranteed to get the correct answer, but the running
time is a random quantity.

A few things to note.

• These algorithms are sometimes known in TCS as Las Vegas algorithms, to distinguish them
from Monte Carlo algorithm that have a deterministic running time but a probabilistic error
guarantee. Fortunately, for many RandNLA algorithms, it is relatively straightforward to
convert a Monte Carlo type algorithm to a Las Vegas type algorithm.

• This parameterization/formulation is a particularly convenient when we downsample more
aggressively than worst-cast theory permits, since we can still get a good preconditioner (since
a low-rank perturbation of a good preconditioner is still a good preconditioner) and we can
often still get good iterative properties due to the way the eigenvalues cluster. In particular,
we might need to iterate more, but we won’t fail completely.

12.3 Putting it all together into the Blendenpik algorithm

With all this in place, here is the basic Blendenpik algorithm.

We will go into more detail on how/why this algorithm works next time (in terms of condition
number bounds, potentially loosing rank, since r = o (d log(d)), etc.), but here are a few final notes
for today.

• Depending on how aggressively we downsample, the condition number κ
(
AR−1

)
might be

higher than 1+ε. If it is too much larger, then LSQR converges slowly, but the algorithm does
not fail completely, and it eventually converges. In this sense, we get Las Vegas guarantees.

• Since the downsampling is very aggressive, the preconditioner can actually be rank-deficient
or ill-conditioned. The solution that Blendenpik uses is to estimate the condition number
with a condition number estimator from LAPACK, and if it is ≥ ε−1mach/5 then randomly
project and sample again.

5

Algorithm 1 The Blendenpik algorithm.

Input: A ∈ Rn×d, and b ∈ Rn.
Output: x̃opt ∈ Rd

1: while Not returned do
2: Compute HDA and HDb, where HD is one of several Randomized Hadamard Transforms.
3: Randomly sample γd/n rows of A and corresponding elements of b, where γ ≈ 2d, and let S

be the associated sampling-and-rescaling matrix.
4: Compute SHDA = QR.
5: κ̃ = κestimate (R), with LAPACK’s DTRCON routine.
6: if κ̃−1 > 5εmach then
7: x̃opt = LSQR

(
A, b,R, 10−14

)
and return

8: else if Number of iterations > 3 then
9: Call LAPACK and return

10: end if
11: end while

• In Blendenpik, they use LSQR, but one could use other iterative procedures, and one gets
similar results.

We will go into more detail on these topics next time.

6

